Research Article
BibTex RIS Cite

Novel Fe(II) phthalocyanine complexes for TiO2 sensitization

Year 2017, Issue: 1, 9 - 15, 31.12.2017

Abstract

A group of novel azo-bridged phenolic iron(II)
phtalocyanine (Fe(II)Pcs) derivatives which have peripheral or non-peripheral
substitution on macrocyclic ring were produced and characterized employing
various spectroscopic methods. Peripheral or nonperipheral substituted Fe(II)Pc
molecules (defined as Fe(II)Pc-1, Fe(II)Pc-2, Fe(II)Pc-3, Fe(II)Pc-4) were used
for sensitization of TiO2 nanopowder to prepare photoactive
composite catalysts (Fe(II)Pc/TiO2, 1% of the mass of TiO2)
using wet deposition method. The as-obtained composite materials were
characterized by SEM, EDX, UV-Vis DRS and XRD. The results revealed that the
Fe(II)Pc derivatives were successfully immobilized on TiO2 and the
anatase crystalline phase have absorption in the visible light region. Fe(II)Pc
sensitized catalysts were tested for the photocatalytic removal of
4-chlorophenol (4-CP) in the presence of H2O2. Photocatalytic
experiments showed that the H2O2 assisted Fe(II)Pc/TiO2
composites achieved high degradation of 4-chlorophenol except for
Fe(II)Pc-4/TiO2. The photocatalytic efficiencies of the catalysts
follow the order: Fe(II)Pc-3/TiO2 (93.21%) > Fe(II)Pc-1/TiO2
(87.61%) > Fe(II)Pc-2/TiO2 (83.86%) > TiO2
(67.74%) > Fe(II)Pc-4/TiO2 (64.71%).

References

  • 1. Shukla, P. R., Wang, S., Ang, H.M., Tadé, M. O., Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light, Sep. Purif. Technol. 2010, 70, 338-344. 2. Kilic, M., Cinar, Z., Hydroxyl radical reactions with 4-chlorophenol as a model for heterogeneous photocatalysis, J. Mol. Struct. Theochem. 2008, 851, 263-270. 3. Yang, J., Dai, J., Chen, C., Zhao, J., Effects of hydroxyl radicals and oxygen species on the 4-chlorophenol degradation by photoelectrocatalytic reactions with TiO2-film electrodes, J. Photochem. Photobiol. A: Chem. 2009, 208, 66-77. 4. Kamble, S. P., Deosarkar, S. P., Sawant, S.B ., Moulijn, J. A., Pangarkar, V. G., Photocatalytic degradation of 2,4-dichloro-phenoxyacetic acid using concentrated solar radiation: batch and continuous operation, Ind. Eng. Chem. Res. 2004, 43, 8178- 8187. 5. Czaplicka, M., Photo-degradation of chlorophenols in the aqueous solution, J. Hazard. Mater. 2006, 134, 45-59. 6. Neppolian, B., Jung, H., Choi, H., Photocatalytic degradation of 4-chlorophenol using TiO2 and Pt-TiO2 nanoparticles prepared by sol-gel method, J. Adv. Oxid. Technol. 2007, 10 (2), 1-6. 7. Wang, K. H., Hsieh, Y. H., Chou, M. Y., Chang C. Y., Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution, Appl. Catal. B: Environ. 1999, 21, 1-8. 8. Litter, M. I., Heterogeneous photocatalysis transition metal ions in photocatalytic systems, Appl. Catal. A: Environ. 1999, 57, 89-114. 9. Bhati, I., Kumar, A., Ameta, S. C., Degradation of some dyes using nanosized CeCuO3 photocatalyst: synthesis and charac-terization, J. Iran. Chem. Res. 2010, 3, 211-217. 10. Nezamzadeh-Ejhieh, A., Shirvani, K., CdS Loaded an Iranian clinoptilolite as a heterogeneous catalyst in photodegradation of p-aminophenol, J. Chem. 2013, 1-11, Article ID 541736. 11. Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, D. W., Environmental applications of semiconductor photocatalysis, Chem. Rev. 1995, 95, 69-96. 12. Linsebigler, A. L., Lu, G., Yates, T. J., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 1995, 95, 735-758. 13. Fujishima, A., Rao, T. N., Tryk, D. A., Titanium dioxide photo-catalysis, J. Photochem. Photobiol. C 2000, 1, 1-21. 14. Sakthivel, S., Shankar, M. V., Palanichamy, M., Arabindoo, B., Bahnemann, D. W., Murugesan, V., Enhancement of photocata-lytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res. 2004, 38, 3001-3008. 15. Thompson T. L., Zubkov, T., Goralski, E. G., Walck, S. D., Yates, J. T., Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light, J. Phys. Chem. B 2004, 108 (19), 6004-6008. 16. Wang, J., Lin, Z. Q., Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering, Chem. Mater. 2010, 22 (2), 579-584. 17. Jang, J. S., Kim, H. G., Joshi, U. A., Jang, J.W., Lee, J. S., Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation, Int. J. Hydrogen Energy 2008, 33 (21), 5975-5980. 18. Mekprasart, W., Vittayakorn, N., Pecharapa, W., Ball-milled CuPc/TiO2 hybrid nanocomposite and its photocatalytic degradation of aqueous Rhodamine B, Mater. Res. Bull. 2012, 47, 3114-3119. 19. Cornish, B. J., Lawton, L. A., Robertson P. K., Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide, Appl. Catal. B Environ. 2000, 25, 59-67. 20. Nguyen, A. T., Juang, R-S., Photocatalytic degradation of p-chlorophenol by hybrid H2O2 and TiO2 in aqueous suspensions under UV irradiation, J. Environ. Manage. 2015, 147, 27-277. 21. Jiang, W. H., Wang, X., Chang, Y. C., Yu, S. K., Ma, C. Y., Ye, K. Q., Cheng, C. H., Du, G. T., Single crystal growth of copper phthalocyanine using exaltation-evaporation growth method, J. Cryst. Growth. 2006, 290, 544-547. 22. Siviero, F., Coppede, N., Taurino, A. M., Toccoli, T., Siciliano, P., Iannott, S., Hybrid titania–zincphthalocyanine nanostruc-tured multilayers with novel gas sensing properties, Sens. Actuators B 2008, 130, 405–410. 23. Singh, V. P., Parsarathy, B., Singh, R. S., Aguilera, A., Anthony, J., Payne, M., Characterization of high-photovoltage CuPc-based solar cell structures, Sol. Energy Mater. Sol. Cells 2006, 90, 798-812. 24. Wu, S-H., Wu, J-L., Jia, S-Y., Chang, Q-W., Ren, H-T., Liu, Y., Cobalt(II) phthalocyanine-sensitized hollow Fe3O4@SiO2@ TiO2 hierarchical nanostructures: Fabrication and enhanced photocatalytic properties, Appl. Surf. Sci. 2013, 287, 389-396. 25. Qian, W., Wei, W., Jianfeng, C., Guangwen, C., Kai, M., Haikui, Z., Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions, Colloids Surf. A: Physicochem. Eng. Asp. 2012, 409, 118-125. 26. Ranjit, K.T., Willner, I., Bossmann, S., Braun, A., Iron(III) Phthalocyanine-modified titanium dioxide: A novel photocata-lyst for the enhanced photodegradation of organic pollutants, J. Phys. Chem. B 1998, 102, 9397-9403. 27. Guo, Z., Chen, B., Mu, J., Zhang, M., Zhang, P., Zhang, Z., Wang, J., Zhang, X., Sun, Y., Shao, C., Liu, Y., Iron phthalocyanine/TiO2 nanofiber heterostructures with enhanced visible photocatalytic activity assisted with H2O2, J. Hazard. Mater. 2012, 219–220, 156–163. 28. Perrin, D. D., Armarego, W. L. F., Purification of Laboratory Chemicals, Pergamon, Oxford, 1989. 29. Bayrak, R., Albay, C., Koc, M., Altın, İ., Değirmencioğlu, İ., Sökmen, M., Preparation of phthalocyanine/TiO2 nanocomposi-tes for photocatalytic removal of toxic Cr(VI) ions, Proc. Saf. Environ. 2016, 102, 294-302. 30. Koç, M., Albay, C., Altın, İ., Bayrak, R., Gökce, H., Değirmencioğlu, İ., Sökmen, M., Use of azomethine-bridged phenolic metallo-phthalocyanines for sensitization of TiO2, Desalin. Water Treat. 2017, 59, 191-201. 31. Ha, S. T., Ong, L. K., Sivasothy, Y., Win, Y. F., Synthesis of new schiff bases with dialkylamino end groups and effect of terminal branching on mesomorphic properties, World Appl. Sci. J. 2010, 8(5), 641-646. 32. Dede, G., Bayrak, R., Er, M., Özkaya, A. R., Değirmencioğlu, İ., DBU-catalyzed condensation of metal free and metallophtha-locyanines containing thiazole and azine moieties: Synthesis, characterization and electrochemical properties, J. Organomet. Chem. 2013, 740, 70-77. 33. Sun, Q., Xu, Y., Sensitization of TiO2 with Aluminum Phthalocyanine: Factors influencing the efficiency for chloro-phenol degradation in water under visible light, J. Phys. Chem. C 2009, 113, 12387-12394. 34. www.sigmaaldrich.com/catalog /product/aldrich/379549 (accessed, February 9, 2018). 35. Barakat, M. A., Tseng, J. M., Huang, C. P., Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds, Appl. Catal. B: Environ. 2005, 59, 99-104. 36. Vargas, E., Vargas, R., Nunez, O., A TiO2 surface modified with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt as a catalyst during photoinduced dichlorvos mineralization by visible solar light, Appl. Catal. B: Environ. 2014, 156-157, 8-14. 37. Abeish, A. M., Ang, M., Znad, H., Enhanced solar-photocatalytic degradation of combined chlorophenols using ferric ions and hydrogen peroxide, Ind. Eng. Chem. Res. 2014, 53, 10583-10589. 38. Cheng, Y., Sun, H., Jin, W., Xu, N., Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation, Chem. Eng. J. 2007, 128, 127-133.

TiO2 duyarlaştırılması için yeni Fe(II) ftalosiyanin kompleksleri

Year 2017, Issue: 1, 9 - 15, 31.12.2017

Abstract

Yeni bir grup makrosiklik halkaya periferal veya
periferal olmayan substitusyon içeren azo-köprülü fenolik demir (II)
ftalosiyanin türevleri sentezlendi ve çeşitli spektroskopik yöntemler
kullanılarak karakterizasyon çalışmaları yapıldı. Islak biriktirme yöntemi
kullanılarak fotoaktif komposit katalizörler (Fe(II)Pc/TiO2, TiO2’in
kütlece % 1) hazırlamak için TiO2 nanotozunun duyarlaştırılmasında
periferal veya periferal olmayan substitue Fe(II)Pc molekülleri (Fe(II)Pc-1,
Fe(II)Pc-2, Fe(II)Pc-3, Fe(II)Pc-4 olarak tanımlandı) kullanıldı. Elde edilen
kompozit materyallerin SEM, EDX, UV-Vis DRS ve XRD teknikleri ile karakterizyon
çalışmaları yapıldı. Sonuçlara göre Fe(II)Pc türevleri TiO2 yüzeyine
başarılı bir şekilde yüklendiği ve anataz kristal faz görünür bölge ışınlarında
absorpsiyon yaptığı görüldü. Fe(II)Pc ile duyarlaştırılmış katalizörler H2O2’nin
varlığında 4-klorofenolün fotokatalitik uzaklaştırılması test edildi.
Fotokatalitik çalışmalara göre H2O2 varlığında
Fe(II)Pc-4/TiO2 kompozit materyalinin dışında diğer Fe(II)Pc/TiO2
kompositlerle, yüksek bir verim elde edidiği görülmüştür. Katalizörlerin
fotokatalitik verimleri sıralaması Fe(II)Pc-3/TiO2 (% 93,21) >
Fe(II)Pc-1/TiO2 (% 87,61) > Fe(II)Pc-2/TiO2 (% 83,86)
> TiO2 (% 67,74) > Fe(II)Pc-4/TiO2 (% 64,71)
şeklindedir.

References

  • 1. Shukla, P. R., Wang, S., Ang, H.M., Tadé, M. O., Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light, Sep. Purif. Technol. 2010, 70, 338-344. 2. Kilic, M., Cinar, Z., Hydroxyl radical reactions with 4-chlorophenol as a model for heterogeneous photocatalysis, J. Mol. Struct. Theochem. 2008, 851, 263-270. 3. Yang, J., Dai, J., Chen, C., Zhao, J., Effects of hydroxyl radicals and oxygen species on the 4-chlorophenol degradation by photoelectrocatalytic reactions with TiO2-film electrodes, J. Photochem. Photobiol. A: Chem. 2009, 208, 66-77. 4. Kamble, S. P., Deosarkar, S. P., Sawant, S.B ., Moulijn, J. A., Pangarkar, V. G., Photocatalytic degradation of 2,4-dichloro-phenoxyacetic acid using concentrated solar radiation: batch and continuous operation, Ind. Eng. Chem. Res. 2004, 43, 8178- 8187. 5. Czaplicka, M., Photo-degradation of chlorophenols in the aqueous solution, J. Hazard. Mater. 2006, 134, 45-59. 6. Neppolian, B., Jung, H., Choi, H., Photocatalytic degradation of 4-chlorophenol using TiO2 and Pt-TiO2 nanoparticles prepared by sol-gel method, J. Adv. Oxid. Technol. 2007, 10 (2), 1-6. 7. Wang, K. H., Hsieh, Y. H., Chou, M. Y., Chang C. Y., Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution, Appl. Catal. B: Environ. 1999, 21, 1-8. 8. Litter, M. I., Heterogeneous photocatalysis transition metal ions in photocatalytic systems, Appl. Catal. A: Environ. 1999, 57, 89-114. 9. Bhati, I., Kumar, A., Ameta, S. C., Degradation of some dyes using nanosized CeCuO3 photocatalyst: synthesis and charac-terization, J. Iran. Chem. Res. 2010, 3, 211-217. 10. Nezamzadeh-Ejhieh, A., Shirvani, K., CdS Loaded an Iranian clinoptilolite as a heterogeneous catalyst in photodegradation of p-aminophenol, J. Chem. 2013, 1-11, Article ID 541736. 11. Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, D. W., Environmental applications of semiconductor photocatalysis, Chem. Rev. 1995, 95, 69-96. 12. Linsebigler, A. L., Lu, G., Yates, T. J., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 1995, 95, 735-758. 13. Fujishima, A., Rao, T. N., Tryk, D. A., Titanium dioxide photo-catalysis, J. Photochem. Photobiol. C 2000, 1, 1-21. 14. Sakthivel, S., Shankar, M. V., Palanichamy, M., Arabindoo, B., Bahnemann, D. W., Murugesan, V., Enhancement of photocata-lytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res. 2004, 38, 3001-3008. 15. Thompson T. L., Zubkov, T., Goralski, E. G., Walck, S. D., Yates, J. T., Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light, J. Phys. Chem. B 2004, 108 (19), 6004-6008. 16. Wang, J., Lin, Z. Q., Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering, Chem. Mater. 2010, 22 (2), 579-584. 17. Jang, J. S., Kim, H. G., Joshi, U. A., Jang, J.W., Lee, J. S., Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation, Int. J. Hydrogen Energy 2008, 33 (21), 5975-5980. 18. Mekprasart, W., Vittayakorn, N., Pecharapa, W., Ball-milled CuPc/TiO2 hybrid nanocomposite and its photocatalytic degradation of aqueous Rhodamine B, Mater. Res. Bull. 2012, 47, 3114-3119. 19. Cornish, B. J., Lawton, L. A., Robertson P. K., Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-LR using titanium dioxide, Appl. Catal. B Environ. 2000, 25, 59-67. 20. Nguyen, A. T., Juang, R-S., Photocatalytic degradation of p-chlorophenol by hybrid H2O2 and TiO2 in aqueous suspensions under UV irradiation, J. Environ. Manage. 2015, 147, 27-277. 21. Jiang, W. H., Wang, X., Chang, Y. C., Yu, S. K., Ma, C. Y., Ye, K. Q., Cheng, C. H., Du, G. T., Single crystal growth of copper phthalocyanine using exaltation-evaporation growth method, J. Cryst. Growth. 2006, 290, 544-547. 22. Siviero, F., Coppede, N., Taurino, A. M., Toccoli, T., Siciliano, P., Iannott, S., Hybrid titania–zincphthalocyanine nanostruc-tured multilayers with novel gas sensing properties, Sens. Actuators B 2008, 130, 405–410. 23. Singh, V. P., Parsarathy, B., Singh, R. S., Aguilera, A., Anthony, J., Payne, M., Characterization of high-photovoltage CuPc-based solar cell structures, Sol. Energy Mater. Sol. Cells 2006, 90, 798-812. 24. Wu, S-H., Wu, J-L., Jia, S-Y., Chang, Q-W., Ren, H-T., Liu, Y., Cobalt(II) phthalocyanine-sensitized hollow Fe3O4@SiO2@ TiO2 hierarchical nanostructures: Fabrication and enhanced photocatalytic properties, Appl. Surf. Sci. 2013, 287, 389-396. 25. Qian, W., Wei, W., Jianfeng, C., Guangwen, C., Kai, M., Haikui, Z., Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions, Colloids Surf. A: Physicochem. Eng. Asp. 2012, 409, 118-125. 26. Ranjit, K.T., Willner, I., Bossmann, S., Braun, A., Iron(III) Phthalocyanine-modified titanium dioxide: A novel photocata-lyst for the enhanced photodegradation of organic pollutants, J. Phys. Chem. B 1998, 102, 9397-9403. 27. Guo, Z., Chen, B., Mu, J., Zhang, M., Zhang, P., Zhang, Z., Wang, J., Zhang, X., Sun, Y., Shao, C., Liu, Y., Iron phthalocyanine/TiO2 nanofiber heterostructures with enhanced visible photocatalytic activity assisted with H2O2, J. Hazard. Mater. 2012, 219–220, 156–163. 28. Perrin, D. D., Armarego, W. L. F., Purification of Laboratory Chemicals, Pergamon, Oxford, 1989. 29. Bayrak, R., Albay, C., Koc, M., Altın, İ., Değirmencioğlu, İ., Sökmen, M., Preparation of phthalocyanine/TiO2 nanocomposi-tes for photocatalytic removal of toxic Cr(VI) ions, Proc. Saf. Environ. 2016, 102, 294-302. 30. Koç, M., Albay, C., Altın, İ., Bayrak, R., Gökce, H., Değirmencioğlu, İ., Sökmen, M., Use of azomethine-bridged phenolic metallo-phthalocyanines for sensitization of TiO2, Desalin. Water Treat. 2017, 59, 191-201. 31. Ha, S. T., Ong, L. K., Sivasothy, Y., Win, Y. F., Synthesis of new schiff bases with dialkylamino end groups and effect of terminal branching on mesomorphic properties, World Appl. Sci. J. 2010, 8(5), 641-646. 32. Dede, G., Bayrak, R., Er, M., Özkaya, A. R., Değirmencioğlu, İ., DBU-catalyzed condensation of metal free and metallophtha-locyanines containing thiazole and azine moieties: Synthesis, characterization and electrochemical properties, J. Organomet. Chem. 2013, 740, 70-77. 33. Sun, Q., Xu, Y., Sensitization of TiO2 with Aluminum Phthalocyanine: Factors influencing the efficiency for chloro-phenol degradation in water under visible light, J. Phys. Chem. C 2009, 113, 12387-12394. 34. www.sigmaaldrich.com/catalog /product/aldrich/379549 (accessed, February 9, 2018). 35. Barakat, M. A., Tseng, J. M., Huang, C. P., Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds, Appl. Catal. B: Environ. 2005, 59, 99-104. 36. Vargas, E., Vargas, R., Nunez, O., A TiO2 surface modified with copper(II) phthalocyanine-tetrasulfonic acid tetrasodium salt as a catalyst during photoinduced dichlorvos mineralization by visible solar light, Appl. Catal. B: Environ. 2014, 156-157, 8-14. 37. Abeish, A. M., Ang, M., Znad, H., Enhanced solar-photocatalytic degradation of combined chlorophenols using ferric ions and hydrogen peroxide, Ind. Eng. Chem. Res. 2014, 53, 10583-10589. 38. Cheng, Y., Sun, H., Jin, W., Xu, N., Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation, Chem. Eng. J. 2007, 128, 127-133.
There are 1 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Article
Authors

İlknur Altın

Melek Koç This is me

Cansu Albay This is me

Rıza Bayrak

Münevver Sökmen

İsmail Değirmencioğlu

Publication Date December 31, 2017
Published in Issue Year 2017 Issue: 1

Cite

APA Altın, İ., Koç, M., Albay, C., Bayrak, R., et al. (2017). Novel Fe(II) phthalocyanine complexes for TiO2 sensitization. Karadeniz Chemical Science and Technology(1), 9-15.
AMA Altın İ, Koç M, Albay C, Bayrak R, Sökmen M, Değirmencioğlu İ. Novel Fe(II) phthalocyanine complexes for TiO2 sensitization. Karadeniz Chem. Sci. Tech. December 2017;(1):9-15.
Chicago Altın, İlknur, Melek Koç, Cansu Albay, Rıza Bayrak, Münevver Sökmen, and İsmail Değirmencioğlu. “Novel Fe(II) Phthalocyanine Complexes for TiO2 Sensitization”. Karadeniz Chemical Science and Technology, no. 1 (December 2017): 9-15.
EndNote Altın İ, Koç M, Albay C, Bayrak R, Sökmen M, Değirmencioğlu İ (December 1, 2017) Novel Fe(II) phthalocyanine complexes for TiO2 sensitization. Karadeniz Chemical Science and Technology 1 9–15.
IEEE İ. Altın, M. Koç, C. Albay, R. Bayrak, M. Sökmen, and İ. Değirmencioğlu, “Novel Fe(II) phthalocyanine complexes for TiO2 sensitization”, Karadeniz Chem. Sci. Tech., no. 1, pp. 9–15, December 2017.
ISNAD Altın, İlknur et al. “Novel Fe(II) Phthalocyanine Complexes for TiO2 Sensitization”. Karadeniz Chemical Science and Technology 1 (December 2017), 9-15.
JAMA Altın İ, Koç M, Albay C, Bayrak R, Sökmen M, Değirmencioğlu İ. Novel Fe(II) phthalocyanine complexes for TiO2 sensitization. Karadeniz Chem. Sci. Tech. 2017;:9–15.
MLA Altın, İlknur et al. “Novel Fe(II) Phthalocyanine Complexes for TiO2 Sensitization”. Karadeniz Chemical Science and Technology, no. 1, 2017, pp. 9-15.
Vancouver Altın İ, Koç M, Albay C, Bayrak R, Sökmen M, Değirmencioğlu İ. Novel Fe(II) phthalocyanine complexes for TiO2 sensitization. Karadeniz Chem. Sci. Tech. 2017(1):9-15.