Research Article
BibTex RIS Cite

Arazi Kullanımı/Arazi Örtüsü (AKAÖ) Değişiminin Arazi Yüzey Sıcaklığı (AYS) Üzerindeki Etkilerinin Değerlendirilmesi: Kağıthane Havzası Örneği

Year 2024, Volume: 24 Issue: 2, 141 - 157, 03.10.2024
https://doi.org/10.17475/kastorman.1557407

Abstract

Çalışmanın amacı: Bu çalışma Landsat uydu görüntüleri kullanılarak arazi kullanımı/arazi örtüsü (AKAÖ) değişiminin arazi yüzey sıcaklığı (AYS) üzerindeki etkilerini belirlemek ve AYS'de arazi kullanımı olarak orman örtüsü ve kentleşmenin sonuçları arasındaki farkları ortaya koymak amacıyla yapılmıştır.
Çalışma alanı: Nüfus artışı ile arazi kullanımı/arazi örtüsü değişimlerinin en dikkat çekici şekilde yaşandığı İstanbul ilinde yer alan Kağıthane Havzası çalışma alanı olarak seçilmiştir.
Materyal ve yöntem: Bu kapsamda 2002 yılı için Landsat 5 ve 2021 yılı için Landsat 8 uydu görüntüleri kullanılmıştır. Bu veri kaynakları, Kağıthane Havzası için Landsat görüntülerinin arazi kullanımlarına göre sınıflandırılması, normalleştirilmiş bitki örtüsü farkının (NDVI) tahmin edilmesi, 2002-2021 yılları arasında arazi yüzey sıcaklığının belirlenmesi, hesaplama adımları ile AKAÖ ile AYS arasındaki ilişkiyi ve NDVI ile AYS arasındaki korelasyonu araştırmak için kullanıldı.
Temel sonuçlar: Çalışma sonuçları incelendiğinde, 2002-2021 yılları arasında AKAÖ’ye bağlı AYS değerleri en yüksek kentsel ve açık alanlarda gözlenirken; en düşük değerler ise orman alanları ve su yüzeylerinde gözlenmiştir. Bununla birlikte AYS’deki en düşük artış 0.6°C ile orman alanlarında; en yüksek artış da 2.6°C ile kentsel alanlarda tespit edilmiştir.
Araştırma vurguları: Bu çalışma havzadaki orman alanlarının parçalanmadan korunmasının önemini ve kent ikliminde serinletici etkinin artırılabilmesi için de orman alanlarının veya yeşil alanların kent içerisinde planlamasının yapılmasının ne kadar gerekli olduğunu göstermiştir.

References

  • Akbari, H., D., M., Kurn, Bretz, S. E., & Hanford, J. W. (1997). Peak power and cooling energy savings of shade trees. Energy and Buildings, 25, 139-148.
  • Akbari, H. & Kolokotsa, D. (2016). Three decades of urban heat islands and mitigation technologies research. Energy and Buildings, 133, 834-842.
  • Aslan, N. & Koc-San, D. (2016). Analysis of relationship between urban heat island effect and land use/cover type using Landsat 7 ETM+ and Landsat 8 OLI images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41, (12-19 July 2016), 821-828.
  • Bagan, H., Takeuchi, W., Kinoshita, T., Bao, Y. & Yamagata, Y. (2010). Land cover classification and change analysis in the Horqin sandy land from 1975 to 2007. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sening, 3(2), 168-177.
  • Bokaie, M., Zarkesh, M. K., Arasteh, P. D. & Hosseini, A. (2016). Assessment of urban heat island based on the relationship between land surface temperature and land use/ land cover in Tehran. Sustainable Cities and Society, 23, 94-104.
  • Bowler, D. E., Buyung-Ali, L., Knight, T. M. & Pullin, S. E. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97, 147-155.
  • Brumlop, S. & Finckh, M. R. (2011). Applications and potentials of marker assisted selection (MAS) in plant breeding: Applications and potentials of smart breeding. Final report of the F+E project (FKZ 3508890020), On behalf of the Federal Agency for Nature Conservation.Bundesamt für Naturschutz.
  • Butt, A., Shabbir, R., Ahmad, S. S. & Aziz, N. (2015). Land use change mapping and analysis using remote sensing and GIS: a case study of Simly watershed, Islamabad, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 18, 251-259.
  • Carrillo-Niquete, G. A., Andrade, J. L., Valdez-Lazalde, J. R., Reyes-García, C. & Hern´andez-Stefanoni, J. L. (2022). Characterizing spatial and temporal deforestation and its effects on surface urban heat islands in a tropical city using Landsat time series. Landscape and Urban Planning, 217, 104280.
  • Celik, B., Kaya, S., Alganci, U. & Seker, D. Z. (2019). Assessment of the relationship between land use/cover changes and land surface temperatures: A case study of thermal remote sensing. Fresenius Environmental Bulletin, 28(2), 541-547.
  • Chaudhuri, G. & Mishra, N. B. (2016). Spatio-temporal dynamics of land cover and land surface temperature in Ganges-Brahmaputra delta: a comparative analysis between India and Bangladesh. Applied Geography, 68, 68-83.
  • Chen, X. L., Zhao, H. M., Li, P. X. & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/ cover changes. Remote Sensing of Environment, 104(2), 133-146. Çokoyoğlu, S. (2008). Alibey ve Kağıthane Havzalarında Arazi Kullanımı ve Sorunların 50 Yıllık Değişimi (The change of the land use and problems in Alibey and Kağithane watersheds in the 50 years) [Master’s thesis, Istanbul University Institute of Science]. 82 pp. [In Turkish]
  • Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., et al. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management, 146, 107-115.
  • Dihkan, M., Karsli, F., Guneroglu, A. & Guneroglu, N. (2015). Evaluation of surface urban heat island (SUHI) effect on coastal zone: The case of Istanbul Megacity. Ocean and Coastal Management, 118, 309-316.
  • Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., et al. (2017). Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 43, 51-61.
  • Emecen, Y. & Erdem, N. (2019). Kent iklimi üzerinde yeşil alanların etkileri. [The effects of green areas on urban climate]. Peyzaj Araştırmaları ve Uygulamaları Dergisi, 2, 24-30.
  • Erasu, D. (2017). Remote sensing-based urban land use/land cover change detection and monitoring. Journal of Remote Sensing and GIS, 6, 5.
  • Fatami, M. & Narangifard, M. (2019). Monitoring LULC changes and its impact on the LST and NDVI in District 1 of Shiraz City. Arabian Journal of Geosciences, 12, 127.
  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., et al. (2005). Global consequences of land use. Science, 309, 570-574.
  • Guha, S. & Govil, H. (2023). Evaluating the stability of the relationship between land surface temperature and land use/land cover indices: a case study in Hyderabad city, India. Geology, Ecology, and Landscapes, 00(00), 1-13.
  • Halder, B., Bandyopadhyay, J., Khedher, K. M., Fai, C. M., Tangang, F., et al. (2022). Delineation of urban expansion influences urban heat islands and natural environment using remote sensing and GIS‑based in industrial area. Environmental Science and Pollution Research, 48, 73147-73170.
  • Hashim, B. M., Al Maliki, A., Sultan, M. A., Shahid, S. & Yaseen, Z. M. (2022). Effect of land use land cover changes on land surface temperature during 1984–2020: A case study of Baghdad city using landsat image. Natural Hazards, 112, 1223-1246.
  • Herold, M., Goldstein, N. C. & Clarke, K. C. (2003). The spatiotemporal form of urban growth: measurement, analysis and modeling. Remote Sensing Environment, 86, 286-302.
  • Hishe, S., Lyimo, J. & Bewket, W. (2017). Effects of soil and water conservation on vegetation cover: a remote sensing based study in the Middle Suluh River Basin, Northern Ethiopia. Environmental Systems Research, 6(1), 26.
  • Ibrahim, G. R. F. (2017). Urban land use land cover changes and their effect on land surface temperature: Case study using Dohuk City in the Kurdistan Region of Iraq. Climate, 5(1), 13.
  • Karakuş, C. B. (2019). The impact of land use/land cover (LULC) changes on land surface temperature in Sivas city center and its surroundings and assessment of urban heat island. Asia-Pacific Journal of Atmospheric Sciences, 55(2), 1-16.
  • Kaiser, E. A., Rolim, S. B. A., Grondona, A. E. B., Hackmann, C. L., de Marsillac Linn, R., et al. (2022). Spatiotemporal influences of LULC changes on land surface temperature in rapid urbanization area through Landsat-TM and TIRS Images. Atmosphere, 13(3), 460.
  • Kaufmann, R. K., Zhou, L., Myneni, R. B., Tucker, C. J., Slayback, D., et al. (2003). The effect of vegetation on surface temperature: a statistical analysis of NDVI and climate data. Geophysical Research Letter, 30(22), 2137.
  • Kesgin Atak, B. & Ersoy Tonyaloğlu, E. (2020). Alan kullanım/arazi örtüsü ve bitki örtüsündeki değişimin arazi yüzey sıcaklığına etkisinin değerlendirilmesi: Aydın ili örneği [Evaluation of the effect of land use / land cover and vegetation cover change on land surface temperature: The case of Aydın province]. Turkish Journal of Forestry, 21(4), 489-497.
  • Khorrami, B., Heidarlou, H. B. & Feizizadeh, B. (2021). Evaluation of the environmental impacts of urbanization from the viewpoint of increased skin temperatures: a case study from Istanbul, Turkey. Applied Geomatics, 13, 311-324.
  • Kisthawal, C. M., Niyogi, D., Tewari, M., Pielke Sr, R. A. & Shepherd, J. M. (2010). Urbanization signature in the observed heavy rainfall climatology over India. Internatıonal Journal of Climatology, 30(13), 1908-1916.
  • Liu, Y., Huang, X., Yang, H. & Zhong, T. (2014). Environmental effects of landuse/ cover change caused by urbanization and policies in Southwest China karst area-a case study of Guiyang. Habitat International, 44, 339-348.
  • Liu, T. & Yang, X. (2015). Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography, 56, 42-54.
  • Lu, D. & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28, 823-870.
  • Masek, J. G., Wulder, M. A., Markham, B., McCorkel, J., Crawford, C. J., et al. (2020). Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment, 248, Article 111968.
  • Mei, A., Manzo, C., Fontinovo, G., Bassani, C., Allegrini, A., et al. (2016). Assessment of land cover changes in Lampedusa Island (Italy) using Landsat TM and OLI data. Journal of African Earth Sciences, 122, 15-24.
  • Mondal, A., Guha, S. & Kundu, S. (2021). Dynamic status of land surface temperature and spectral indices in Imphal city, India from 1991 to 2021. Geomatics, Natural Hazards and Risk, 12(1), 3265-3286.
  • Moss, J. L., Doick, K. J., Smith, S. & Shahrestani, M. (2019). Influence of evaporative cooling by urban forests on cooling demand in cities. Urban Forestry and Urban Greening, 37, 65-73.
  • Muttitanon, W. & Tripathi, N. K. (2005). Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. International Journal of Remote Sensing, 26(11), 2311-23.
  • Morsy, S. & Hadi, M. (2022). Impact of land use/land cover on land surface temperature and its relationship with spectral indices in Dakahlia Governorate, Egypt. International Journal of Engineering and Geosciences, 7(3), 272-282.
  • Nayak, S. & Mandal, M. (2012). Impact of land-use and land-cover changes on temperature trends over Western India. Current Science, 102(8), 1166-1173.
  • Nayak, S. & Mandal, M. (2019). Impact of land use and land cover changes on temperature trends over India. Land Use Policy, 89, Article 104238.
  • Oke, T. (1988). The urban energy balance. Progress in Physical Geography, 12, 471-508.
  • Okumuş, D. E. & Terzi, F. (2021). Evaluating the role of urban fabric on surface urban heat island: The case of Istanbul. Sustainable Cities and Society, 73, Article 103128.
  • Orhan, O. (2021). Mersin ilindeki kentsel büyümenin yer yüzey sıcaklığı üzerine etkisinin araştırılması. [Investigation of the effect of urban expansion on surface temperature in Mersin city]. Journal of Geomatics, 6(1), 69-76.
  • Özyuvacı, N. (1999). Meteorology and Climatology. Istanbul University Press No:4196, Istanbul.
  • Pandey, A., Mondal, A., Guha, S., Upadhyay, P. K. & Singh, D. (2022). Land use status and its impact on land surface temperature in Imphal city, India. Geology, Ecology, and Landscapes, 00(00), 1-15.
  • Paschalis, A., Chakraborty, T. C., Fatichi, S., Meili, N. & Manoli, G. (2021). Urban forests as main regulator of the evaporative cooling effect in cities. AGU Advances, 2(2), e2020AV000303.
  • Peng, J., Cheng, X., Hu, Y. & Corcoran, J. (2022). A landscape connectivity approach to mitigating the urban heat island effect. Landscape Ecology, 37, 1707-1719.
  • Sarp, G., Temurcin, K. & Aldırmaz, Y. (2018). Evaluation of industrialization effects on urbanization and heat island formation using remote sensing technologies: A case of Istanbul Bağcılar district. SDU Faculty of Arts and Sciences Journal of Social Sciences, 44, 1-13.
  • Shalaby, A. & Tateishi, R. (2007). Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 27(1), 28-41.
  • Sobrino, J. A., Jiménez-Muñoz, J. C. & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434-440.
  • Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., et al. (2018). Global land change from 1982 to 2016. Nature, 560 (7720), 639-643.
  • Soydan, O. (2020). Effects of landscape composition and patterns on land surface temperature: Urban heat island case study for Nigde, Turkey. Urban Climate, 34(12), 100688.
  • Sturiale, L. & Scuderi, A. (2019). The role of green infrastructures in urban planning for climate change adaptation. Climate, 7(10), 119.
  • Terfa, B. K., Chen, N., Zhang, X. & Niyogi, D. (2020). Spatial configuration and extent explains the urban heat mitigation potential due to green spaces: Analysis over Addis Ababa, Ethiopia. Remote Sensing, 12(18), 1-24.
  • Turkish State Meteorological Service (MGM, 2022). Climate Assessment for 2021. Ankara, Turkey: MGM.
  • Turkish Statistical Institute (TUIK, 2022). Retrieved June 28th 2022 from https://data.tuik.gov.tr
  • Türkeş, M. (2008). Küresel iklim değişikliği nedir? Temel kavramlar, nedenleri, gözlenen ve öngörülen değişiklikler. İklim Değişikliği ve Çevre, 1(1), 26-37.
  • United Nations (UN, 2019). Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations.
  • URL-1. (2022). United States Geological Survey. What are the band designations for the Landsat satellites?|U.S. Geological Survey (usgs.gov)? Landsat missions. Landsat 8|U.S. Geological Survey (usgs.gov) Landsat 5|U.S. Geological Survey (usgs.gov). www.earthexplorer.usgs.gov.
  • Ünal, Y. S., Sonuç, C. Y., Incecik, S., Topcu, H. S., Diren-Üstün. D. H., et al. (2020). Investigating urban heat island intensity in Istanbul. Theoretical and Applied Climatology, 139, 175-190.
  • Wahab, B. I., Naif, S. S. & Al-Jiboori, M. H. (2022). Development of annual urban heat island in Baghdad under climate change. Journal of Environmental Engineering and Landscape Management, 30(1), 179-187. Wondrade, N., Dick, Q. B. & Tveite, H. (2014). GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa watershed, Ethiopia. Environmental Monitoring and Assessment, 186(3), 1765-1780.
  • Yu, Z., Guo, X., Zeng, Y., Koga, M. & Vejre, H. (2018). Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban Forestry & Urban Greening, 29, 113-121.
  • Zaeemdar, S. & Baycan, T. (2017). Analysis of the relationship between urban heat island and land cover in Istanbul through Landsat 8 OLI. Journal of Earth Science and Climatic Change, 8, 423.

Evaluation of the Land Use/Land Cover (LULC) Change Effects on Land Surface Temperature (LST): A Case Study of Kağıthane Watershed

Year 2024, Volume: 24 Issue: 2, 141 - 157, 03.10.2024
https://doi.org/10.17475/kastorman.1557407

Abstract

Aim of study: This study was carried out to determine the effects of land use/land cover (LULC) change on land surface temperature (LST) using Landsat satellite images.
Area of study: The study area is the Kağıthane watershed in Istanbul, where population growth and LULC changes are experienced most strikingly.
Material and methods: Landsat 5 for 2002 and Landsat 8 for 2021 were used to investigate the relationship between LULC and LST and the correlation between NDVI and LST by the steps of classification of Landsat images to determine the change in LULC, estimation of normalized difference vegetation index (NDVI), calculation of the LST for 2002 and 2021.
Main results: When the results were examined, the major increase and decrease were 1014.7 ha and 933.3 ha in urban and forest areas, respectively. The highest LST values related to LULC were observed in urban and open areas while the lowest values were observed in forest areas and water bodies. Besides, the lowest increase in LST was 0.6°C in forest areas, whereas the highest increase was detected in urban areas with 2.6°C.
Research highlights: This study has shown the importance of protecting the forest areas in the watershed from fragmentation and how necessary it is to plan forests or green areas for cooling the urban climate.

References

  • Akbari, H., D., M., Kurn, Bretz, S. E., & Hanford, J. W. (1997). Peak power and cooling energy savings of shade trees. Energy and Buildings, 25, 139-148.
  • Akbari, H. & Kolokotsa, D. (2016). Three decades of urban heat islands and mitigation technologies research. Energy and Buildings, 133, 834-842.
  • Aslan, N. & Koc-San, D. (2016). Analysis of relationship between urban heat island effect and land use/cover type using Landsat 7 ETM+ and Landsat 8 OLI images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41, (12-19 July 2016), 821-828.
  • Bagan, H., Takeuchi, W., Kinoshita, T., Bao, Y. & Yamagata, Y. (2010). Land cover classification and change analysis in the Horqin sandy land from 1975 to 2007. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sening, 3(2), 168-177.
  • Bokaie, M., Zarkesh, M. K., Arasteh, P. D. & Hosseini, A. (2016). Assessment of urban heat island based on the relationship between land surface temperature and land use/ land cover in Tehran. Sustainable Cities and Society, 23, 94-104.
  • Bowler, D. E., Buyung-Ali, L., Knight, T. M. & Pullin, S. E. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97, 147-155.
  • Brumlop, S. & Finckh, M. R. (2011). Applications and potentials of marker assisted selection (MAS) in plant breeding: Applications and potentials of smart breeding. Final report of the F+E project (FKZ 3508890020), On behalf of the Federal Agency for Nature Conservation.Bundesamt für Naturschutz.
  • Butt, A., Shabbir, R., Ahmad, S. S. & Aziz, N. (2015). Land use change mapping and analysis using remote sensing and GIS: a case study of Simly watershed, Islamabad, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 18, 251-259.
  • Carrillo-Niquete, G. A., Andrade, J. L., Valdez-Lazalde, J. R., Reyes-García, C. & Hern´andez-Stefanoni, J. L. (2022). Characterizing spatial and temporal deforestation and its effects on surface urban heat islands in a tropical city using Landsat time series. Landscape and Urban Planning, 217, 104280.
  • Celik, B., Kaya, S., Alganci, U. & Seker, D. Z. (2019). Assessment of the relationship between land use/cover changes and land surface temperatures: A case study of thermal remote sensing. Fresenius Environmental Bulletin, 28(2), 541-547.
  • Chaudhuri, G. & Mishra, N. B. (2016). Spatio-temporal dynamics of land cover and land surface temperature in Ganges-Brahmaputra delta: a comparative analysis between India and Bangladesh. Applied Geography, 68, 68-83.
  • Chen, X. L., Zhao, H. M., Li, P. X. & Yin, Z. Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/ cover changes. Remote Sensing of Environment, 104(2), 133-146. Çokoyoğlu, S. (2008). Alibey ve Kağıthane Havzalarında Arazi Kullanımı ve Sorunların 50 Yıllık Değişimi (The change of the land use and problems in Alibey and Kağithane watersheds in the 50 years) [Master’s thesis, Istanbul University Institute of Science]. 82 pp. [In Turkish]
  • Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., et al. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management, 146, 107-115.
  • Dihkan, M., Karsli, F., Guneroglu, A. & Guneroglu, N. (2015). Evaluation of surface urban heat island (SUHI) effect on coastal zone: The case of Istanbul Megacity. Ocean and Coastal Management, 118, 309-316.
  • Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., et al. (2017). Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 43, 51-61.
  • Emecen, Y. & Erdem, N. (2019). Kent iklimi üzerinde yeşil alanların etkileri. [The effects of green areas on urban climate]. Peyzaj Araştırmaları ve Uygulamaları Dergisi, 2, 24-30.
  • Erasu, D. (2017). Remote sensing-based urban land use/land cover change detection and monitoring. Journal of Remote Sensing and GIS, 6, 5.
  • Fatami, M. & Narangifard, M. (2019). Monitoring LULC changes and its impact on the LST and NDVI in District 1 of Shiraz City. Arabian Journal of Geosciences, 12, 127.
  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., et al. (2005). Global consequences of land use. Science, 309, 570-574.
  • Guha, S. & Govil, H. (2023). Evaluating the stability of the relationship between land surface temperature and land use/land cover indices: a case study in Hyderabad city, India. Geology, Ecology, and Landscapes, 00(00), 1-13.
  • Halder, B., Bandyopadhyay, J., Khedher, K. M., Fai, C. M., Tangang, F., et al. (2022). Delineation of urban expansion influences urban heat islands and natural environment using remote sensing and GIS‑based in industrial area. Environmental Science and Pollution Research, 48, 73147-73170.
  • Hashim, B. M., Al Maliki, A., Sultan, M. A., Shahid, S. & Yaseen, Z. M. (2022). Effect of land use land cover changes on land surface temperature during 1984–2020: A case study of Baghdad city using landsat image. Natural Hazards, 112, 1223-1246.
  • Herold, M., Goldstein, N. C. & Clarke, K. C. (2003). The spatiotemporal form of urban growth: measurement, analysis and modeling. Remote Sensing Environment, 86, 286-302.
  • Hishe, S., Lyimo, J. & Bewket, W. (2017). Effects of soil and water conservation on vegetation cover: a remote sensing based study in the Middle Suluh River Basin, Northern Ethiopia. Environmental Systems Research, 6(1), 26.
  • Ibrahim, G. R. F. (2017). Urban land use land cover changes and their effect on land surface temperature: Case study using Dohuk City in the Kurdistan Region of Iraq. Climate, 5(1), 13.
  • Karakuş, C. B. (2019). The impact of land use/land cover (LULC) changes on land surface temperature in Sivas city center and its surroundings and assessment of urban heat island. Asia-Pacific Journal of Atmospheric Sciences, 55(2), 1-16.
  • Kaiser, E. A., Rolim, S. B. A., Grondona, A. E. B., Hackmann, C. L., de Marsillac Linn, R., et al. (2022). Spatiotemporal influences of LULC changes on land surface temperature in rapid urbanization area through Landsat-TM and TIRS Images. Atmosphere, 13(3), 460.
  • Kaufmann, R. K., Zhou, L., Myneni, R. B., Tucker, C. J., Slayback, D., et al. (2003). The effect of vegetation on surface temperature: a statistical analysis of NDVI and climate data. Geophysical Research Letter, 30(22), 2137.
  • Kesgin Atak, B. & Ersoy Tonyaloğlu, E. (2020). Alan kullanım/arazi örtüsü ve bitki örtüsündeki değişimin arazi yüzey sıcaklığına etkisinin değerlendirilmesi: Aydın ili örneği [Evaluation of the effect of land use / land cover and vegetation cover change on land surface temperature: The case of Aydın province]. Turkish Journal of Forestry, 21(4), 489-497.
  • Khorrami, B., Heidarlou, H. B. & Feizizadeh, B. (2021). Evaluation of the environmental impacts of urbanization from the viewpoint of increased skin temperatures: a case study from Istanbul, Turkey. Applied Geomatics, 13, 311-324.
  • Kisthawal, C. M., Niyogi, D., Tewari, M., Pielke Sr, R. A. & Shepherd, J. M. (2010). Urbanization signature in the observed heavy rainfall climatology over India. Internatıonal Journal of Climatology, 30(13), 1908-1916.
  • Liu, Y., Huang, X., Yang, H. & Zhong, T. (2014). Environmental effects of landuse/ cover change caused by urbanization and policies in Southwest China karst area-a case study of Guiyang. Habitat International, 44, 339-348.
  • Liu, T. & Yang, X. (2015). Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography, 56, 42-54.
  • Lu, D. & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28, 823-870.
  • Masek, J. G., Wulder, M. A., Markham, B., McCorkel, J., Crawford, C. J., et al. (2020). Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment, 248, Article 111968.
  • Mei, A., Manzo, C., Fontinovo, G., Bassani, C., Allegrini, A., et al. (2016). Assessment of land cover changes in Lampedusa Island (Italy) using Landsat TM and OLI data. Journal of African Earth Sciences, 122, 15-24.
  • Mondal, A., Guha, S. & Kundu, S. (2021). Dynamic status of land surface temperature and spectral indices in Imphal city, India from 1991 to 2021. Geomatics, Natural Hazards and Risk, 12(1), 3265-3286.
  • Moss, J. L., Doick, K. J., Smith, S. & Shahrestani, M. (2019). Influence of evaporative cooling by urban forests on cooling demand in cities. Urban Forestry and Urban Greening, 37, 65-73.
  • Muttitanon, W. & Tripathi, N. K. (2005). Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. International Journal of Remote Sensing, 26(11), 2311-23.
  • Morsy, S. & Hadi, M. (2022). Impact of land use/land cover on land surface temperature and its relationship with spectral indices in Dakahlia Governorate, Egypt. International Journal of Engineering and Geosciences, 7(3), 272-282.
  • Nayak, S. & Mandal, M. (2012). Impact of land-use and land-cover changes on temperature trends over Western India. Current Science, 102(8), 1166-1173.
  • Nayak, S. & Mandal, M. (2019). Impact of land use and land cover changes on temperature trends over India. Land Use Policy, 89, Article 104238.
  • Oke, T. (1988). The urban energy balance. Progress in Physical Geography, 12, 471-508.
  • Okumuş, D. E. & Terzi, F. (2021). Evaluating the role of urban fabric on surface urban heat island: The case of Istanbul. Sustainable Cities and Society, 73, Article 103128.
  • Orhan, O. (2021). Mersin ilindeki kentsel büyümenin yer yüzey sıcaklığı üzerine etkisinin araştırılması. [Investigation of the effect of urban expansion on surface temperature in Mersin city]. Journal of Geomatics, 6(1), 69-76.
  • Özyuvacı, N. (1999). Meteorology and Climatology. Istanbul University Press No:4196, Istanbul.
  • Pandey, A., Mondal, A., Guha, S., Upadhyay, P. K. & Singh, D. (2022). Land use status and its impact on land surface temperature in Imphal city, India. Geology, Ecology, and Landscapes, 00(00), 1-15.
  • Paschalis, A., Chakraborty, T. C., Fatichi, S., Meili, N. & Manoli, G. (2021). Urban forests as main regulator of the evaporative cooling effect in cities. AGU Advances, 2(2), e2020AV000303.
  • Peng, J., Cheng, X., Hu, Y. & Corcoran, J. (2022). A landscape connectivity approach to mitigating the urban heat island effect. Landscape Ecology, 37, 1707-1719.
  • Sarp, G., Temurcin, K. & Aldırmaz, Y. (2018). Evaluation of industrialization effects on urbanization and heat island formation using remote sensing technologies: A case of Istanbul Bağcılar district. SDU Faculty of Arts and Sciences Journal of Social Sciences, 44, 1-13.
  • Shalaby, A. & Tateishi, R. (2007). Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 27(1), 28-41.
  • Sobrino, J. A., Jiménez-Muñoz, J. C. & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434-440.
  • Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., et al. (2018). Global land change from 1982 to 2016. Nature, 560 (7720), 639-643.
  • Soydan, O. (2020). Effects of landscape composition and patterns on land surface temperature: Urban heat island case study for Nigde, Turkey. Urban Climate, 34(12), 100688.
  • Sturiale, L. & Scuderi, A. (2019). The role of green infrastructures in urban planning for climate change adaptation. Climate, 7(10), 119.
  • Terfa, B. K., Chen, N., Zhang, X. & Niyogi, D. (2020). Spatial configuration and extent explains the urban heat mitigation potential due to green spaces: Analysis over Addis Ababa, Ethiopia. Remote Sensing, 12(18), 1-24.
  • Turkish State Meteorological Service (MGM, 2022). Climate Assessment for 2021. Ankara, Turkey: MGM.
  • Turkish Statistical Institute (TUIK, 2022). Retrieved June 28th 2022 from https://data.tuik.gov.tr
  • Türkeş, M. (2008). Küresel iklim değişikliği nedir? Temel kavramlar, nedenleri, gözlenen ve öngörülen değişiklikler. İklim Değişikliği ve Çevre, 1(1), 26-37.
  • United Nations (UN, 2019). Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations.
  • URL-1. (2022). United States Geological Survey. What are the band designations for the Landsat satellites?|U.S. Geological Survey (usgs.gov)? Landsat missions. Landsat 8|U.S. Geological Survey (usgs.gov) Landsat 5|U.S. Geological Survey (usgs.gov). www.earthexplorer.usgs.gov.
  • Ünal, Y. S., Sonuç, C. Y., Incecik, S., Topcu, H. S., Diren-Üstün. D. H., et al. (2020). Investigating urban heat island intensity in Istanbul. Theoretical and Applied Climatology, 139, 175-190.
  • Wahab, B. I., Naif, S. S. & Al-Jiboori, M. H. (2022). Development of annual urban heat island in Baghdad under climate change. Journal of Environmental Engineering and Landscape Management, 30(1), 179-187. Wondrade, N., Dick, Q. B. & Tveite, H. (2014). GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image data in Lake Hawassa watershed, Ethiopia. Environmental Monitoring and Assessment, 186(3), 1765-1780.
  • Yu, Z., Guo, X., Zeng, Y., Koga, M. & Vejre, H. (2018). Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: The case of Fuzhou city, China. Urban Forestry & Urban Greening, 29, 113-121.
  • Zaeemdar, S. & Baycan, T. (2017). Analysis of the relationship between urban heat island and land cover in Istanbul through Landsat 8 OLI. Journal of Earth Science and Climatic Change, 8, 423.
There are 65 citations in total.

Details

Primary Language English
Subjects Forestry Sciences (Other)
Journal Section Articles
Authors

Betül Uygur Erdoğan

Reyhan Saglam

Rabia Vildan Yar This is me

Early Pub Date September 29, 2024
Publication Date October 3, 2024
Submission Date November 20, 2023
Acceptance Date May 8, 2024
Published in Issue Year 2024 Volume: 24 Issue: 2

Cite

APA Uygur Erdoğan, B., Saglam, R., & Yar, R. V. (2024). Evaluation of the Land Use/Land Cover (LULC) Change Effects on Land Surface Temperature (LST): A Case Study of Kağıthane Watershed. Kastamonu University Journal of Forestry Faculty, 24(2), 141-157. https://doi.org/10.17475/kastorman.1557407
AMA Uygur Erdoğan B, Saglam R, Yar RV. Evaluation of the Land Use/Land Cover (LULC) Change Effects on Land Surface Temperature (LST): A Case Study of Kağıthane Watershed. Kastamonu University Journal of Forestry Faculty. October 2024;24(2):141-157. doi:10.17475/kastorman.1557407
Chicago Uygur Erdoğan, Betül, Reyhan Saglam, and Rabia Vildan Yar. “Evaluation of the Land Use/Land Cover (LULC) Change Effects on Land Surface Temperature (LST): A Case Study of Kağıthane Watershed”. Kastamonu University Journal of Forestry Faculty 24, no. 2 (October 2024): 141-57. https://doi.org/10.17475/kastorman.1557407.
EndNote Uygur Erdoğan B, Saglam R, Yar RV (October 1, 2024) Evaluation of the Land Use/Land Cover (LULC) Change Effects on Land Surface Temperature (LST): A Case Study of Kağıthane Watershed. Kastamonu University Journal of Forestry Faculty 24 2 141–157.
IEEE B. Uygur Erdoğan, R. Saglam, and R. V. Yar, “Evaluation of the Land Use/Land Cover (LULC) Change Effects on Land Surface Temperature (LST): A Case Study of Kağıthane Watershed”, Kastamonu University Journal of Forestry Faculty, vol. 24, no. 2, pp. 141–157, 2024, doi: 10.17475/kastorman.1557407.
ISNAD Uygur Erdoğan, Betül et al. “Evaluation of the Land Use/Land Cover (LULC) Change Effects on Land Surface Temperature (LST): A Case Study of Kağıthane Watershed”. Kastamonu University Journal of Forestry Faculty 24/2 (October 2024), 141-157. https://doi.org/10.17475/kastorman.1557407.
JAMA Uygur Erdoğan B, Saglam R, Yar RV. Evaluation of the Land Use/Land Cover (LULC) Change Effects on Land Surface Temperature (LST): A Case Study of Kağıthane Watershed. Kastamonu University Journal of Forestry Faculty. 2024;24:141–157.
MLA Uygur Erdoğan, Betül et al. “Evaluation of the Land Use/Land Cover (LULC) Change Effects on Land Surface Temperature (LST): A Case Study of Kağıthane Watershed”. Kastamonu University Journal of Forestry Faculty, vol. 24, no. 2, 2024, pp. 141-57, doi:10.17475/kastorman.1557407.
Vancouver Uygur Erdoğan B, Saglam R, Yar RV. Evaluation of the Land Use/Land Cover (LULC) Change Effects on Land Surface Temperature (LST): A Case Study of Kağıthane Watershed. Kastamonu University Journal of Forestry Faculty. 2024;24(2):141-57.

14178  14179       14165           14166           14167            14168