Research Article
BibTex RIS Cite

AHP ile Taşkın Risk Analizi ve Doğal Taşkın Yönetiminde Ormanların Rolü: Türkiye'nin Kuzeyinden Bir Vaka Çalışması

Year 2023, Volume: 23 Issue: 3, 282 - 297, 06.12.2023
https://doi.org/10.17475/kastorman.1394958

Abstract

Çalışmanın amacı: Bu çalışmanın amacı, taşkın ve taşkın olaylarına sıkça rastlanan çalışma alanının taşkın risk haritasını AHP yöntemi ile belirlemektir.
Çalışma alanı: The study was carried out within the boundaries of the Sinop Regional Directorate of Forestry, Ayancık Forest Management Directorate.
Materyal ve yöntem: Çalışma alanı taşkın risk haritası Analitik Hiyerarşi Süreci (AHP) yöntemi ile üretildi. AHP için slope, precipitations, aspect, stream distance, land use and soil olmak üzere 6 farklı kriter kullanıldı. Ormanların taşkın riski üzerine etkisini analiz etmek için çalışma alanına ait forest type maps kullanıldı. Orman yapısı itibarı ile stand structure, coniferous, broadleaf and mixed forest olmak üzere 3 sınıfa ayrıldı.
Sonuçlar: Orman yapısına göre taşkın riskinin değiştiği tespit edildi. Coniferous forest sınıfı taşkın riski’nin en az olduğu, mixed forest ise taşkın riskinin fazla olduğu sınıf olarak tespit edildi.
Araştırma vurguları: Orman yapısının taşkın hasarının boyutunu farklı oranlarda azaltma eğiliminde olduğunu ve dolayısıyla taşkın olayları sırasında meydana gelecek zararları azaltma ve engelleme yeteneğine sahip olduğunu gösterdi.

References

  • Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R. & Rockstrom, J. (2005). Social-ecological resilience to coastal disasters. Science, 309(5737), 1036-1039.
  • AFAD. (2021) Afet ve Acil Durum Yönetimi Başkanlığı. https://www.afad.gov.tr/
  • Akgun, A. & Türk, N. (2010). Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environmental Earth Sciences, 61, 595-611. https://doi.org/10.1007/s12665-009-0373-1
  • Aksoy, H. & Kaptan, S. (2022). Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model. Geocarto International, 37(4), 1183-1202. https://doi.org/10.1080/10106049.2020.1778102
  • Alongi, D. M. (2008). Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76(1), 1-13. https://doi.org/10.1016/j.ecss.2007.08.024
  • Anonymus. (2011). Orman Genel Müdürlüğü, Ayancık Orman Amenajman Planı. Sinop Orman Bölge Müdürlüğü, Ankara: OGM.
  • Balica, S. F., Dinh, Q. & Popescu, I. (2015). Vulnerability and exposure in developed and developing countries: Large-scale assessments. In Hydro-meteorological hazards, risks and disasters, 125-162, Elsevier. https://doi.org/10.1016/B978-0-12-394846-5.00005-9
  • Bhattacharjee, K. & Behera, B. (2017). Forest cover change and flood hazards in India. Land use policy, 67, 436-448. https://doi.org/10.1016/j.landusepol.2017.06.013
  • Bhattacharjee, K. & Behera, B. (2018). Does forest cover help prevent flood damage? Empirical evidence from India. Global Environmental Change, 53, 78-89. https://doi.org/10.1016/j.gloenvcha.2018.09.004
  • Bosch, J. M. & Hewlett, J. D. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55(1-4), 3-23. https://doi.org/10.1016/0022-1694(82)90117-2
  • Brand, F. (2009). Critical natural capital revisited: Ecological resilience and sustainable development. Ecological Economics, 68(3), 605-612. https://doi.org/10.1016/j.ecolecon.2008.09.013
  • Brauman, K. A., Daily, G. C., Duarte, T. K. E., & Mooney, H. A. (2007). The nature and value of ecosystem services: an overview highlighting hydrologic services. Annual Review of Environment and Resources, 32, 67-98. https://doi.org/10.1146/annurev.energy.32.031306.102758
  • Bredemeier, M. (2011). Forest, climate and water issues in Europe. Ecohydrology, 4(2), 159-167. https://doi.org/10.1002/eco.203
  • Brookhuis, B. J. & Hein, L. G. (2016). The value of the flood control service of tropical forests: A case study for Trinidad. Forest Policy and Economics, 62, 118-124. https://doi.org/10.1016/j.forpol.2015.10.002
  • Brookhuis, B. J. & Hein, L. G. (2016). The value of the flood control service of tropical forests: A case study for Trinidad. Forest Policy and Economics, 62, 118-124. https://doi.org/10.1016/j.forpol.2015.10.002
  • Bruijnzeel, L. A. (2004). Hydrological functions of tropical forests: not seeing the soil for the trees?. Agriculture, Ecosystems & Environment, 104(1), 185-228. https://doi.org/10.1016/j.agee.2004.01.015
  • Calder, I. R. & Aylward, B. (2006). Forest and floods: Moving to an evidence-based approach to watershed and integrated flood management. Water International, 31(1), 87-99. https://doi.org/10.1080/02508060608691918
  • Carlyle-Moses, D. E. & Gash, J. H. C. (2011). Rainfall interception loss by forest canopies. In D. F. Levia, D. E. Carlyle-Moses, & T. Tanaka (Eds.), Forest hydrology and biogeochemistry, 407-423, Springer Netherlands. https://doi.org/10.1007/978-94-007-1363-5_20
  • Carvalho-Santos, C., Honrado, J. P. & Hein, L. (2014). Hydrological services and the role of forests: Conceptualization and indicator-based analysis with an illustration at a regional scale. Ecological Complexity, 20, 69-80. https://doi.org/10.1016/j.ecocom.2014.09.001
  • Cıfor, F. (2005). Forest and floods: drowning in fiction or thriving on facts. RAP publication/Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific. Center for International Forestry Research, Bogor Barat, Indonesia.
  • Clerici, A., Perego, S., Tellini, C. & Vescovi, P. (2006). A GIS-based automated procedure for landslide susceptibility mapping by the conditional analysis method: the Baganza valley case study (Italian Northern Apennines). Environmental Geology, 50, 941-961. https://doi.org/10.1007/s00254-006-0264-7
  • Cooper, M. M., Patil, S. D., Nisbet, T. R., Thomas, H., Smith, A. R., et al. (2021). Role of forested land for natural flood management in the UK: A review. Wiley interdisciplinary reviews: Water, 8(5), e1541.
  • Das, S. & Crépin, A. S. (2013). Mangroves can provide protection against wind damage during storms. Estuarine, Coastal and Shelf Science, 134, 98-107. https://doi.org/10.1016/j.ecss.2013.09.021
  • Das, S. & Pardeshi, S. D. (2018). Comparative analysis of lineaments extracted from Cartosat, SRTM and ASTER DEM: a study based on four watersheds in Konkan region, India. Spatial Information Research, 26, 47-57. https://doi.org/10.1007/s41324-017-0155-x
  • Das, S. (2020). Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment, 20, 100379. https://doi.org/10.1016/j.rsase.2020.100379
  • Desalegn, H. & Mulu, A. (2021). Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon, 7(1).
  • Dixon, S. J., Sear, D. A., Odoni, N. A., Sykes, T. & Lane, S. N. (2016). The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surface Processes and Landforms, 41(7), 997-1008. https://doi.org/10.1002/esp.3919
  • Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B., & Norberg, J. (2003). Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment, 1(9), 488-494. https://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2
  • Esin, O., Kahraman, O. & Öztürk, K. (2022). Düzce bölgesi taşkın duyarlılık alanlarının belirlenmesi. Geomatik, 7(3), 220-234. https://doi.org/10.29128/geomatik.972343
  • Gracia, A., Rangel-Buitrago, N., Oakley, J. A. & Williams, A. T. (2018). Use of ecosystems in coastal erosion management. Ocean & Coastal Management, 156, 277-289. https://doi.org/10.1016/j.ocecoaman.2017.07.009
  • Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., et al. (2019). Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geosciences, 12, 1-16. https://doi.org/10.1007/s12517-019-4754-9
  • Ilstedt, U., Malmer, A., Verbeeten, E. & Murdiyarso, D. (2007). The effect of afforestation on water infiltration in the tropics: a systematic review and meta-analysis. Forest Ecology and Management, 251(1-2), 45-51. https://doi.org/10.1016/j.foreco.2007.06.014
  • Kourgialas, N. N. & Karatzas, G. P. (2011). Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 56(2), 212-225. https://doi.org/10.1080/02626667.2011.555836
  • Lee, S. & Min, K. (2001). Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40(9).
  • Lele, S. (2009). Watershed services of tropical forests: from hydrology to economic valuation to integrated analysis. Current Opinion in Environmental Sustainability, 1(2), 148-155. https://doi.org/10.1016/j.cosust.2009.10.007
  • Llorens, P. & Domingo, F. (2007). Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. Journal of Hydrology, 335(1-2), 37-54. https://doi.org/10.1016/j.jhydrol.2006.10.032
  • Meral, A. & Eroğlu, E. (2021). Evaluation of flood risk analyses with AHP, Kriging, and weighted sum models: example of Çapakçur, Yeşilköy, and Yamaç microcatchments. Environmental Monitoring and Assessment, 193, 1-15.
  • MRE. (2021). General Directorate of Mineral Research and Exploration https://www.mta.gov.tr/v3.0/hizmetler/
  • Noguchi, S., Tsuboyama, Y., Sidle, R. C. & Hosoda, I. (2001). Subsurface runoff characteristics from a forest hillslope soil profile including macropores, Hitachi Ohta, Japan. Hydrological Processes, 15(11), 2131-2149. https://doi.org/10.1002/hyp.278
  • Oğuz, K., Oğuz, E. & Coşkun M. (2016). Coğrafi Bilgi Sistemleri İle Taşkın Risk Alanlarının Belirlenmesi: Artvin İli Örneği. 4. Ulusal Taşkın Sempozyumu, 23-25 Kasım, Rize, s.793-803.
  • Pregnolato, M., Ford, A., Glenis, V., Wilkinson, S. & Dawson, R. (2017). Impact of climate change on disruption to urban transport networks from pluvial flooding. Journal of Infrastructure Systems, 23(4), 04017015. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000372
  • Radwan, F., Alazba, A. A. & Mossad, A. (2019). Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophysica, 67, 215-229. https://doi.org/10.1007/s11600-018-0233-z
  • Rasid, H. & Paul, B. K. (1987). Flood problems in Bangladesh: is there an indigenous solution?. Environmental Management, 11, 155-173. https://doi.org/10.1007/BF01867195
  • Rincón, D., Khan, U. T. & Armenakis, C. (2018). Flood risk mapping using GIS and multi-criteria analysis: A greater Toronto area case study. Geosciences, 8(8), 275. https://doi.org/10.3390/geosciences8080275
  • Saaty, T.L. (2012). Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World. Third, Revised edition. RWS Publications, Pittsburgh.
  • Sakals, M. E., Innes, J. L., Wilford, D. J., Sidle, R. C. & Grant, G. E. (2006). The role of forests in reducing hydrogeomorphic hazards. Forest Snow and Landscape Research, 80(1), 11-22.
  • Sebald, J., Senf, C., Heiser, M., Scheidl, C., Pflugmacher, D., et al. (2019). The effects of forest cover and disturbance on torrential hazards: large-scale evidence from the Eastern Alps. Environmental Research Letters, 14(11), 114032. DOI 10.1088/1748-9326/ab4937
  • Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., et al. (2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395-402. https://doi.org/10.1038/nclimate3303
  • Shafapour Tehrany, M., Shabani, F., Neamah Jebur, M., et al. (2017). GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk, 8(2), 1538-1561. https://doi.org/10.1080/19475705.2017.1362038
  • Shekar, P. R. & Mathew, A. (2023). Flood susceptibility mapping of the Peddavagu River Basin using GIS-AHP techniques. Developments in Environmental Science, 14, 125-141. https://doi.org/10.1016/B978-0-443-18640-0.00011-0
  • Shrubsole, D. (2000). Flood management in Canada at the crossroads. Global Environmental Change Part B: Environmental Hazards, 2(2), 63-75. https://doi.org/10.3763/ehaz.2000.0211
  • Sivrikaya, F., Özcan, G. E., Enez, K. & Sakici, O. E. (2022). Comparative study of the analytical hierarchy process, frequency ratio, and logistic regression models for predicting the susceptibility to Ips sexdentatus in crimean pine forests. Ecological Informatics, 71, 101811. https://doi.org/10.1016/j.ecoinf.2022.101811
  • Souissi, D., Zouhri, L., Hammami, S., Msaddek, M. H., Zghibi, A., et al. (2020). GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto International, 35(9), 991-1017. https://doi.org/10.1080/10106049.2019.1566405
  • Stefanidis, S. & Stathis, D. (2013). Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Natural Hazards, 68, 569-585. https://doi.org/10.1007/s11069-013-0639-5
  • Swain, K. C., Singha, C. & Nayak, L. (2020). Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS International Journal of Geo-Information, 9(12), 720. https://doi.org/10.3390/ijgi9120720
  • Tan-Soo, J. S., Adnan, N., Ahmad, I., Pattanayak, S. K., et al. (2016). Econometric evidence on forest ecosystem services: deforestation and flooding in Malaysia. Environmental and Resource Economics, 63, 25-44. https://doi.org/10.1007/s10640-014-9834-4
  • TOB, (2022). Tarım ve Orman Bakanlığı, Corine projesi arazi kullanımı sınıflandırması. https://corine.tarimorman.gov.tr/corineportal/.
  • Unay-Gailhard, İ. & Bojnec, Š. (2020). Public support effect on natural disaster management: A case study of ice storms in forests in Slovenia. Land Use Policy, 95, 103811. https://doi.org/10.1016/j.landusepol.2019.01.014
  • Unay-Gailhard, İ., & Bojnec, Š. (2020). Public support effect on natural disaster management: A case study of ice storms in forests in Slovenia. Land Use Policy, 95, 103811. https://doi.org/10.1016/j.landusepol.2019.01.014
  • Ürker, O., Günlü, A. & Ataol, M. (2023). Use of GUIDOS to analyze fragmentation features and test corridor creation for a fragmented forest ecosystem in Northern-Central Turkey. Austrian Journal of Forest Science, 140(2).
  • Wahren, A., Schwärzel, K. & Feger, K. H. (2012). Potentials and limitations of natural flood retention by forested land in headwater catchments: evidence from experimental and model studies. Journal of Flood Risk Management, 5(4), 321-335. https://doi.org/10.1111/j.1753-318X.2012.01152.x
  • Wang, Y., Hong, H., Chen, W., Li, S., Panahi, M., et al. (2019). Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of environmental management, 247, 712-729. https://doi.org/10.1016/j.jenvman.2019.06.102
  • Zeyno, A. (2022). Uzaktan algılama ve coğrafi bilgi sistemlerinden yararlanarak çok kriterli karar verme yöntemi ile taşkın risk haritasının oluşturulması: Malatya ili örneği (Master's thesis, Bilecik Şeyh Edebali Üniversitesi, Lisansüstü Eğitim Enstitüsü).

Flood Risk Analysis with AHP and the Role of Forests in Natural Flood Management: A Case Study from the North of Türkiye

Year 2023, Volume: 23 Issue: 3, 282 - 297, 06.12.2023
https://doi.org/10.17475/kastorman.1394958

Abstract

Aim of studty: The aim of this study is to determine the flood risk map of the study area where floods and flood events are frequently encountered by AHP method.
Study area: The study was carried out within the boundaries of the Sinop Regional Directorate of Forestry, Ayancık Forest Management Directorate.
Material and method: The flood risk map of the study area was produced by Analytical Hierarchy Process (AHP) method. For AHP, 6 different criteria were used: slope, precipitations, aspect, stream distance, land use, and soil. Forest type maps of the study area were used to analyze the impact of forests on flood risk. In terms of forest structure, the stand structure was divided into 3 classes as coniferous, broadleaf, and mixed forest.
Main results: The results showed that flood risk varies with forest structure. Coniferous forest class was determined as the class with the lowest flood risk and mixed forest as the class with the highest flood risk.
Research highlights: It was determined that the flood risk changed according to the forest structure. Coniferous forest class was determined as the class with the least flood risk, and mixed forest was determined as the class with the highest flood risk.

References

  • Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R. & Rockstrom, J. (2005). Social-ecological resilience to coastal disasters. Science, 309(5737), 1036-1039.
  • AFAD. (2021) Afet ve Acil Durum Yönetimi Başkanlığı. https://www.afad.gov.tr/
  • Akgun, A. & Türk, N. (2010). Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environmental Earth Sciences, 61, 595-611. https://doi.org/10.1007/s12665-009-0373-1
  • Aksoy, H. & Kaptan, S. (2022). Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model. Geocarto International, 37(4), 1183-1202. https://doi.org/10.1080/10106049.2020.1778102
  • Alongi, D. M. (2008). Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76(1), 1-13. https://doi.org/10.1016/j.ecss.2007.08.024
  • Anonymus. (2011). Orman Genel Müdürlüğü, Ayancık Orman Amenajman Planı. Sinop Orman Bölge Müdürlüğü, Ankara: OGM.
  • Balica, S. F., Dinh, Q. & Popescu, I. (2015). Vulnerability and exposure in developed and developing countries: Large-scale assessments. In Hydro-meteorological hazards, risks and disasters, 125-162, Elsevier. https://doi.org/10.1016/B978-0-12-394846-5.00005-9
  • Bhattacharjee, K. & Behera, B. (2017). Forest cover change and flood hazards in India. Land use policy, 67, 436-448. https://doi.org/10.1016/j.landusepol.2017.06.013
  • Bhattacharjee, K. & Behera, B. (2018). Does forest cover help prevent flood damage? Empirical evidence from India. Global Environmental Change, 53, 78-89. https://doi.org/10.1016/j.gloenvcha.2018.09.004
  • Bosch, J. M. & Hewlett, J. D. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55(1-4), 3-23. https://doi.org/10.1016/0022-1694(82)90117-2
  • Brand, F. (2009). Critical natural capital revisited: Ecological resilience and sustainable development. Ecological Economics, 68(3), 605-612. https://doi.org/10.1016/j.ecolecon.2008.09.013
  • Brauman, K. A., Daily, G. C., Duarte, T. K. E., & Mooney, H. A. (2007). The nature and value of ecosystem services: an overview highlighting hydrologic services. Annual Review of Environment and Resources, 32, 67-98. https://doi.org/10.1146/annurev.energy.32.031306.102758
  • Bredemeier, M. (2011). Forest, climate and water issues in Europe. Ecohydrology, 4(2), 159-167. https://doi.org/10.1002/eco.203
  • Brookhuis, B. J. & Hein, L. G. (2016). The value of the flood control service of tropical forests: A case study for Trinidad. Forest Policy and Economics, 62, 118-124. https://doi.org/10.1016/j.forpol.2015.10.002
  • Brookhuis, B. J. & Hein, L. G. (2016). The value of the flood control service of tropical forests: A case study for Trinidad. Forest Policy and Economics, 62, 118-124. https://doi.org/10.1016/j.forpol.2015.10.002
  • Bruijnzeel, L. A. (2004). Hydrological functions of tropical forests: not seeing the soil for the trees?. Agriculture, Ecosystems & Environment, 104(1), 185-228. https://doi.org/10.1016/j.agee.2004.01.015
  • Calder, I. R. & Aylward, B. (2006). Forest and floods: Moving to an evidence-based approach to watershed and integrated flood management. Water International, 31(1), 87-99. https://doi.org/10.1080/02508060608691918
  • Carlyle-Moses, D. E. & Gash, J. H. C. (2011). Rainfall interception loss by forest canopies. In D. F. Levia, D. E. Carlyle-Moses, & T. Tanaka (Eds.), Forest hydrology and biogeochemistry, 407-423, Springer Netherlands. https://doi.org/10.1007/978-94-007-1363-5_20
  • Carvalho-Santos, C., Honrado, J. P. & Hein, L. (2014). Hydrological services and the role of forests: Conceptualization and indicator-based analysis with an illustration at a regional scale. Ecological Complexity, 20, 69-80. https://doi.org/10.1016/j.ecocom.2014.09.001
  • Cıfor, F. (2005). Forest and floods: drowning in fiction or thriving on facts. RAP publication/Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific. Center for International Forestry Research, Bogor Barat, Indonesia.
  • Clerici, A., Perego, S., Tellini, C. & Vescovi, P. (2006). A GIS-based automated procedure for landslide susceptibility mapping by the conditional analysis method: the Baganza valley case study (Italian Northern Apennines). Environmental Geology, 50, 941-961. https://doi.org/10.1007/s00254-006-0264-7
  • Cooper, M. M., Patil, S. D., Nisbet, T. R., Thomas, H., Smith, A. R., et al. (2021). Role of forested land for natural flood management in the UK: A review. Wiley interdisciplinary reviews: Water, 8(5), e1541.
  • Das, S. & Crépin, A. S. (2013). Mangroves can provide protection against wind damage during storms. Estuarine, Coastal and Shelf Science, 134, 98-107. https://doi.org/10.1016/j.ecss.2013.09.021
  • Das, S. & Pardeshi, S. D. (2018). Comparative analysis of lineaments extracted from Cartosat, SRTM and ASTER DEM: a study based on four watersheds in Konkan region, India. Spatial Information Research, 26, 47-57. https://doi.org/10.1007/s41324-017-0155-x
  • Das, S. (2020). Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment, 20, 100379. https://doi.org/10.1016/j.rsase.2020.100379
  • Desalegn, H. & Mulu, A. (2021). Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon, 7(1).
  • Dixon, S. J., Sear, D. A., Odoni, N. A., Sykes, T. & Lane, S. N. (2016). The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surface Processes and Landforms, 41(7), 997-1008. https://doi.org/10.1002/esp.3919
  • Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B., & Norberg, J. (2003). Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment, 1(9), 488-494. https://doi.org/10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2
  • Esin, O., Kahraman, O. & Öztürk, K. (2022). Düzce bölgesi taşkın duyarlılık alanlarının belirlenmesi. Geomatik, 7(3), 220-234. https://doi.org/10.29128/geomatik.972343
  • Gracia, A., Rangel-Buitrago, N., Oakley, J. A. & Williams, A. T. (2018). Use of ecosystems in coastal erosion management. Ocean & Coastal Management, 156, 277-289. https://doi.org/10.1016/j.ocecoaman.2017.07.009
  • Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., et al. (2019). Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geosciences, 12, 1-16. https://doi.org/10.1007/s12517-019-4754-9
  • Ilstedt, U., Malmer, A., Verbeeten, E. & Murdiyarso, D. (2007). The effect of afforestation on water infiltration in the tropics: a systematic review and meta-analysis. Forest Ecology and Management, 251(1-2), 45-51. https://doi.org/10.1016/j.foreco.2007.06.014
  • Kourgialas, N. N. & Karatzas, G. P. (2011). Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 56(2), 212-225. https://doi.org/10.1080/02626667.2011.555836
  • Lee, S. & Min, K. (2001). Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40(9).
  • Lele, S. (2009). Watershed services of tropical forests: from hydrology to economic valuation to integrated analysis. Current Opinion in Environmental Sustainability, 1(2), 148-155. https://doi.org/10.1016/j.cosust.2009.10.007
  • Llorens, P. & Domingo, F. (2007). Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. Journal of Hydrology, 335(1-2), 37-54. https://doi.org/10.1016/j.jhydrol.2006.10.032
  • Meral, A. & Eroğlu, E. (2021). Evaluation of flood risk analyses with AHP, Kriging, and weighted sum models: example of Çapakçur, Yeşilköy, and Yamaç microcatchments. Environmental Monitoring and Assessment, 193, 1-15.
  • MRE. (2021). General Directorate of Mineral Research and Exploration https://www.mta.gov.tr/v3.0/hizmetler/
  • Noguchi, S., Tsuboyama, Y., Sidle, R. C. & Hosoda, I. (2001). Subsurface runoff characteristics from a forest hillslope soil profile including macropores, Hitachi Ohta, Japan. Hydrological Processes, 15(11), 2131-2149. https://doi.org/10.1002/hyp.278
  • Oğuz, K., Oğuz, E. & Coşkun M. (2016). Coğrafi Bilgi Sistemleri İle Taşkın Risk Alanlarının Belirlenmesi: Artvin İli Örneği. 4. Ulusal Taşkın Sempozyumu, 23-25 Kasım, Rize, s.793-803.
  • Pregnolato, M., Ford, A., Glenis, V., Wilkinson, S. & Dawson, R. (2017). Impact of climate change on disruption to urban transport networks from pluvial flooding. Journal of Infrastructure Systems, 23(4), 04017015. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000372
  • Radwan, F., Alazba, A. A. & Mossad, A. (2019). Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophysica, 67, 215-229. https://doi.org/10.1007/s11600-018-0233-z
  • Rasid, H. & Paul, B. K. (1987). Flood problems in Bangladesh: is there an indigenous solution?. Environmental Management, 11, 155-173. https://doi.org/10.1007/BF01867195
  • Rincón, D., Khan, U. T. & Armenakis, C. (2018). Flood risk mapping using GIS and multi-criteria analysis: A greater Toronto area case study. Geosciences, 8(8), 275. https://doi.org/10.3390/geosciences8080275
  • Saaty, T.L. (2012). Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World. Third, Revised edition. RWS Publications, Pittsburgh.
  • Sakals, M. E., Innes, J. L., Wilford, D. J., Sidle, R. C. & Grant, G. E. (2006). The role of forests in reducing hydrogeomorphic hazards. Forest Snow and Landscape Research, 80(1), 11-22.
  • Sebald, J., Senf, C., Heiser, M., Scheidl, C., Pflugmacher, D., et al. (2019). The effects of forest cover and disturbance on torrential hazards: large-scale evidence from the Eastern Alps. Environmental Research Letters, 14(11), 114032. DOI 10.1088/1748-9326/ab4937
  • Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., et al. (2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395-402. https://doi.org/10.1038/nclimate3303
  • Shafapour Tehrany, M., Shabani, F., Neamah Jebur, M., et al. (2017). GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk, 8(2), 1538-1561. https://doi.org/10.1080/19475705.2017.1362038
  • Shekar, P. R. & Mathew, A. (2023). Flood susceptibility mapping of the Peddavagu River Basin using GIS-AHP techniques. Developments in Environmental Science, 14, 125-141. https://doi.org/10.1016/B978-0-443-18640-0.00011-0
  • Shrubsole, D. (2000). Flood management in Canada at the crossroads. Global Environmental Change Part B: Environmental Hazards, 2(2), 63-75. https://doi.org/10.3763/ehaz.2000.0211
  • Sivrikaya, F., Özcan, G. E., Enez, K. & Sakici, O. E. (2022). Comparative study of the analytical hierarchy process, frequency ratio, and logistic regression models for predicting the susceptibility to Ips sexdentatus in crimean pine forests. Ecological Informatics, 71, 101811. https://doi.org/10.1016/j.ecoinf.2022.101811
  • Souissi, D., Zouhri, L., Hammami, S., Msaddek, M. H., Zghibi, A., et al. (2020). GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto International, 35(9), 991-1017. https://doi.org/10.1080/10106049.2019.1566405
  • Stefanidis, S. & Stathis, D. (2013). Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Natural Hazards, 68, 569-585. https://doi.org/10.1007/s11069-013-0639-5
  • Swain, K. C., Singha, C. & Nayak, L. (2020). Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS International Journal of Geo-Information, 9(12), 720. https://doi.org/10.3390/ijgi9120720
  • Tan-Soo, J. S., Adnan, N., Ahmad, I., Pattanayak, S. K., et al. (2016). Econometric evidence on forest ecosystem services: deforestation and flooding in Malaysia. Environmental and Resource Economics, 63, 25-44. https://doi.org/10.1007/s10640-014-9834-4
  • TOB, (2022). Tarım ve Orman Bakanlığı, Corine projesi arazi kullanımı sınıflandırması. https://corine.tarimorman.gov.tr/corineportal/.
  • Unay-Gailhard, İ. & Bojnec, Š. (2020). Public support effect on natural disaster management: A case study of ice storms in forests in Slovenia. Land Use Policy, 95, 103811. https://doi.org/10.1016/j.landusepol.2019.01.014
  • Unay-Gailhard, İ., & Bojnec, Š. (2020). Public support effect on natural disaster management: A case study of ice storms in forests in Slovenia. Land Use Policy, 95, 103811. https://doi.org/10.1016/j.landusepol.2019.01.014
  • Ürker, O., Günlü, A. & Ataol, M. (2023). Use of GUIDOS to analyze fragmentation features and test corridor creation for a fragmented forest ecosystem in Northern-Central Turkey. Austrian Journal of Forest Science, 140(2).
  • Wahren, A., Schwärzel, K. & Feger, K. H. (2012). Potentials and limitations of natural flood retention by forested land in headwater catchments: evidence from experimental and model studies. Journal of Flood Risk Management, 5(4), 321-335. https://doi.org/10.1111/j.1753-318X.2012.01152.x
  • Wang, Y., Hong, H., Chen, W., Li, S., Panahi, M., et al. (2019). Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of environmental management, 247, 712-729. https://doi.org/10.1016/j.jenvman.2019.06.102
  • Zeyno, A. (2022). Uzaktan algılama ve coğrafi bilgi sistemlerinden yararlanarak çok kriterli karar verme yöntemi ile taşkın risk haritasının oluşturulması: Malatya ili örneği (Master's thesis, Bilecik Şeyh Edebali Üniversitesi, Lisansüstü Eğitim Enstitüsü).
There are 63 citations in total.

Details

Primary Language English
Subjects Forestry Sciences (Other)
Journal Section Articles
Authors

Hasan Aksoy

Early Pub Date December 1, 2023
Publication Date December 6, 2023
Published in Issue Year 2023 Volume: 23 Issue: 3

Cite

APA Aksoy, H. (2023). Flood Risk Analysis with AHP and the Role of Forests in Natural Flood Management: A Case Study from the North of Türkiye. Kastamonu University Journal of Forestry Faculty, 23(3), 282-297. https://doi.org/10.17475/kastorman.1394958
AMA Aksoy H. Flood Risk Analysis with AHP and the Role of Forests in Natural Flood Management: A Case Study from the North of Türkiye. Kastamonu University Journal of Forestry Faculty. December 2023;23(3):282-297. doi:10.17475/kastorman.1394958
Chicago Aksoy, Hasan. “Flood Risk Analysis With AHP and the Role of Forests in Natural Flood Management: A Case Study from the North of Türkiye”. Kastamonu University Journal of Forestry Faculty 23, no. 3 (December 2023): 282-97. https://doi.org/10.17475/kastorman.1394958.
EndNote Aksoy H (December 1, 2023) Flood Risk Analysis with AHP and the Role of Forests in Natural Flood Management: A Case Study from the North of Türkiye. Kastamonu University Journal of Forestry Faculty 23 3 282–297.
IEEE H. Aksoy, “Flood Risk Analysis with AHP and the Role of Forests in Natural Flood Management: A Case Study from the North of Türkiye”, Kastamonu University Journal of Forestry Faculty, vol. 23, no. 3, pp. 282–297, 2023, doi: 10.17475/kastorman.1394958.
ISNAD Aksoy, Hasan. “Flood Risk Analysis With AHP and the Role of Forests in Natural Flood Management: A Case Study from the North of Türkiye”. Kastamonu University Journal of Forestry Faculty 23/3 (December 2023), 282-297. https://doi.org/10.17475/kastorman.1394958.
JAMA Aksoy H. Flood Risk Analysis with AHP and the Role of Forests in Natural Flood Management: A Case Study from the North of Türkiye. Kastamonu University Journal of Forestry Faculty. 2023;23:282–297.
MLA Aksoy, Hasan. “Flood Risk Analysis With AHP and the Role of Forests in Natural Flood Management: A Case Study from the North of Türkiye”. Kastamonu University Journal of Forestry Faculty, vol. 23, no. 3, 2023, pp. 282-97, doi:10.17475/kastorman.1394958.
Vancouver Aksoy H. Flood Risk Analysis with AHP and the Role of Forests in Natural Flood Management: A Case Study from the North of Türkiye. Kastamonu University Journal of Forestry Faculty. 2023;23(3):282-97.

14178  14179       14165           14166           14167            14168