Research Article
BibTex RIS Cite

Bir Orman İşletmesindeki Kereste Fabrikası Prosesinin Yan Ürünleri: Pelet ve Briketler için Fiziksel, Kimyasal ve Enerjisel Değerlendirilmesi

Year 2024, Volume: 24 Issue: 1, 1 - 12, 03.04.2024
https://doi.org/10.17475/kastorman.1460359

Abstract

Çalışmanın amacı: Bir kereste fabrikasından çıkan ağaç kabuğu ve talaşın biyoenerji amaçlı kullanım potansiyelini belirlemek amacıyla fiziksel, kimyasal ve enerjik özellikleri belirlenmiştir.
Çalışma alanı: Çam lignoselülozik kalıntıları Meksika’da Forestal Viscaya şirketinden alınmıştır.
Materyal ve yöntem: Her bir biyokütleden 50 kg'lık kısım, kabuk değirmeninden kabuk örnekleri, ana testere, kenar kesme makinesi, kesici ve öğütücü makinesinden talaş örnekleri alınarak toplandı. Nem, granülometri, yoğunluk ve kimyasal analizler belirlendi. Ayrıca kalorifik değer ve ton petrol eşdeğeri de hesaplandı.
Temel sonuçlar: Sonuçlar, kabuğun briket yapımında, talaşın ise pelet yapımında kullanılabileceğini göstermektedir. Özellikle ağaç kabuğu için ortalama kalorifik değer 16.55 ile 23.78 MJ/kg arasında, talaş için ise 19.49 ile 21.04 MJ/kg arasında değişmektedir. Kalorifik değeri tahmin etmek için en ihtiyatlı model kullanılarak, yılda üretilen ağaç kabuğu ve talaş miktarı dikkate alınarak 2.265 eşdeğer ton petrolün ikame edilebileceği belirlenmiştir.
Araştırma vurguları: Sonuçlar, ormancılık şirketi bünyesinde biyokütlenin olası enerji kullanımı potansiyelini göstermektedir.

References

  • Arcibar-Orozco, J. A., Josue, D-B., Ríos-Hurtado, J. C. & Rangel-Méndez, J. R. (2014). Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons. Chem Eng J, 249, 201-209. https://doi.org/10.1016/j.cej.2014.03.096
  • Arias-Chalico, T. (2018). Situación actual y escenarios para el desarrollo de biocombustibles sólidos en México hacia 2024 y 2030. Red Mexicana de Bioenergía, A. C., Red Temática de Bioenergía de CONACYT. México.
  • ASTM E 872-82. (1985). Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. West Conshohocken, PA, 3 p.
  • Bergström, D., Israelsson, S., Öhman, M., Dahlquist, S-A., Gref, R., Boman, Ch. & Wästerlund, I. (2008). Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Process Technol, 89, 1324-1329.https://doi.org/10.1016/j.fuproc.2008.06.001
  • Bernabé-Santiago, R., Ávila-Calderón, L. E. A. & Rutiaga-Quiñones, J. G. (2013). Componentes químicos de la madera de cinco especies de pino del municipio de Morelia, Michoacán. Madera Bosques, 19(2), 21-35.https://doi.org/10.21829/myb.2013.192338
  • Camps, M., & Marcos, F. (2008). Los biocombustibles. 2da edición. Ediciones Mundi-Prensa. España.
  • Cordero, T., Márquez, F., Rodríguez-Marisol, J. & Rodríguez, J. J. (2001). Predicting heating value of lignocellulosics and carbonaceous materials from proximate analysis. Fuel, 80, 1567-1571. https://doi.org/10.1016/S0016-2361(01)00034-5
  • da Luz, T. & Moura, P. (2019). Power generation expansion planning with complementarity between renewable sources and regions for 100% renewable energy systems. In. Tran. Electr Energy Syst, 29(7), 1-19. doi: 10.1002/2050-7038.2817
  • de Ramos e Paula, L. E., Trugilho, P. F., Napoli, A. & Bianchi, M. L. (2011). Characterization of residues from plant biomass for use in energy generation. Cerne, 17(2), 237-246. https://doi.org/10.1590/S0104-77602011000200012
  • Demirbaş, A. (1997). Calculation of higher heating values of biomass fuels. Fuel, 76(5), 431-434. https://doi.org/10.1016/S0016-2361(97)85520-2
  • Fengel, D. & Wegener, G. (1984). Wood Chemistry, Ultrastructure, Reactions. Walter de Gruyter. Berlín, Germany. https://doi.org/10.1515/9783110839654
  • Francescato, V., Antonini, E., Bergomi, L. Z., Metschina, Ch., Schnedl, Ch., Krajnc, N., Koscik, K., Gradziuk, P., Nocentini, G. & Stranieri, S. (2008). Wood fuels handbook: production, quality requirements, trading. AIEL – Italian Agriforestry Energy Association. Legnaro, Italy.
  • García, R., Pizarro, C., Lavín, A. G. & Bueno, J. L. (2012). Characterization of Spanish biomass wastes for energy use. Bioresource Technol, 103(1), 249-258. https://doi.org/10.1016/j.biortech.2011.10.004
  • García-Arévalo, A. & González-Elizondo, M. S. (2003). Pináceas de Durango. Segunda edición. Instituto de Ecología A. C., Xalapa, México.
  • García, C. A., Riegelhaupt, E. & Masera, O. (2016). Introducción. In: García-Bustamante CA, Masera O (eds.) Estado del Arte de la Bioenergía en México, Red Temática de Bioenergía (RTB) del CONACYT. Imagia Comunicación, Guadalajara, México.
  • Hamza, M., Ayoub, M., Shamsuddin, R. B., Mukhtar, A., Saqib, S., Zahid, I., Ameen, M., Ullah, S., Al-Sehemi, A. G. & Ibrahim, M. (2021). A review on the waste biomass derived catalysts for biodiesel production. Environmental Technology and Innovation 21, 101200. https://doi.org/10.1016/j.eti.2020.101200
  • Jekayinfa, S. O., Orisaleye, J. I. & Pecenka, R. (2020). An assessment of potential resources for biomass energy in Nigeria. Resources, 9(8), 92. https://doi.org/10.3390/resources9080092
  • Jurasz, J., Canales, F. A., Kies, A., Guezgouz, M. & Beluco, A. (2020). A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy, 195, 703-724. https://doi.org/10.1016/j.solener.2019.11.087
  • Kaliyan, N. & Vance, M. R. (2009). Factors affecting strength and durability of densified biomass products. Biomass Bioenerg, 33(3), 337-359. https://doi.org/10.1016/j.biombioe.2008.08.005
  • Karinkanta, P., Ämmälä, A., Illikainen, M. & Niinimäki, J. (2018). Fine grinding of wood – Overview from wood breakage to applications. Biomass Bioenerg, 113, 31-44. https://doi.org/10.1016/.jbiombioe.2018.03.007
  • Kollmann, F. (1959). Tecnología de la madera y sus aplicaciones. Ministerio de Agricultura –Instituto forestal de investigaciones y experiencias. Madrid.
  • Lesme-Jaén, R., Oliva-Ruiz, L. & Palacios-Barrera, A. (2006). Coeficientes de residuos de la industria forestal. Tecnología Química, 26(3), 26-29.
  • Lyngfelt, A., Åmand, L-E., Gustavsson, L. & Leckner, B. (1996). Methods for reducing the emission of nitrous oxide from fluidized bed combustion. Energ Convers Manage, 37(6-8), 1297-1302. https://doi.org/10.1016/0196-8904(95)00336-3
  • Martínez-Gómez, O., Pintor-Ibarra, L. F., Rutiaga-Quiñones, J. G. & Corona-Terán, J. (2022). Chemical Composition and Energy Evaluation of Abies spp. and Pinus spp. Sawdust Collected as a Byproduct of the Primary Wood Sawing. South-east Eur for, 13(2), 89-96. https://doi.org/10.15177/seefor.22-08
  • Martínez-Pérez, R., Pedraza-Bucio, F. E., Orihuela-Equihua, R., López-Albarrán, P. & Rutiaga-Quiñones, J. G. (2015). Calorific value and inorganic material of ten Mexican wood species. Wood Res-Slovakia, 60(2), 281-292.
  • Mejía-Díaz, L. A. & Rutiaga-Quiñones, J. G. (2008). Chemical composition of Schinus molle L. wood and kraft pulping process. Rev Mex Ing Quím, 7(2), 145-149. http://www.scielo.org.mx/pdf/rmiq/v7n2/v7n2a7.pdf
  • Miranda, M. T., Arranz, J. I., Rojas, S. & Montero, I. (2009). Energetic characterization of densified residues from Pyrenean oak forest. Fuel, 88(11), 2106-2112. https://doi.org/10.1016/j.fuel.2009.05.015
  • Morales-Máximo, M., Ruíz-García, V. M., López-Sosa, L. B. & Rutiaga-Quiñones, J. G. (2020). Exploitation of Wood Waste of Pinus spp. for Briquette Production: A Case Study in the Community of San Francisco Pichátaro, Michoacán, Mexico. Appl Sci, 10, 2933. https://doi.org/10.3390/app10082933
  • Nussbaumer, T. (2002). Combustion and co-combustion of biomass. In: Proceedings of the 12th European Biomass Conference, vol. I. pp. 31–37.
  • Obernberger, I., Brunner, T. & Bärnthaler, G. (2006). Chemical properties of solid biofuels—significance and impact. Biomass Bioenerg, 30(11), 973-982. https://doi.org/10.1016/j.biombioe.2006.06.011
  • Obernberger, I. & Thek, G. (2004). Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenerg, 27(6), 653-669. https://doi.org/10.1016/j.biombioe.2003.07.006
  • Obernberger, I. & Thek, G. (2010). The Pellet Handbook. Bios Bioenergiesysteme GmbH. London, UK.
  • Olsson, M., Kjällstrand, J. & Petersson, G. (2003). Oxidative pyrolysis of integral softwood pellets. J Anal Appl Pyrol, 67(1), 135-141. https://doi.org/10.1016/S0165-2370(02)00058-X
  • Olsson, M., Ramnäs, O. & Petersson, G. (2004). Specific volatile hydrocarbons in smoke from oxidative pyrolysis of softwood pellets. J Anal Appl Pyrol, 71(2), 847-854. https://doi.org/10.1016/j.jaap.2003.11.003
  • ÖNORM 7135. (2000). Compressed wood or compressed bark in natural state-pellets and briquettes, requirements and test specifications. Vienna, Austria: Österreichisches Normungsinstitut.
  • Petráš, R., Mecko, J., Krupová, D., Slamka, M. & Pažitný, A. (2019). Aboveground Biomass Basic Density of Softwoods Tree Species. Wood Res-Slovakia, 64(2), 205-212.
  • Reyes-Rodríguez, L. A. (2015). Evaluación de la biomasa forestal generada en el proceso de aserrío en la empresa Forestal Vizcaya S. de R.L. de C.V. ubicada en la ciudad de Durango, Dgo. Mx. Master Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México.
  • Rowell, R. (2005). Handbook of wood chemistry and wood composites. CRC. United States of America.
  • Runkel, R. O. H. & Wilke, K. D. (1951). Zur Kenntnis des thermoplastischen Verhaltnes von Holz. Holz Roh Werkst, (9)7, 260-270. https://doi.org/10.1007/BF02617537
  • Rutiaga-Quiñones, J. G. (2001). Chemische und biologische Untersuchungen zum Verhalten dauerhafter Holzarten und iher Extrakte gegenüber holzabbuenden Pilzen. Buchverlag Gräfelfing. München.
  • Rutiaga-Quiñones, J. G., Pintor-Ibarra, L. F., Orihuela-Equihua, R., González-Ortega, N., Ramírez-Ramírez, M. A., Carrillo-Parra, A., Carrillo-Ávila, N., Navarrete-García, M. A., Ruíz-Aquino, F., Rangel-Méndez, J. R., Hernández-Solís, J. J. & Luján-Álvarez, C. (2020). Characterization of Mexican Waste Biomass Relative to Energy Generation. BioResources, 15(4), 8529-8553. DOI: 10.15376/biores.15.4.8529-8553
  • Sandermann, W. & Rothkamm, M. (1959). Über die Bedeutung der pH-Werte von Handelshölzern und deren Bedeutung für die Praxis. Holz Roh Werkst, 17, 433-440. https://doi.org/10.1007/BF02605386
  • SCAN-CM 43:95. (1995). Basic density. Wood chips for pulp production. Scandinavian Pulp, Paper and Board. Testing Committee. 4p.
  • SENER. (2012). Secretaría de Energía, Prospectiva de Energías Renovables 2012-2026, Gobierno Federal. México. Available from: https://www.gob.mx/cms/uploads/attachment/file/62954/Prospectiva_de_Energ_as_Renovables_2012-2026.pdf
  • Sheng, Ch. & Azevedo, J. L.T. (2005). Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenerg, 28(5), 499-507. https://doi.org/10.1016/j.biombioe.2004.11.008
  • Sinsel, S. R., Riemke, R. L. & Hoffmann, V. H. (2020). Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renewable Energy, 145, 2271-2285. https://doi.org/10.1016/j.renene.2019.06.147
  • Specht, E., Redemann, T. & Lorenz, N. (2016). Simplified mathematical model for calculating global warming through anthropogenic CO2. International Journal of Thermal Sciences, 102, 1-8. https://doi.org/10.1016/j.ijthermalsci.2015.10.039
  • Stasiak, M., Molenda, M., Bańda, M., Wiącek, J., Parafniuk, P., Lisowski, A., Gancarz, M. & Gondek, E. (2019). Mechanical characteristics of pine biomass of different sizes and shapes. Eur J Wood Wood Prod, 77, 593–608. https://doi.org/10.1007/s00107-019-01415-w
  • Suzhou, Y. (2008). Characterization and conditioning of forest residue small heating systems. FPS ECS Conference: Bio-energy, 2008.
  • Trubetskaya, A., Leahy, J. J., Yazhenskikh, E., Müller, M., Layden, P., Johnson, R., Ståhl, K. & Monaghan, R. F. D. (2019). Characterization of woodstove briquettes from torrefied biomass and coal. Energy, 171, 853-865. https://doi.org/10.1016/j.energy.2019.01.064
  • Tumuluru, K. L., Wright, Ch. T., Kenney, K. L. & Hess, R. J. (2010). A Technical Review on Biomass Processing: Densification, Preprocessing, Modeling and Optimization. American Society of Agricultural and Biological Engineers Annual International Meeting 2010, ASABE 2010. 4594-4625.
  • UNE-CEN/TS 15104 EX. (2008). Biocombustibles sólidos. Determinación del contenido de carbono, hidrógeno y nitrógeno. Métodos instrumentales [Solid biofuels. Determination of carbon, hydrogen and nitrogen content. Instrumental method]. AENOR, Madrid, España, 12p.
  • UNE-CEN/TS 15149-1 EX. (2007). Biocombustibles sólidos. Métodos para la determinación de la distribución de tamaño de partícula. Parte 1: Método del tamiz vibrante con abertura de malla igual o superior a 3.15 mm [Solid biofuels. Methods for determining particle size distribution. Part 1: Vibrating sieve method with mesh opening equal to or greater than 3.15 mm]. AENOR, Madrid, España, 13p.
  • UNE-EN 14775. (2010). Biocombustibles sólidos. Método para la determinación del contenido en cenizas [Solid biofuels. Method for determining ash content]. AENOR, Madrid, España, 10p.
  • UNE-EN 15103. (2010). Biocombustibles sólidos. Determinación de la densidad a granel [Solid biofuels. Determination of bulk density]. AENOR, Madrid, España, 13p.
  • UNE-EN 15149-2. (2011). Biocombustibles sólidos. Determinación de la distribución de tamaño de partícula. Parte 2: Método del tamiz vibrante con abertura de malla inferior o igual a 3.15 mm [Solid biofuels. Determination of particle size distribution. Part 2: Vibrating sieve method with mesh opening less than or equal to 3.15 mm]. AENOR, Madrid, España, 15p.
  • UNE-EN ISO 18134-2. (2017). Biocombustibles sólidos. Determinación del contenido de humedad. Método de secado en estufa. Parte 2: Humedad total. Método simplificado [Solid biofuels. Determination of moisture content. Oven drying method. Part 2: Total humidity. Simplified method]. AENOR, Madrid, España. 11p.
  • Van Lith, S. C., Alonso, V., Jensen, P. A., Frandsen, F.J. & Glarborg, P. (2006). Release to the gas phase of inorganic elements during wood combustion. Part 1: Development and evaluation of quantification methods. Energy Fuels, 20(3), 964-978. https://doi.org/10.1021/ef050131r
  • Vassilev, S. V., Baxter, D., Andersen, L. K. & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913-933. https://doi.org/10.1016/j.fuel.2009.10.022 Velázquez-Martí, B. (2018). Aprovechamiento de la Biomasa Para Uso Energético. Segunda edición. Editorial Reverté. España.
  • Werkelin, J., Lindberg, D., Boström, D., Skrifvars, B. J. & Hupa, M. (2011). Ash-forming elements in four Scandinavian wood species part 3: Combustion of five spruce samples. Biomass Bioenerg, 35(1), 725-733. https://doi.org/10.1016/j.biombioe.2010.10.010
  • White, R. H. (1987). Effect of lignin content and extractives on the higher heating value of wood. Wood Fiber Sci, 19(4), 446-452.
  • Wise, L. E., Murphy, M., & D’Addieco, A. A. (1946). Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J., 122(3), 35-43. Zavala-Zavala, D. & Hernández-Cortés, R. (2000). Análisis del rendimiento y utilidad del proceso de aserrío de trocería de pino. Madera Bosques, 6(2), 41-55.

By-products of the Sawmill Process in a Forest Company: Their Physical, Chemical and Energetic Evaluation for Pellets and Briquettes

Year 2024, Volume: 24 Issue: 1, 1 - 12, 03.04.2024
https://doi.org/10.17475/kastorman.1460359

Abstract

Aim of study: The physical characteristics and the chemical and energetic properties of bark and sawdust from a sawmill were determined, in order to identify their potential to be used for bioenergy purposes.
Area of study: The pine lignocellulosic residues were collected at the Forestal Viscaya company in Mexico.
Material and method: 50 kg of each biomass was collected as follows: bark samples were taken from the bark mill, and sawdust samples were taken from main saw, edger, trimmer, and the chipper machine. Moisture, granulometry, density, and chemical analyses were determined. The calorific value and tons of oil equivalent were also calculated.
Main results: The results indicate that the bark could be used to make briquettes, while the sawdust to make pellets. Particularly, the average calorific value varied from 16.55 to 23.78 MJ/kg for bark, while for sawdust the results varied from 19.49 to 21.04 MJ/kg. Using the most conservative model to estimate the calorific value, and taking into account the amount of bark and sawdust generated per year, it was determined that 2.265 equivalent tons of oil could be substituted.
Research highlights: The results show the potential of biomass for its possible energy use within the forestry company.

References

  • Arcibar-Orozco, J. A., Josue, D-B., Ríos-Hurtado, J. C. & Rangel-Méndez, J. R. (2014). Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons. Chem Eng J, 249, 201-209. https://doi.org/10.1016/j.cej.2014.03.096
  • Arias-Chalico, T. (2018). Situación actual y escenarios para el desarrollo de biocombustibles sólidos en México hacia 2024 y 2030. Red Mexicana de Bioenergía, A. C., Red Temática de Bioenergía de CONACYT. México.
  • ASTM E 872-82. (1985). Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. West Conshohocken, PA, 3 p.
  • Bergström, D., Israelsson, S., Öhman, M., Dahlquist, S-A., Gref, R., Boman, Ch. & Wästerlund, I. (2008). Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Process Technol, 89, 1324-1329.https://doi.org/10.1016/j.fuproc.2008.06.001
  • Bernabé-Santiago, R., Ávila-Calderón, L. E. A. & Rutiaga-Quiñones, J. G. (2013). Componentes químicos de la madera de cinco especies de pino del municipio de Morelia, Michoacán. Madera Bosques, 19(2), 21-35.https://doi.org/10.21829/myb.2013.192338
  • Camps, M., & Marcos, F. (2008). Los biocombustibles. 2da edición. Ediciones Mundi-Prensa. España.
  • Cordero, T., Márquez, F., Rodríguez-Marisol, J. & Rodríguez, J. J. (2001). Predicting heating value of lignocellulosics and carbonaceous materials from proximate analysis. Fuel, 80, 1567-1571. https://doi.org/10.1016/S0016-2361(01)00034-5
  • da Luz, T. & Moura, P. (2019). Power generation expansion planning with complementarity between renewable sources and regions for 100% renewable energy systems. In. Tran. Electr Energy Syst, 29(7), 1-19. doi: 10.1002/2050-7038.2817
  • de Ramos e Paula, L. E., Trugilho, P. F., Napoli, A. & Bianchi, M. L. (2011). Characterization of residues from plant biomass for use in energy generation. Cerne, 17(2), 237-246. https://doi.org/10.1590/S0104-77602011000200012
  • Demirbaş, A. (1997). Calculation of higher heating values of biomass fuels. Fuel, 76(5), 431-434. https://doi.org/10.1016/S0016-2361(97)85520-2
  • Fengel, D. & Wegener, G. (1984). Wood Chemistry, Ultrastructure, Reactions. Walter de Gruyter. Berlín, Germany. https://doi.org/10.1515/9783110839654
  • Francescato, V., Antonini, E., Bergomi, L. Z., Metschina, Ch., Schnedl, Ch., Krajnc, N., Koscik, K., Gradziuk, P., Nocentini, G. & Stranieri, S. (2008). Wood fuels handbook: production, quality requirements, trading. AIEL – Italian Agriforestry Energy Association. Legnaro, Italy.
  • García, R., Pizarro, C., Lavín, A. G. & Bueno, J. L. (2012). Characterization of Spanish biomass wastes for energy use. Bioresource Technol, 103(1), 249-258. https://doi.org/10.1016/j.biortech.2011.10.004
  • García-Arévalo, A. & González-Elizondo, M. S. (2003). Pináceas de Durango. Segunda edición. Instituto de Ecología A. C., Xalapa, México.
  • García, C. A., Riegelhaupt, E. & Masera, O. (2016). Introducción. In: García-Bustamante CA, Masera O (eds.) Estado del Arte de la Bioenergía en México, Red Temática de Bioenergía (RTB) del CONACYT. Imagia Comunicación, Guadalajara, México.
  • Hamza, M., Ayoub, M., Shamsuddin, R. B., Mukhtar, A., Saqib, S., Zahid, I., Ameen, M., Ullah, S., Al-Sehemi, A. G. & Ibrahim, M. (2021). A review on the waste biomass derived catalysts for biodiesel production. Environmental Technology and Innovation 21, 101200. https://doi.org/10.1016/j.eti.2020.101200
  • Jekayinfa, S. O., Orisaleye, J. I. & Pecenka, R. (2020). An assessment of potential resources for biomass energy in Nigeria. Resources, 9(8), 92. https://doi.org/10.3390/resources9080092
  • Jurasz, J., Canales, F. A., Kies, A., Guezgouz, M. & Beluco, A. (2020). A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy, 195, 703-724. https://doi.org/10.1016/j.solener.2019.11.087
  • Kaliyan, N. & Vance, M. R. (2009). Factors affecting strength and durability of densified biomass products. Biomass Bioenerg, 33(3), 337-359. https://doi.org/10.1016/j.biombioe.2008.08.005
  • Karinkanta, P., Ämmälä, A., Illikainen, M. & Niinimäki, J. (2018). Fine grinding of wood – Overview from wood breakage to applications. Biomass Bioenerg, 113, 31-44. https://doi.org/10.1016/.jbiombioe.2018.03.007
  • Kollmann, F. (1959). Tecnología de la madera y sus aplicaciones. Ministerio de Agricultura –Instituto forestal de investigaciones y experiencias. Madrid.
  • Lesme-Jaén, R., Oliva-Ruiz, L. & Palacios-Barrera, A. (2006). Coeficientes de residuos de la industria forestal. Tecnología Química, 26(3), 26-29.
  • Lyngfelt, A., Åmand, L-E., Gustavsson, L. & Leckner, B. (1996). Methods for reducing the emission of nitrous oxide from fluidized bed combustion. Energ Convers Manage, 37(6-8), 1297-1302. https://doi.org/10.1016/0196-8904(95)00336-3
  • Martínez-Gómez, O., Pintor-Ibarra, L. F., Rutiaga-Quiñones, J. G. & Corona-Terán, J. (2022). Chemical Composition and Energy Evaluation of Abies spp. and Pinus spp. Sawdust Collected as a Byproduct of the Primary Wood Sawing. South-east Eur for, 13(2), 89-96. https://doi.org/10.15177/seefor.22-08
  • Martínez-Pérez, R., Pedraza-Bucio, F. E., Orihuela-Equihua, R., López-Albarrán, P. & Rutiaga-Quiñones, J. G. (2015). Calorific value and inorganic material of ten Mexican wood species. Wood Res-Slovakia, 60(2), 281-292.
  • Mejía-Díaz, L. A. & Rutiaga-Quiñones, J. G. (2008). Chemical composition of Schinus molle L. wood and kraft pulping process. Rev Mex Ing Quím, 7(2), 145-149. http://www.scielo.org.mx/pdf/rmiq/v7n2/v7n2a7.pdf
  • Miranda, M. T., Arranz, J. I., Rojas, S. & Montero, I. (2009). Energetic characterization of densified residues from Pyrenean oak forest. Fuel, 88(11), 2106-2112. https://doi.org/10.1016/j.fuel.2009.05.015
  • Morales-Máximo, M., Ruíz-García, V. M., López-Sosa, L. B. & Rutiaga-Quiñones, J. G. (2020). Exploitation of Wood Waste of Pinus spp. for Briquette Production: A Case Study in the Community of San Francisco Pichátaro, Michoacán, Mexico. Appl Sci, 10, 2933. https://doi.org/10.3390/app10082933
  • Nussbaumer, T. (2002). Combustion and co-combustion of biomass. In: Proceedings of the 12th European Biomass Conference, vol. I. pp. 31–37.
  • Obernberger, I., Brunner, T. & Bärnthaler, G. (2006). Chemical properties of solid biofuels—significance and impact. Biomass Bioenerg, 30(11), 973-982. https://doi.org/10.1016/j.biombioe.2006.06.011
  • Obernberger, I. & Thek, G. (2004). Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenerg, 27(6), 653-669. https://doi.org/10.1016/j.biombioe.2003.07.006
  • Obernberger, I. & Thek, G. (2010). The Pellet Handbook. Bios Bioenergiesysteme GmbH. London, UK.
  • Olsson, M., Kjällstrand, J. & Petersson, G. (2003). Oxidative pyrolysis of integral softwood pellets. J Anal Appl Pyrol, 67(1), 135-141. https://doi.org/10.1016/S0165-2370(02)00058-X
  • Olsson, M., Ramnäs, O. & Petersson, G. (2004). Specific volatile hydrocarbons in smoke from oxidative pyrolysis of softwood pellets. J Anal Appl Pyrol, 71(2), 847-854. https://doi.org/10.1016/j.jaap.2003.11.003
  • ÖNORM 7135. (2000). Compressed wood or compressed bark in natural state-pellets and briquettes, requirements and test specifications. Vienna, Austria: Österreichisches Normungsinstitut.
  • Petráš, R., Mecko, J., Krupová, D., Slamka, M. & Pažitný, A. (2019). Aboveground Biomass Basic Density of Softwoods Tree Species. Wood Res-Slovakia, 64(2), 205-212.
  • Reyes-Rodríguez, L. A. (2015). Evaluación de la biomasa forestal generada en el proceso de aserrío en la empresa Forestal Vizcaya S. de R.L. de C.V. ubicada en la ciudad de Durango, Dgo. Mx. Master Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México.
  • Rowell, R. (2005). Handbook of wood chemistry and wood composites. CRC. United States of America.
  • Runkel, R. O. H. & Wilke, K. D. (1951). Zur Kenntnis des thermoplastischen Verhaltnes von Holz. Holz Roh Werkst, (9)7, 260-270. https://doi.org/10.1007/BF02617537
  • Rutiaga-Quiñones, J. G. (2001). Chemische und biologische Untersuchungen zum Verhalten dauerhafter Holzarten und iher Extrakte gegenüber holzabbuenden Pilzen. Buchverlag Gräfelfing. München.
  • Rutiaga-Quiñones, J. G., Pintor-Ibarra, L. F., Orihuela-Equihua, R., González-Ortega, N., Ramírez-Ramírez, M. A., Carrillo-Parra, A., Carrillo-Ávila, N., Navarrete-García, M. A., Ruíz-Aquino, F., Rangel-Méndez, J. R., Hernández-Solís, J. J. & Luján-Álvarez, C. (2020). Characterization of Mexican Waste Biomass Relative to Energy Generation. BioResources, 15(4), 8529-8553. DOI: 10.15376/biores.15.4.8529-8553
  • Sandermann, W. & Rothkamm, M. (1959). Über die Bedeutung der pH-Werte von Handelshölzern und deren Bedeutung für die Praxis. Holz Roh Werkst, 17, 433-440. https://doi.org/10.1007/BF02605386
  • SCAN-CM 43:95. (1995). Basic density. Wood chips for pulp production. Scandinavian Pulp, Paper and Board. Testing Committee. 4p.
  • SENER. (2012). Secretaría de Energía, Prospectiva de Energías Renovables 2012-2026, Gobierno Federal. México. Available from: https://www.gob.mx/cms/uploads/attachment/file/62954/Prospectiva_de_Energ_as_Renovables_2012-2026.pdf
  • Sheng, Ch. & Azevedo, J. L.T. (2005). Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenerg, 28(5), 499-507. https://doi.org/10.1016/j.biombioe.2004.11.008
  • Sinsel, S. R., Riemke, R. L. & Hoffmann, V. H. (2020). Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renewable Energy, 145, 2271-2285. https://doi.org/10.1016/j.renene.2019.06.147
  • Specht, E., Redemann, T. & Lorenz, N. (2016). Simplified mathematical model for calculating global warming through anthropogenic CO2. International Journal of Thermal Sciences, 102, 1-8. https://doi.org/10.1016/j.ijthermalsci.2015.10.039
  • Stasiak, M., Molenda, M., Bańda, M., Wiącek, J., Parafniuk, P., Lisowski, A., Gancarz, M. & Gondek, E. (2019). Mechanical characteristics of pine biomass of different sizes and shapes. Eur J Wood Wood Prod, 77, 593–608. https://doi.org/10.1007/s00107-019-01415-w
  • Suzhou, Y. (2008). Characterization and conditioning of forest residue small heating systems. FPS ECS Conference: Bio-energy, 2008.
  • Trubetskaya, A., Leahy, J. J., Yazhenskikh, E., Müller, M., Layden, P., Johnson, R., Ståhl, K. & Monaghan, R. F. D. (2019). Characterization of woodstove briquettes from torrefied biomass and coal. Energy, 171, 853-865. https://doi.org/10.1016/j.energy.2019.01.064
  • Tumuluru, K. L., Wright, Ch. T., Kenney, K. L. & Hess, R. J. (2010). A Technical Review on Biomass Processing: Densification, Preprocessing, Modeling and Optimization. American Society of Agricultural and Biological Engineers Annual International Meeting 2010, ASABE 2010. 4594-4625.
  • UNE-CEN/TS 15104 EX. (2008). Biocombustibles sólidos. Determinación del contenido de carbono, hidrógeno y nitrógeno. Métodos instrumentales [Solid biofuels. Determination of carbon, hydrogen and nitrogen content. Instrumental method]. AENOR, Madrid, España, 12p.
  • UNE-CEN/TS 15149-1 EX. (2007). Biocombustibles sólidos. Métodos para la determinación de la distribución de tamaño de partícula. Parte 1: Método del tamiz vibrante con abertura de malla igual o superior a 3.15 mm [Solid biofuels. Methods for determining particle size distribution. Part 1: Vibrating sieve method with mesh opening equal to or greater than 3.15 mm]. AENOR, Madrid, España, 13p.
  • UNE-EN 14775. (2010). Biocombustibles sólidos. Método para la determinación del contenido en cenizas [Solid biofuels. Method for determining ash content]. AENOR, Madrid, España, 10p.
  • UNE-EN 15103. (2010). Biocombustibles sólidos. Determinación de la densidad a granel [Solid biofuels. Determination of bulk density]. AENOR, Madrid, España, 13p.
  • UNE-EN 15149-2. (2011). Biocombustibles sólidos. Determinación de la distribución de tamaño de partícula. Parte 2: Método del tamiz vibrante con abertura de malla inferior o igual a 3.15 mm [Solid biofuels. Determination of particle size distribution. Part 2: Vibrating sieve method with mesh opening less than or equal to 3.15 mm]. AENOR, Madrid, España, 15p.
  • UNE-EN ISO 18134-2. (2017). Biocombustibles sólidos. Determinación del contenido de humedad. Método de secado en estufa. Parte 2: Humedad total. Método simplificado [Solid biofuels. Determination of moisture content. Oven drying method. Part 2: Total humidity. Simplified method]. AENOR, Madrid, España. 11p.
  • Van Lith, S. C., Alonso, V., Jensen, P. A., Frandsen, F.J. & Glarborg, P. (2006). Release to the gas phase of inorganic elements during wood combustion. Part 1: Development and evaluation of quantification methods. Energy Fuels, 20(3), 964-978. https://doi.org/10.1021/ef050131r
  • Vassilev, S. V., Baxter, D., Andersen, L. K. & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913-933. https://doi.org/10.1016/j.fuel.2009.10.022 Velázquez-Martí, B. (2018). Aprovechamiento de la Biomasa Para Uso Energético. Segunda edición. Editorial Reverté. España.
  • Werkelin, J., Lindberg, D., Boström, D., Skrifvars, B. J. & Hupa, M. (2011). Ash-forming elements in four Scandinavian wood species part 3: Combustion of five spruce samples. Biomass Bioenerg, 35(1), 725-733. https://doi.org/10.1016/j.biombioe.2010.10.010
  • White, R. H. (1987). Effect of lignin content and extractives on the higher heating value of wood. Wood Fiber Sci, 19(4), 446-452.
  • Wise, L. E., Murphy, M., & D’Addieco, A. A. (1946). Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J., 122(3), 35-43. Zavala-Zavala, D. & Hernández-Cortés, R. (2000). Análisis del rendimiento y utilidad del proceso de aserrío de trocería de pino. Madera Bosques, 6(2), 41-55.
There are 62 citations in total.

Details

Primary Language English
Subjects Forestry Sciences (Other)
Journal Section Articles
Authors

Lucero A. Reyes-rodríguez This is me 0009-0005-4060-5594

Luis J. Aviña-berumen This is me 0009-0002-2853-2749

Faustino Ruiz-aquiño This is me 0000-0001-6506-4441

J. René Rangel-méndez This is me 0000-0002-9499-205X

Gerardo J. Andrade-martínez This is me

Jose G. Rutiaga-quinones This is me 0000-0002-8617-8947

Early Pub Date March 28, 2024
Publication Date April 3, 2024
Published in Issue Year 2024 Volume: 24 Issue: 1

Cite

APA Reyes-rodríguez, L. A., Aviña-berumen, L. J., Ruiz-aquiño, F., Rangel-méndez, J. R., et al. (2024). By-products of the Sawmill Process in a Forest Company: Their Physical, Chemical and Energetic Evaluation for Pellets and Briquettes. Kastamonu University Journal of Forestry Faculty, 24(1), 1-12. https://doi.org/10.17475/kastorman.1460359
AMA Reyes-rodríguez LA, Aviña-berumen LJ, Ruiz-aquiño F, Rangel-méndez JR, Andrade-martínez GJ, Rutiaga-quinones JG. By-products of the Sawmill Process in a Forest Company: Their Physical, Chemical and Energetic Evaluation for Pellets and Briquettes. Kastamonu University Journal of Forestry Faculty. April 2024;24(1):1-12. doi:10.17475/kastorman.1460359
Chicago Reyes-rodríguez, Lucero A., Luis J. Aviña-berumen, Faustino Ruiz-aquiño, J. René Rangel-méndez, Gerardo J. Andrade-martínez, and Jose G. Rutiaga-quinones. “By-Products of the Sawmill Process in a Forest Company: Their Physical, Chemical and Energetic Evaluation for Pellets and Briquettes”. Kastamonu University Journal of Forestry Faculty 24, no. 1 (April 2024): 1-12. https://doi.org/10.17475/kastorman.1460359.
EndNote Reyes-rodríguez LA, Aviña-berumen LJ, Ruiz-aquiño F, Rangel-méndez JR, Andrade-martínez GJ, Rutiaga-quinones JG (April 1, 2024) By-products of the Sawmill Process in a Forest Company: Their Physical, Chemical and Energetic Evaluation for Pellets and Briquettes. Kastamonu University Journal of Forestry Faculty 24 1 1–12.
IEEE L. A. Reyes-rodríguez, L. J. Aviña-berumen, F. Ruiz-aquiño, J. R. Rangel-méndez, G. J. Andrade-martínez, and J. G. Rutiaga-quinones, “By-products of the Sawmill Process in a Forest Company: Their Physical, Chemical and Energetic Evaluation for Pellets and Briquettes”, Kastamonu University Journal of Forestry Faculty, vol. 24, no. 1, pp. 1–12, 2024, doi: 10.17475/kastorman.1460359.
ISNAD Reyes-rodríguez, Lucero A. et al. “By-Products of the Sawmill Process in a Forest Company: Their Physical, Chemical and Energetic Evaluation for Pellets and Briquettes”. Kastamonu University Journal of Forestry Faculty 24/1 (April 2024), 1-12. https://doi.org/10.17475/kastorman.1460359.
JAMA Reyes-rodríguez LA, Aviña-berumen LJ, Ruiz-aquiño F, Rangel-méndez JR, Andrade-martínez GJ, Rutiaga-quinones JG. By-products of the Sawmill Process in a Forest Company: Their Physical, Chemical and Energetic Evaluation for Pellets and Briquettes. Kastamonu University Journal of Forestry Faculty. 2024;24:1–12.
MLA Reyes-rodríguez, Lucero A. et al. “By-Products of the Sawmill Process in a Forest Company: Their Physical, Chemical and Energetic Evaluation for Pellets and Briquettes”. Kastamonu University Journal of Forestry Faculty, vol. 24, no. 1, 2024, pp. 1-12, doi:10.17475/kastorman.1460359.
Vancouver Reyes-rodríguez LA, Aviña-berumen LJ, Ruiz-aquiño F, Rangel-méndez JR, Andrade-martínez GJ, Rutiaga-quinones JG. By-products of the Sawmill Process in a Forest Company: Their Physical, Chemical and Energetic Evaluation for Pellets and Briquettes. Kastamonu University Journal of Forestry Faculty. 2024;24(1):1-12.

14178  14179       14165           14166           14167            14168