Review
BibTex RIS Cite

İş Makinelerinin Hafriyat Bileşenlerinde Aşınma ve Korozyon Direncini Artırmaya Yönelik Yüzey Mühendisliği Teknolojileri: Kapsamlı Bir İnceleme

Year 2025, Volume: 2 Issue: 2, 63 - 87

Abstract

Toprak işleme ve madencilik makineleri, açıkta kalan her yüzeyi sürekli aşındıran ortamlarda çalışır. İnce mineral parçacıkları, ıslak veya kimyasal olarak aktif topraklar, ani darbeler ve sürekli titreşim, genellikle öngörülemeyen kombinasyonlar halinde birlikte etki eder. Bu gerilimler nadiren tek başına etki ettiğinden, tek bir işlem her bileşeni koruyamaz. Uygulamada, mühendisler farklı yüzey mühendisliği yöntemlerini birleştirir ve her biri belirli bir zayıflığı giderir. Bu inceleme, sahada yaygın olarak uygulanan yedi yaklaşımı ele almaktadır: sert kaplama, termal püskürtme kaplamaları, nitrürleme, borlama, kromlama, PVD ve CVD ile üretilen buhar biriktirmeli sistemler. Her yöntem yüzeyi kendine özgü bir şekilde şekillendirir. Örneğin, difüzyon işlemleri yüzeyin altındaki kimyayı değiştirir ve parçaların yorulmaya veya kayma temasına karşı koymasına yardımcı olur. Borlama, sertliği alışılmadık derecede yüksek seviyelere çıkarabilir ve bu, mineral açısından zengin ortamlarda değerlidir. Darbe ve aşınma birlikte meydana geldiğinde PTA sert kaplama hala tercih edilen seçenektir. Termal püskürtme kaplamaları, partikül erozyonuna iyi dayanan yoğun seramik katmanlar ekler. PVD ve CVD kaplamalar, daha ince olmalarına rağmen düşük sürtünme sağlar ve yüksek sıcaklıklarda veya kimyasal olarak agresif koşullarda stabiliteyi korur. Kaplama mimarisi zemine, yükleme düzenine ve parçanın işlevine uygun olduğunda dayanıklılık artar.

References

  • [1] I. Hutchings, Applications and case studies. 2017. doi: 10.1016/B978-0-08-100910-9.00009-X.
  • [2] J. F. Flores, A. Neville, N. Kapur, and A. Gnanavelu, “An experimental study of the erosion–corrosion behavior of plasma transferred arc MMCs,” Wear, vol. 267, 2009, doi: 10.1016/j.wear.2008.11.015.
  • [3] L. Pawlowski, “Corrigendum to ‘Finely grained nanometric and submicrometric coatings by thermal spraying: A review’ [Surface and Coatings Technology 202 (2008) 4318–4322],” Surf Coat Technol, vol. 203, no. 3–4, p. 397, Nov. 2008, doi: 10.1016/J.SURFCOAT.2008.09.004.
  • [4] S. Ilo, Ch. Just, and F. Xhiku, “Optimisation of multiple quality characteristics of hardfacing using grey-based Taguchi method,” Mater Des, vol. 33, 2012, doi: 10.1016/j.matdes.2011.04.050.
  • [5] J.-C. Shin, J.-M. Doh, J.-K. Yoon, D.-Y. Lee, and J.-S. Kim, “Effect of molybdenum on the microstructure and wear resistance of cobalt-base Stellite hardfacing alloys,” Surf Coat Technol, vol. 166, 2003, doi: 10.1016/S0257-8972(02)00853-8.
  • [6] M. Kulka, D. Panfil, J. Michalski, and P. Wach, “The effects of laser surface modification on the microstructure and properties of gas-nitrided 42CrMo4 steel,” Opt Laser Technol, vol. 82, 2016, doi: 10.1016/j.optlastec.2016.02.021.
  • [7] C. Meric, S. Sahin, B. Backir, and N. S. Koksal, “Investigation of the boronizing effect on the abrasive wear behavior in cast irons,” Mater Des, vol. 27, 2006, doi: 10.1016/j.matdes.2005.01.018.
  • [8] A. Sobhani and M. Salavati-Niasari, “Synthesis and characterization of CdSe nanostructures by using a new selenium source: Effect of hydrothermal preparation conditions,” Mater Res Bull, vol. 53, pp. 7–14, May 2014, doi: 10.1016/J.MATERRESBULL.2014.01.028.
  • [9] Y. Chen et al., “Investigation on the robust boronizing strategy for the surface strengthening of CoCrNi medium-entropy alloy,” Surf Coat Technol, vol. 447, 2022, doi: 10.1016/j.surfcoat.2022.128844.
  • [10] S. Singh, G. Singh, K. Sandhu, C. Prakash, and R. Singh, “Investigating the optimum parametric setting for MRR of expandable polystyrene machined with 3D printed end mill tool,” Mater Today Proc, vol. 33, 2020, doi: 10.1016/j.matpr.2020.03.465.
  • [11] J. Vicenzi, D. L. Villanova, M. D. Lima, A. S. Takimi, C. M. Marques, and C. P. Bergmann, “HVOF-coatings against high temperature erosion (∼300 °C) by coal fly ash in thermoelectric power plant,” Mater Des, vol. 27, 2006, doi: 10.1016/j.matdes.2004.10.008.
  • [12] T. S. Sidhu, R. D. Agrawal, and S. Prakash, “Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—a review,” Surf Coat Technol, vol. 198, 2005, doi: 10.1016/j.surfcoat.2004.10.056.
  • [13] O. Maranho, D. Rodrigues, M. Boccalini, and A. Sinatora, “Influence of parameters of the HVOF thermal spray process on the properties of multicomponent white cast iron coatings,” Surf Coat Technol, vol. 202, 2008, doi: 10.1016/j.surfcoat.2007.12.026.
  • [14] C. D. Prasad, S. Joladarashi, M. R. Ramesh, M. S. Srinath, and B. H. Channabasappa, “Effect of microwave heating on microstructure and elevated temperature adhesive wear behavior of HVOF deposited CoMoCrSi-Cr 3 C 2 coating,” Surf Coat Technol, vol. 374, 2019, doi: 10.1016/j.surfcoat.2019.05.056.
  • [15] A. Nugroho, S. Daud, P. Puranto, R. Mamat, Z. Bo, and M. F. Ghazali, “Next-generation thermal spray coatings for military use: Innovations, challenges, and applications (bibliometric review 2015–2025),” Digital Chemical Engineering, vol. 17, 2025, doi: 10.1016/j.dche.2025.100259.
  • [16] T. Peat, A. Galloway, A. Toumpis, D. Harvey, and W.-H. Yang, “Performance evaluation of HVOF deposited cermet coatings under dry and slurry erosion,” Surf Coat Technol, vol. 300, 2016, doi: 10.1016/j.surfcoat.2016.05.039.
  • [17] M. R. Ramesh, S. Prakash, S. K. Nath, P. K. Sapra, and B. Venkataraman, “Solid particle erosion of HVOF sprayed WC-Co/NiCrFeSiB coatings,” Wear, vol. 269, 2010, doi: 10.1016/j.wear.2010.03.019.
  • [18] N. Vashishtha, S. G. Sapate, P. Bagde, and A. B. Rathod, “Effect of heat treatment on friction and abrasive wear behaviour of WC-12Co and Cr 3 C 2 -25NiCr coatings,” Tribol Int, vol. 118, 2018, doi: 10.1016/j.triboint.2017.10.017.
  • [19] T. Peat, A. M. Galloway, A. I. Toumpis, and D. Harvey, “Evaluation of the synergistic erosion-corrosion behaviour of HVOF thermal spray coatings,” Surf Coat Technol, vol. 299, 2016, doi: 10.1016/j.surfcoat.2016.04.072.
  • [20] K. S. Tan, J. A. Wharton, and R. J. K. Wood, “Solid particle erosion–corrosion behaviour of a novel HVOF nickel aluminium bronze coating for marine applications—correlation between mass loss and electrochemical measurements,” Wear, vol. 258, 2005, doi: 10.1016/j.wear.2004.02.019.
  • [21] H. Y. Al-Fadhli, J. Stokes, M. S. J. Hashmi, and B. S. Yilbas, “The erosion–corrosion behaviour of high velocity oxy-fuel (HVOF) thermally sprayed inconel-625 coatings on different metallic surfaces,” Surf Coat Technol, vol. 200, 2006, doi: 10.1016/j.surfcoat.2005.08.143.
  • [22] P. H. Suegama, C. S. Fugivara, A. V. Benedetti, J. Fernández, J. Delgado, and J. M. Guilemany, “Electrochemical behavior of thermally sprayed stainless steel coatings in 3.4% NaCl solution,” Corros Sci, vol. 47, 2005, doi: 10.1016/j.corsci.2004.07.003.
  • [23] H. Ruiz-Luna, A. G. Mora-García, D. F. Millán-Rodríguez, C. Félix-Martínez, D. G. Espinosa-Arbelaez, and J. Muñoz-Saldaña, “An insight into the properties of ethanol-fueled HVOF-sprayed Stellite-type coatings,” Surf Coat Technol, vol. 511, 2025, doi: 10.1016/j.surfcoat.2025.132257.
  • [24] J. A. Picas, S. Menargues, E. Martin, and M. T. Baile, “Cobalt free metallic binders for HVOF thermal sprayed wear resistant coatings,” Surf Coat Technol, vol. 456, 2023, doi: 10.1016/j.surfcoat.2023.129243.
  • [25] R. Mishra, T. Kisore Mishra, and M. Krishna, “An experimental study on abrasive wear behaviour of WC-12Co and WC-20Cr₂C 3 -7Ni coatings,” Mater Today Proc, vol. 56, 2022, doi: 10.1016/j.matpr.2022.02.167.
  • [26] A. Röttger, S. L. Weber, and W. Theisen, “Influence of post-treatment on the microstructural evolution of thermally sprayed Fe-base MMC containing TiC and Cr 3 C 2,” Surf Coat Technol, vol. 209, 2012, doi: 10.1016/j.surfcoat.2012.08.003.
  • [27] N. Behera, M. Srihari, Y. K. Sharma, and M. R. Ramesh, “An investigation on tribological performance in HVOF sprayed of Amdry1371 and Amdry 1371/WC-Co coatings on Ti6Al4V,” Surf Coat Technol, vol. 494, 2024, doi: 10.1016/j.surfcoat.2024.131334.
  • [28] M. Wang and L. L. Shaw, “Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina–titania coatings,” Surf Coat Technol, vol. 202, 2007, doi: 10.1016/j.surfcoat.2007.04.057.
  • [29] M. Viana et al., “Workplace exposure and release of ultrafine particles during atmospheric plasma spraying in the ceramic industry,” Science of The Total Environment, vol. 599, 2017, doi: 10.1016/j.scitotenv.2017.05.132.
  • [30] M. A. Sainz, M. I. Osendi, and P. Miranzo, “Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying,” Surf Coat Technol, vol. 202, 2008, doi: 10.1016/j.surfcoat.2007.07.074.
  • [31] A. K. Grain, N. K. Singh, S. S. Maurya, K. K. Pandey, S. K. Ghosh, and A. K. Keshri, “Enhancing high-temperature wear resistance of plasma-sprayed NiCrBSi coatings with nanodiamond reinforcement,” Diam Relat Mater, vol. 150, 2024, doi: 10.1016/j.diamond.2024.111748.
  • [32] X. Lu, C. Zhang, A. Agarwal, and Y. Chen, “Homogeneous dispersion of boron nitride nanoplatelets in powder feedstocks for plasma spraying,” Advanced Powder Technology, vol. 32, 2021, doi: 10.1016/j.apt.2021.09.017.
  • [33] A. Pragatheeswaran et al., “Plasma spray-deposited lanthanum phosphate coatings for protection against molten uranium corrosion,” Surf Coat Technol, vol. 265, 2015, doi: 10.1016/j.surfcoat.2015.01.040.
  • [34] S. Jakovljević, W. Hendrix, D. Havermans, and J. Meneve, “Characterisation of ZrO 2 layers deposited on Al 2 O 3 coating,” Wear, vol. 266, 2009, doi: 10.1016/j.wear.2008.04.041.
  • [35] H. Çetinel, H. Öztürk, E. Çelik, and B. Karlık, “Artificial neural network-based prediction technique for wear loss quantities in Mo coatings,” Wear, vol. 261, 2006, doi: 10.1016/j.wear.2006.01.040.
  • [36] L. Marcinauskas, J. S. Mathew, M. Milieška, M. Aikas, and M. Kalin, “Influence of graphite content on the tribological properties of plasma sprayed alumina-graphite coatings,” Surfaces and Interfaces, vol. 38, 2023, doi: 10.1016/j.surfin.2023.102763.
  • [37] Q. Li et al., “Improvement in the mechanical properties of plasma spray ceramic-Cu/TI 3 AlC 2 gradient coatings by heat treatment,” Ceram Int, vol. 45, 2019, doi: 10.1016/j.ceramint.2019.07.266.
  • [38] M. Lv, G. Zhang, and H. Geng, “Effect of spraying power on the microstructure and thermoelectric performance of plasma sprayed higher manganese silicides films,” Surf Coat Technol, vol. 363, 2019, doi: 10.1016/j.surfcoat.2019.02.015.
  • [39] A. Vencl et al., “Evaluation of adhesion/cohesion bond strength of the thick plasma spray coatings by scratch testing on coatings cross-sections,” Tribol Int, vol. 44, 2011, doi: 10.1016/j.triboint.2011.04.002.
  • [40] L. Chen et al., “Wear resistance study of NiCrBSi plasma-sprayed coating with diamond as functional phase,” Mater Des, vol. 257, 2025, doi: 10.1016/j.matdes.2025.114440.
  • [41] A. García, M. Cadenas, M. R. Fernández, and A. Noriega, “Tribological effects of the geometrical properties of plasma spray coatings partially melted by laser,” Wear, vol. 305, 2013, doi: 10.1016/j.wear.2013.05.004.
  • [42] X. Nie et al., “Effect of hydrogen flow rate on microstructure and tribological properties of atmospheric plasma sprayed BN-Mo-NiCr coatings,” Surf Coat Technol, vol. 512, 2025, doi: 10.1016/j.surfcoat.2025.132384.
  • [43] N. Tan et al., “Deposition mechanism of plasma sprayed droplets on textured surfaces with different diameter-to-distance ratios,” Mater Des, vol. 133, 2017, doi: 10.1016/j.matdes.2017.07.043.
  • [44] M. Honglin et al., “Effects of modification of hBN by nickel plating on coating structure and properties of supersonic plasma spraying NiCr-Cr 3 C 2 -hBN@Ni coatings,” Ceram Int, vol. 49, 2023, doi: 10.1016/j.ceramint.2023.07.135.
  • [45] S. Zhu et al., “Preparation of high-temperature antioxidant coatings on tantalum-based surfaces by atmospheric plasma spraying and their microstructural characterization,” Surf Coat Technol, vol. 501, 2025, doi: 10.1016/j.surfcoat.2025.131928.
  • [46] J. Liu, R. Bolot, S. Costil, and M.-P. Planche, “Transient thermal and mechanical analysis of NiCrBSi coatings manufactured by hybrid plasma spray process with in-situ laser remelting,” Surf Coat Technol, vol. 292, 2016, doi: 10.1016/j.surfcoat.2016.03.031.
  • [47] A. S. C. M. D’Oliveira, J. J. Tigrinho, and R. R. Takeyama, “Coatings enrichment by carbide dissolution,” Surf Coat Technol, vol. 202, 2008, doi: 10.1016/j.surfcoat.2008.03.034.
  • [48] S. A. A. Dilawary, A. Motallebzadeh, A. H. Paksoy, M. Afzal, E. Atar, and H. Cimenoglu, “Influence of laser surface melting on the characteristics of Stellite 12 plasma transferred arc hardfacing deposit,” Surf Coat Technol, vol. 317, 2017, doi: 10.1016/j.surfcoat.2017.03.051.
  • [49] A. Motallebzadeh, E. Atar, and H. Cimenoglu, “Sliding wear characteristics of molybdenum containing Stellite 12 coating at elevated temperatures,” Tribol Int, vol. 91, 2015, doi: 10.1016/j.triboint.2015.06.006.
  • [50] Q. Y. Hou, “Influence of molybdenum on the microstructure and properties of a FeCrBSi alloy coating deposited by plasma transferred arc hardfacing,” Surf Coat Technol, vol. 225, 2013, doi: 10.1016/j.surfcoat.2013.02.043.
  • [51] A. S. C. M. D’Oliveira, R. S. C. Paredes, and R. L. C. Santos, “Pulsed current plasma transferred arc hardfacing,” J Mater Process Technol, vol. 171, 2006, doi: 10.1016/j.jmatprotec.2005.02.269.
  • [52] H. Rojacz, A. Zikin, C. Mozelt, H. Winkelmann, and E. Badisch, “High temperature corrosion studies of cermet particle reinforced NiCrBSi hardfacings,” Surf Coat Technol, vol. 222, 2013, doi: 10.1016/j.surfcoat.2013.02.009.
  • [53] E. Sigolo, J. Soyama, G. Zepon, C. S. Kiminami, W. J. Botta, and C. Bolfarini, “Wear resistant coatings of boron-modified stainless steels deposited by Plasma Transferred Arc,” Surf Coat Technol, vol. 302, 2016, doi: 10.1016/j.surfcoat.2016.06.023.
  • [54] J. L. Acevedo-Dávila, R. Muñoz-Arroyo, H. M. Hdz-García, A. I. Martinez-Enriquez, M. Alvarez-Vera, and F. A. Hernández-García, “Cobalt-based PTA coatings, effects of addition of TiC nanoparticles,” Vacuum, vol. 143, 2017, doi: 10.1016/j.vacuum.2017.05.033.
  • [55] N. Çömez, M. Yurddaskal, C. Gül, H. Durmuş, and S. Albayrak, “Fe-Cr-C-V hardfacing coatings with molybdenum addition: Wear, corrosion, and cavitation performances,” Surf Coat Technol, vol. 482, 2024, doi: 10.1016/j.surfcoat.2024.130715.
  • [56] M. Alvarez-Vera et al., “Wear resistance of TiN or AlTiN nanostructured Ni-based hardfacing by PTA under pin on disc test,” Wear, vol. 426, 2019, doi: 10.1016/j.wear.2018.12.096.
  • [57] Y. eun Jeong, G. Y. Shin, and D. S. Shim, “Effect of P21 buffer layer on interfacial bonding characteristics of high carbon tool steel hardfaced through directed energy deposition,” J Manuf Process, vol. 68, 2021, doi: 10.1016/j.jmapro.2021.07.002.
  • [58] V. Ravi Raj, B. VijayaramnathB, N. Ramanan, and A. Ponshanmugakumar, “Mechanical and corrosion resistant properties of nitrided low carbon steel,” Mater Today Proc, vol. 46, 2021, doi: 10.1016/j.matpr.2020.11.460.
  • [59] S. Rathor, A. Kumar, R. Kant, and E. Singla, “Investigations on laser nitriding with trochoidal irradiation for enhancing corrosion resistance of laser-wire directed energy deposited low carbon steel,” Surfaces and Interfaces, vol. 72, 2025, doi: 10.1016/j.surfin.2025.106989.
  • [60] B. Kucharska, J. Michalski, and G. Wójcik, “Mechanical and microstructural aspects of C20-steel blades subjected to gas nitriding,” Archives of Civil and Mechanical Engineering, vol. 19, 2019, doi: 10.1016/j.acme.2018.09.006.
  • [61] A. Alsaran, H. Altun, M. Karakan, and A. Çelik, “Effect of post-oxidizing on tribological and corrosion behaviour of plasma nitrided AISI 5140 steel,” Surf Coat Technol, vol. 176, 2004, doi: 10.1016/S0257-8972(03)00770-9.
  • [62] Y. Z. Shen, K. H. Oh, and D. N. Lee, “Nitriding of steel in potassium nitrate salt bath,” Scr Mater, vol. 53, 2005, doi: 10.1016/j.scriptamat.2005.08.032.
  • [63] K. Farokhzadeh and A. Edrisy, 2.4 Surface Hardening by Gas Nitriding. 2016. doi: 10.1016/B978-0-12-803581-8.09163-3.
  • [64] W.-S. Shin, C. Park, and Y.-J. Kim, “Growth behaviors of aluminum nitride in steel during laser nitriding: Insights into interfacial energy and segregation throughout its growth habit,” Mater Charact, vol. 183, 2022, doi: 10.1016/j.matchar.2021.111625.
  • [65] A. Chala et al., “Effect of duplex treatments by plasma nitriding and triode sputtering on corrosion behaviour of 32CDV13 low alloy steel,” Surf Coat Technol, vol. 200, 2006, doi: 10.1016/j.surfcoat.2005.11.036.
  • [66] A. Alsaran, “Determination of tribological properties of ion-nitrided AISI 5140 steel,” Mater Charact, vol. 49, 2002, doi: 10.1016/S1044-5803(03)00008-1.
  • [67] H. P. Bloch, Protecting machinery parts against the loss of surface. 2019. doi: 10.1016/B978-0-12-818729-6.00010-1.
  • [68] D. R. Srinivasan, D. Nirmala Devi, U. Rani Bhagavathula, B. Kiran Kumar, Y. M. Sonkhaskar, and P. Sivasubramanian, “Nitriding treatment for improvement of eroded surfaces by electroerosion,” Mater Today Proc, 2023, doi: 10.1016/j.matpr.2023.07.197.
  • [69] P. Schaaf, “Laser nitriding of metals,” Prog Mater Sci, vol. 47, 2002, doi: 10.1016/S0079-6425(00)00003-7.
  • [70] K. Liu et al., “Nitride layers on uranium surfaces,” Prog Surf Sci, vol. 93, 2018, doi: 10.1016/j.progsurf.2018.08.002.
  • [71] H.-J. Spies and A. Dalke, Case Structure and Properties of Nitrided Steels. 2014. doi: 10.1016/B978-0-08-096532-1.01216-4.
  • [72] J. Klemm-Toole, A. J. Clarke, and K. O. Findley, “Improving the fatigue performance of vanadium and silicon alloyed medium carbon steels after nitriding through increased core fatigue strength and compressive residual stress,” Materials Science and Engineering: A, vol. 810, 2021, doi: 10.1016/j.msea.2021.141008.
  • [73] K. T. Cho, K. Song, S. H. Oh, Y.-K. Lee, and W. B. Lee, “Surface hardening of shot peened H13 steel by enhanced nitrogen diffusion,” Surf Coat Technol, vol. 232, 2013, doi: 10.1016/j.surfcoat.2013.06.123.
  • [74] J.-Q. Sun, Z.-F. Yan, H.-Z. Cui, J. Li, J.-S. Wang, and Y.-B. Chen, “Surface catalysis gaseous nitriding of alloy cast iron at lower temperature,” Catal Today, vol. 158, 2010, doi: 10.1016/j.cattod.2010.03.028.
  • [75] I. Ozbek and C. Bindal, “Kinetics of borided AISI M2 high speed steel,” Vacuum, vol. 86, 2011, doi: 10.1016/j.vacuum.2011.08.004.
  • [76] S. Y. Lee, G. S. Kim, and B.-S. Kim, “Mechanical properties of duplex layer formed on AISI 403 stainless steel by chromizing and boronizing treatment,” Surf Coat Technol, vol. 177, 2004, doi: 10.1016/j.surfcoat.2003.07.009.
  • [77] Y. Kayali, İ. Güneş, and S. Ulu, “Diffusion kinetics of borided AISI 52100 and AISI 440C steels,” Vacuum, vol. 86, 2012, doi: 10.1016/j.vacuum.2012.03.030.
  • [78] D. Wang, H.-Y. Zhao, A. Wu, L. Wang, X. Zhang, and W. Huang, “The effect of Na 2 S 2 O 3 on RE-boronizing behavior of 45 carbon steel,” Mater Des, vol. 67, 2015, doi: 10.1016/j.matdes.2014.11.009.
  • [79] S. Sen, U. Sen, and C. Bindal, “The growth kinetics of borides formed on boronized AISI 4140 steel,” Vacuum, vol. 77, 2005, doi: 10.1016/j.vacuum.2004.09.005.
  • [80] T. Balusamy, T. S. N. Sankara Narayanan, K. Ravichandran, I. S. Park, and M. H. Lee, “Effect of surface mechanical attrition treatment (SMAT) on pack boronizing of AISI 304 stainless steel,” Surf Coat Technol, vol. 232, 2013, doi: 10.1016/j.surfcoat.2013.04.053.
  • [81] O. Allaoui, N. Bouaouadja, and G. Saindernan, “Characterization of boronized layers on a XC38 steel,” Surf Coat Technol, vol. 201, 2006, doi: 10.1016/j.surfcoat.2006.07.238.
  • [82] U. Öztürk, H. Hazar, and F. Yılmaz, “Comparative performance and emission characteristics of peanut seed oil methyl ester (PSME) on a thermal isolated diesel engine,” Energy, vol. 167, 2019, doi: 10.1016/j.energy.2018.10.198.
  • [83] M. Kulka, N. Makuch, and M. Popławski, “Two-stage gas boriding of Nisil in N 2 –H 2 –BCl 3 atmosphere,” Surf Coat Technol, vol. 244, 2014, doi: 10.1016/j.surfcoat.2014.01.057.
  • [84] M. Tabur, M. Izciler, F. Gul, and I. Karacan, “Abrasive wear behavior of boronized AISI 8620 steel,” Wear, vol. 266, 2009, doi: 10.1016/j.wear.2009.03.006.
  • [85] E. Medvedovski, G. Ravier, and G. L. Mendoza, “Evaluation of boronized steel for corrosion resistance enhancement of tubing in soultz-sous-forets and rittershoffen geothermal plants,” Geothermics, vol. 104, 2022, doi: 10.1016/j.geothermics.2022.102460.
  • [86] Yu. Chivel and O. Kuznechik, “Atmospheric pressure pulsed-periodic source of high energy plasma flows and its applications,” Surf Coat Technol, vol. 205, 2011, doi: 10.1016/j.surfcoat.2011.03.138.
  • [87] S. P. Neog, S. Das Bakshi, and S. Das, “Microstructural evolution of novel continuously cooled carbide free bainitic steel during sliding wear,” Wear, vol. 456, 2020, doi: 10.1016/j.wear.2020.203359.
  • [88] C. J. Coetzee, A. H. Basson, and P. A. Vermeer, “Discrete and continuum modelling of excavator bucket filling,” J Terramech, vol. 44, 2007, doi: 10.1016/j.jterra.2006.07.001.
  • [89] J. L. McCrea and G. Palumbo, Nanocoatings for commercial and industrial applications. 2011. doi: 10.1533/9780857091123.4.663.
  • [90] Z. Zhong and S. J. Clouser, “Nickel–tungsten alloy brush plating for engineering applications,” Surf Coat Technol, vol. 240, 2014, doi: 10.1016/j.surfcoat.2013.12.059.
  • [91] A. S. El-Amoush, A. Abu-Rob, H. Edwan, K. Atrash, and M. Igab, “Tribological properties of hard chromium coated 1010 mild steel under different sliding distances,” Solid State Sci, vol. 13, 2011, doi: 10.1016/j.solidstatesciences.2010.12.020.
  • [92] R. Singh, Stresses, shrinkage, and distortion in weldments. 2020. doi: 10.1016/B978-0-12-821348-3.00018-5.
  • [93] C. V. Nielsen, Tool design *. 2021. doi: 10.1016/B978-0-323-85255-5.00009-1.
  • [94] F. Bénière, Diffusion in Solids. 2001. doi: 10.1016/B0-08-043152-6/00390-9.
  • [95] X. Lin et al., “Characterization of pulsed plasma nitriding and physical vapor deposition duplex-treated CrAlN coatings,” Thin Solid Films, vol. 825, 2025, doi: 10.1016/j.tsf.2025.140726.
  • [96] O. Pshyk, B. Wicher, J. Palisaitis, L. Hultman, and G. Greczynski, “Advanced film/substrate interface engineering for adhesion improvement employing time- and energy-controlled metal ion irradiation,” Appl Surf Sci, vol. 669, 2024, doi: 10.1016/j.apsusc.2024.160554.
  • [97] Y. Zhang, L. Pei, H. Cai, Y. Xue, and Y. Yu, “Effect of Cr doping on mechanical and tribological properties of Re-Cr-N coatings,” Int J Refract Metals Hard Mater, vol. 134, 2026, doi: 10.1016/j.ijrmhm.2025.107470.
  • [98] G. G. Fuentes et al., “Investigation on the sliding of aluminium thin foils against PVD-coated carbide forming-tools during micro-forming,” J Mater Process Technol, vol. 177, 2006, doi: 10.1016/j.jmatprotec.2006.03.235.
  • [99] Y.-S. Yang, T.-P. Cho, and C.-F. Huang, “Annealing effect on the hydrophobic property of Cr 2 N coatings,” Surf Coat Technol, vol. 231, 2013, doi: 10.1016/j.surfcoat.2012.09.016.
  • [100] G. L. Doll, Rolling bearing mechanics. 2023. doi: 10.1016/B978-0-12-822141-9.00010-8.
  • [101] G. Osugi, A. Ito, M. Hotta, and T. Goto, “Microstructure and hardness of SiC–TiC nanocomposite thin films prepared by radiofrequency magnetron sputtering,” Thin Solid Films, vol. 520, 2012, doi: 10.1016/j.tsf.2012.05.021.
  • [102] D. Blanco, J. L. Viesca, M. T. Mallada, B. Ramajo, R. González, and A. H. Battez, “Wettability and corrosion of [NTf 2 ] anion-based ionic liquids on steel and PVD (TiN, CrN, ZrN) coatings,” Surf Coat Technol, vol. 302, 2016, doi: 10.1016/j.surfcoat.2016.05.051.
  • [103] İ. Azgın, H. Arbağ, M. A. Eryılmaz, and Z. E. Çelik, “The effects of local and intraperitoneal zinc treatments on maxillofacial fracture healing in rabbits,” Journal of Cranio-Maxillofacial Surgery, vol. 48, 2020, doi: 10.1016/j.jcms.2020.01.013.
  • [104] K. Weigel et al., “Electron irradiation induced modifications of Ti (1-x) Al x N coatings and related buffer layers on steel substrates,” Vacuum, vol. 185, 2021, doi: 10.1016/j.vacuum.2020.110028.
  • [105] Y. Zhao, Y. Zheng, W. Zhou, and X. Lv, “Characterization of functionally gradient Ti(C, N)-based cermets fabricated by vacuum liquid phase sintering and nitriding treatment during cooling,” Int J Refract Metals Hard Mater, vol. 46, 2014, doi: 10.1016/j.ijrmhm.2014.05.003.
  • [106] A. V. Pshyk, I. Petrov, B. Bakhit, J. Lu, L. Hultman, and G. Greczynski, “Energy-efficient physical vapor deposition of dense and hard Ti-Al-W-N coatings deposited under industrial conditions,” Mater Des, vol. 227, 2023, doi: 10.1016/j.matdes.2023.111753.
  • [107] S. Richter et al., “Reactively grown Al/Si-based top coatings protecting TM-diborides (TM = W, Ti, Hf) against high-temperature oxidation,” Surf Coat Technol, vol. 476, 2024, doi: 10.1016/j.surfcoat.2023.130191.
  • [108] M. Shakeel Ahmad, A. K. Pandey, and N. Abd Rahim, “Advancements in the development of TiO 2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review,” Renewable and Sustainable Energy Reviews, vol. 77, 2017, doi: 10.1016/j.rser.2017.03.129.
  • [109] V. Lakkannavar, K. B. Yogesha, C. D. Prasad, R. K. Phanden, S. G, and S. C. Prasad, “Thermal spray coatings on high-temperature oxidation and corrosion applications – A comprehensive review,” Results in Surfaces and Interfaces, vol. 16, 2024, doi: 10.1016/j.rsurfi.2024.100250.
  • [110] Y. Wen et al., “Surface structural engineering of self-supported HER electrodes: Multiscale micro/nanostructure regulation and their roles in HER process,” Sustainable Materials and Technologies, vol. 45, 2025, doi: 10.1016/j.susmat.2025.e01570.
  • [111] Md. M. Alam, Mohd. Imran, A. Abutaleb, M. E. Khan, and W. Ali, Fabrication approaches of nanocomposites. 2023. doi: 10.1016/B978-0-323-99704-1.00020-5.
  • [112] P. Papavasileiou et al., “An efficient chemistry-enhanced CFD model for the investigation of the rate-limiting mechanisms in industrial Chemical Vapor Deposition reactors,” Chemical Engineering Research and Design, vol. 186, 2022, doi: 10.1016/j.cherd.2022.08.005.
  • [113] Y. Wang et al., “Deformation mechanism of CrN/nitriding coated steel in wear and nano-scratch experiments under heavy loading conditions,” Appl Surf Sci, vol. 447, 2018, doi: 10.1016/j.apsusc.2018.03.213.
  • [114] A. A. D. Sarhan, E. Zalnezhad, and M. Hamdi, “The influence of higher surface hardness on fretting fatigue life of hard anodized aerospace AL7075-T6 alloy,” Materials Science and Engineering: A, vol. 560, 2013, doi: 10.1016/j.msea.2012.09.082.
  • [115] H. Chen, C. Xu, J. Chen, H. Zhao, L. Zhang, and Z. Wang, “Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear,” Wear, vol. 264, 2008, doi: 10.1016/j.wear.2007.01.132.
  • [116] A. H. Choolakkal, P. Niiranen, S. Dorri, J. Birch, and H. Pedersen, “Competitive co-diffusion as a route to enhanced step coverage in chemical vapor deposition,” Nat Commun, vol. 15, 2024, doi: 10.1038/s41467-024-55007-1.
  • [117] Z. Peng, H. Miao, L. Qi, S. Yang, and C. Liu, “Hard and wear-resistant titanium nitride coatings for cemented carbide cutting tools by pulsed high energy density plasma,” Acta Mater, vol. 51, 2003, doi: 10.1016/S1359-6454(03)00119-8.
  • [118] K. Weigel et al., “Effects of electron beam treatment on Ti (1− x ) Al x N coatings on steel,” Vacuum, vol. 107, 2014, doi: 10.1016/j.vacuum.2014.04.023.
  • [119] K. Weigel et al., “Electron irradiation induced modifications of Ti (1-x) Al x N coatings and related buffer layers on steel substrates,” Vacuum, vol. 185, 2021, doi: 10.1016/j.vacuum.2020.110028.

Surface Engineering Technologies for Enhancing Wear and Corrosion Resistance in Earthmoving Components of Heavy Equipment: A Comprehensive Review

Year 2025, Volume: 2 Issue: 2, 63 - 87

Abstract

Earthmoving and mining machines operate in environments that steadily wear down every exposed surface. Fine mineral particles, wet or chemically active soils, sudden impacts and continuous vibration all act together, often in unpredictable combinations. Because these stresses rarely act alone, no single treatment can protect every component. In practice, engineers combine different surface-engineering methods, each addressing a specific weakness. This review considers seven approaches that are commonly applied in the field: hardfacing, thermal spray coatings, nitriding, boronizing, chromizing, and the vapor-deposited systems produced by PVD and CVD. Each method shapes the surface in its own way. Diffusion treatments, for example, change the chemistry beneath the surface and help parts resist fatigue or sliding contact. Boronizing can push hardness to unusually high levels, which is valuable in mineral-rich environments. PTA hardfacing is still the preferred choice when both impact and abrasion happen together. Thermal spray coatings add dense ceramic layers that stand up well to particle erosion. PVD and CVD coatings, although thinner, provide low friction and maintain stability at high temperature or in chemically aggressive conditions. Durability improves when the coating architecture matches the soil, the loading pattern, and the function of the part.

References

  • [1] I. Hutchings, Applications and case studies. 2017. doi: 10.1016/B978-0-08-100910-9.00009-X.
  • [2] J. F. Flores, A. Neville, N. Kapur, and A. Gnanavelu, “An experimental study of the erosion–corrosion behavior of plasma transferred arc MMCs,” Wear, vol. 267, 2009, doi: 10.1016/j.wear.2008.11.015.
  • [3] L. Pawlowski, “Corrigendum to ‘Finely grained nanometric and submicrometric coatings by thermal spraying: A review’ [Surface and Coatings Technology 202 (2008) 4318–4322],” Surf Coat Technol, vol. 203, no. 3–4, p. 397, Nov. 2008, doi: 10.1016/J.SURFCOAT.2008.09.004.
  • [4] S. Ilo, Ch. Just, and F. Xhiku, “Optimisation of multiple quality characteristics of hardfacing using grey-based Taguchi method,” Mater Des, vol. 33, 2012, doi: 10.1016/j.matdes.2011.04.050.
  • [5] J.-C. Shin, J.-M. Doh, J.-K. Yoon, D.-Y. Lee, and J.-S. Kim, “Effect of molybdenum on the microstructure and wear resistance of cobalt-base Stellite hardfacing alloys,” Surf Coat Technol, vol. 166, 2003, doi: 10.1016/S0257-8972(02)00853-8.
  • [6] M. Kulka, D. Panfil, J. Michalski, and P. Wach, “The effects of laser surface modification on the microstructure and properties of gas-nitrided 42CrMo4 steel,” Opt Laser Technol, vol. 82, 2016, doi: 10.1016/j.optlastec.2016.02.021.
  • [7] C. Meric, S. Sahin, B. Backir, and N. S. Koksal, “Investigation of the boronizing effect on the abrasive wear behavior in cast irons,” Mater Des, vol. 27, 2006, doi: 10.1016/j.matdes.2005.01.018.
  • [8] A. Sobhani and M. Salavati-Niasari, “Synthesis and characterization of CdSe nanostructures by using a new selenium source: Effect of hydrothermal preparation conditions,” Mater Res Bull, vol. 53, pp. 7–14, May 2014, doi: 10.1016/J.MATERRESBULL.2014.01.028.
  • [9] Y. Chen et al., “Investigation on the robust boronizing strategy for the surface strengthening of CoCrNi medium-entropy alloy,” Surf Coat Technol, vol. 447, 2022, doi: 10.1016/j.surfcoat.2022.128844.
  • [10] S. Singh, G. Singh, K. Sandhu, C. Prakash, and R. Singh, “Investigating the optimum parametric setting for MRR of expandable polystyrene machined with 3D printed end mill tool,” Mater Today Proc, vol. 33, 2020, doi: 10.1016/j.matpr.2020.03.465.
  • [11] J. Vicenzi, D. L. Villanova, M. D. Lima, A. S. Takimi, C. M. Marques, and C. P. Bergmann, “HVOF-coatings against high temperature erosion (∼300 °C) by coal fly ash in thermoelectric power plant,” Mater Des, vol. 27, 2006, doi: 10.1016/j.matdes.2004.10.008.
  • [12] T. S. Sidhu, R. D. Agrawal, and S. Prakash, “Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—a review,” Surf Coat Technol, vol. 198, 2005, doi: 10.1016/j.surfcoat.2004.10.056.
  • [13] O. Maranho, D. Rodrigues, M. Boccalini, and A. Sinatora, “Influence of parameters of the HVOF thermal spray process on the properties of multicomponent white cast iron coatings,” Surf Coat Technol, vol. 202, 2008, doi: 10.1016/j.surfcoat.2007.12.026.
  • [14] C. D. Prasad, S. Joladarashi, M. R. Ramesh, M. S. Srinath, and B. H. Channabasappa, “Effect of microwave heating on microstructure and elevated temperature adhesive wear behavior of HVOF deposited CoMoCrSi-Cr 3 C 2 coating,” Surf Coat Technol, vol. 374, 2019, doi: 10.1016/j.surfcoat.2019.05.056.
  • [15] A. Nugroho, S. Daud, P. Puranto, R. Mamat, Z. Bo, and M. F. Ghazali, “Next-generation thermal spray coatings for military use: Innovations, challenges, and applications (bibliometric review 2015–2025),” Digital Chemical Engineering, vol. 17, 2025, doi: 10.1016/j.dche.2025.100259.
  • [16] T. Peat, A. Galloway, A. Toumpis, D. Harvey, and W.-H. Yang, “Performance evaluation of HVOF deposited cermet coatings under dry and slurry erosion,” Surf Coat Technol, vol. 300, 2016, doi: 10.1016/j.surfcoat.2016.05.039.
  • [17] M. R. Ramesh, S. Prakash, S. K. Nath, P. K. Sapra, and B. Venkataraman, “Solid particle erosion of HVOF sprayed WC-Co/NiCrFeSiB coatings,” Wear, vol. 269, 2010, doi: 10.1016/j.wear.2010.03.019.
  • [18] N. Vashishtha, S. G. Sapate, P. Bagde, and A. B. Rathod, “Effect of heat treatment on friction and abrasive wear behaviour of WC-12Co and Cr 3 C 2 -25NiCr coatings,” Tribol Int, vol. 118, 2018, doi: 10.1016/j.triboint.2017.10.017.
  • [19] T. Peat, A. M. Galloway, A. I. Toumpis, and D. Harvey, “Evaluation of the synergistic erosion-corrosion behaviour of HVOF thermal spray coatings,” Surf Coat Technol, vol. 299, 2016, doi: 10.1016/j.surfcoat.2016.04.072.
  • [20] K. S. Tan, J. A. Wharton, and R. J. K. Wood, “Solid particle erosion–corrosion behaviour of a novel HVOF nickel aluminium bronze coating for marine applications—correlation between mass loss and electrochemical measurements,” Wear, vol. 258, 2005, doi: 10.1016/j.wear.2004.02.019.
  • [21] H. Y. Al-Fadhli, J. Stokes, M. S. J. Hashmi, and B. S. Yilbas, “The erosion–corrosion behaviour of high velocity oxy-fuel (HVOF) thermally sprayed inconel-625 coatings on different metallic surfaces,” Surf Coat Technol, vol. 200, 2006, doi: 10.1016/j.surfcoat.2005.08.143.
  • [22] P. H. Suegama, C. S. Fugivara, A. V. Benedetti, J. Fernández, J. Delgado, and J. M. Guilemany, “Electrochemical behavior of thermally sprayed stainless steel coatings in 3.4% NaCl solution,” Corros Sci, vol. 47, 2005, doi: 10.1016/j.corsci.2004.07.003.
  • [23] H. Ruiz-Luna, A. G. Mora-García, D. F. Millán-Rodríguez, C. Félix-Martínez, D. G. Espinosa-Arbelaez, and J. Muñoz-Saldaña, “An insight into the properties of ethanol-fueled HVOF-sprayed Stellite-type coatings,” Surf Coat Technol, vol. 511, 2025, doi: 10.1016/j.surfcoat.2025.132257.
  • [24] J. A. Picas, S. Menargues, E. Martin, and M. T. Baile, “Cobalt free metallic binders for HVOF thermal sprayed wear resistant coatings,” Surf Coat Technol, vol. 456, 2023, doi: 10.1016/j.surfcoat.2023.129243.
  • [25] R. Mishra, T. Kisore Mishra, and M. Krishna, “An experimental study on abrasive wear behaviour of WC-12Co and WC-20Cr₂C 3 -7Ni coatings,” Mater Today Proc, vol. 56, 2022, doi: 10.1016/j.matpr.2022.02.167.
  • [26] A. Röttger, S. L. Weber, and W. Theisen, “Influence of post-treatment on the microstructural evolution of thermally sprayed Fe-base MMC containing TiC and Cr 3 C 2,” Surf Coat Technol, vol. 209, 2012, doi: 10.1016/j.surfcoat.2012.08.003.
  • [27] N. Behera, M. Srihari, Y. K. Sharma, and M. R. Ramesh, “An investigation on tribological performance in HVOF sprayed of Amdry1371 and Amdry 1371/WC-Co coatings on Ti6Al4V,” Surf Coat Technol, vol. 494, 2024, doi: 10.1016/j.surfcoat.2024.131334.
  • [28] M. Wang and L. L. Shaw, “Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina–titania coatings,” Surf Coat Technol, vol. 202, 2007, doi: 10.1016/j.surfcoat.2007.04.057.
  • [29] M. Viana et al., “Workplace exposure and release of ultrafine particles during atmospheric plasma spraying in the ceramic industry,” Science of The Total Environment, vol. 599, 2017, doi: 10.1016/j.scitotenv.2017.05.132.
  • [30] M. A. Sainz, M. I. Osendi, and P. Miranzo, “Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying,” Surf Coat Technol, vol. 202, 2008, doi: 10.1016/j.surfcoat.2007.07.074.
  • [31] A. K. Grain, N. K. Singh, S. S. Maurya, K. K. Pandey, S. K. Ghosh, and A. K. Keshri, “Enhancing high-temperature wear resistance of plasma-sprayed NiCrBSi coatings with nanodiamond reinforcement,” Diam Relat Mater, vol. 150, 2024, doi: 10.1016/j.diamond.2024.111748.
  • [32] X. Lu, C. Zhang, A. Agarwal, and Y. Chen, “Homogeneous dispersion of boron nitride nanoplatelets in powder feedstocks for plasma spraying,” Advanced Powder Technology, vol. 32, 2021, doi: 10.1016/j.apt.2021.09.017.
  • [33] A. Pragatheeswaran et al., “Plasma spray-deposited lanthanum phosphate coatings for protection against molten uranium corrosion,” Surf Coat Technol, vol. 265, 2015, doi: 10.1016/j.surfcoat.2015.01.040.
  • [34] S. Jakovljević, W. Hendrix, D. Havermans, and J. Meneve, “Characterisation of ZrO 2 layers deposited on Al 2 O 3 coating,” Wear, vol. 266, 2009, doi: 10.1016/j.wear.2008.04.041.
  • [35] H. Çetinel, H. Öztürk, E. Çelik, and B. Karlık, “Artificial neural network-based prediction technique for wear loss quantities in Mo coatings,” Wear, vol. 261, 2006, doi: 10.1016/j.wear.2006.01.040.
  • [36] L. Marcinauskas, J. S. Mathew, M. Milieška, M. Aikas, and M. Kalin, “Influence of graphite content on the tribological properties of plasma sprayed alumina-graphite coatings,” Surfaces and Interfaces, vol. 38, 2023, doi: 10.1016/j.surfin.2023.102763.
  • [37] Q. Li et al., “Improvement in the mechanical properties of plasma spray ceramic-Cu/TI 3 AlC 2 gradient coatings by heat treatment,” Ceram Int, vol. 45, 2019, doi: 10.1016/j.ceramint.2019.07.266.
  • [38] M. Lv, G. Zhang, and H. Geng, “Effect of spraying power on the microstructure and thermoelectric performance of plasma sprayed higher manganese silicides films,” Surf Coat Technol, vol. 363, 2019, doi: 10.1016/j.surfcoat.2019.02.015.
  • [39] A. Vencl et al., “Evaluation of adhesion/cohesion bond strength of the thick plasma spray coatings by scratch testing on coatings cross-sections,” Tribol Int, vol. 44, 2011, doi: 10.1016/j.triboint.2011.04.002.
  • [40] L. Chen et al., “Wear resistance study of NiCrBSi plasma-sprayed coating with diamond as functional phase,” Mater Des, vol. 257, 2025, doi: 10.1016/j.matdes.2025.114440.
  • [41] A. García, M. Cadenas, M. R. Fernández, and A. Noriega, “Tribological effects of the geometrical properties of plasma spray coatings partially melted by laser,” Wear, vol. 305, 2013, doi: 10.1016/j.wear.2013.05.004.
  • [42] X. Nie et al., “Effect of hydrogen flow rate on microstructure and tribological properties of atmospheric plasma sprayed BN-Mo-NiCr coatings,” Surf Coat Technol, vol. 512, 2025, doi: 10.1016/j.surfcoat.2025.132384.
  • [43] N. Tan et al., “Deposition mechanism of plasma sprayed droplets on textured surfaces with different diameter-to-distance ratios,” Mater Des, vol. 133, 2017, doi: 10.1016/j.matdes.2017.07.043.
  • [44] M. Honglin et al., “Effects of modification of hBN by nickel plating on coating structure and properties of supersonic plasma spraying NiCr-Cr 3 C 2 -hBN@Ni coatings,” Ceram Int, vol. 49, 2023, doi: 10.1016/j.ceramint.2023.07.135.
  • [45] S. Zhu et al., “Preparation of high-temperature antioxidant coatings on tantalum-based surfaces by atmospheric plasma spraying and their microstructural characterization,” Surf Coat Technol, vol. 501, 2025, doi: 10.1016/j.surfcoat.2025.131928.
  • [46] J. Liu, R. Bolot, S. Costil, and M.-P. Planche, “Transient thermal and mechanical analysis of NiCrBSi coatings manufactured by hybrid plasma spray process with in-situ laser remelting,” Surf Coat Technol, vol. 292, 2016, doi: 10.1016/j.surfcoat.2016.03.031.
  • [47] A. S. C. M. D’Oliveira, J. J. Tigrinho, and R. R. Takeyama, “Coatings enrichment by carbide dissolution,” Surf Coat Technol, vol. 202, 2008, doi: 10.1016/j.surfcoat.2008.03.034.
  • [48] S. A. A. Dilawary, A. Motallebzadeh, A. H. Paksoy, M. Afzal, E. Atar, and H. Cimenoglu, “Influence of laser surface melting on the characteristics of Stellite 12 plasma transferred arc hardfacing deposit,” Surf Coat Technol, vol. 317, 2017, doi: 10.1016/j.surfcoat.2017.03.051.
  • [49] A. Motallebzadeh, E. Atar, and H. Cimenoglu, “Sliding wear characteristics of molybdenum containing Stellite 12 coating at elevated temperatures,” Tribol Int, vol. 91, 2015, doi: 10.1016/j.triboint.2015.06.006.
  • [50] Q. Y. Hou, “Influence of molybdenum on the microstructure and properties of a FeCrBSi alloy coating deposited by plasma transferred arc hardfacing,” Surf Coat Technol, vol. 225, 2013, doi: 10.1016/j.surfcoat.2013.02.043.
  • [51] A. S. C. M. D’Oliveira, R. S. C. Paredes, and R. L. C. Santos, “Pulsed current plasma transferred arc hardfacing,” J Mater Process Technol, vol. 171, 2006, doi: 10.1016/j.jmatprotec.2005.02.269.
  • [52] H. Rojacz, A. Zikin, C. Mozelt, H. Winkelmann, and E. Badisch, “High temperature corrosion studies of cermet particle reinforced NiCrBSi hardfacings,” Surf Coat Technol, vol. 222, 2013, doi: 10.1016/j.surfcoat.2013.02.009.
  • [53] E. Sigolo, J. Soyama, G. Zepon, C. S. Kiminami, W. J. Botta, and C. Bolfarini, “Wear resistant coatings of boron-modified stainless steels deposited by Plasma Transferred Arc,” Surf Coat Technol, vol. 302, 2016, doi: 10.1016/j.surfcoat.2016.06.023.
  • [54] J. L. Acevedo-Dávila, R. Muñoz-Arroyo, H. M. Hdz-García, A. I. Martinez-Enriquez, M. Alvarez-Vera, and F. A. Hernández-García, “Cobalt-based PTA coatings, effects of addition of TiC nanoparticles,” Vacuum, vol. 143, 2017, doi: 10.1016/j.vacuum.2017.05.033.
  • [55] N. Çömez, M. Yurddaskal, C. Gül, H. Durmuş, and S. Albayrak, “Fe-Cr-C-V hardfacing coatings with molybdenum addition: Wear, corrosion, and cavitation performances,” Surf Coat Technol, vol. 482, 2024, doi: 10.1016/j.surfcoat.2024.130715.
  • [56] M. Alvarez-Vera et al., “Wear resistance of TiN or AlTiN nanostructured Ni-based hardfacing by PTA under pin on disc test,” Wear, vol. 426, 2019, doi: 10.1016/j.wear.2018.12.096.
  • [57] Y. eun Jeong, G. Y. Shin, and D. S. Shim, “Effect of P21 buffer layer on interfacial bonding characteristics of high carbon tool steel hardfaced through directed energy deposition,” J Manuf Process, vol. 68, 2021, doi: 10.1016/j.jmapro.2021.07.002.
  • [58] V. Ravi Raj, B. VijayaramnathB, N. Ramanan, and A. Ponshanmugakumar, “Mechanical and corrosion resistant properties of nitrided low carbon steel,” Mater Today Proc, vol. 46, 2021, doi: 10.1016/j.matpr.2020.11.460.
  • [59] S. Rathor, A. Kumar, R. Kant, and E. Singla, “Investigations on laser nitriding with trochoidal irradiation for enhancing corrosion resistance of laser-wire directed energy deposited low carbon steel,” Surfaces and Interfaces, vol. 72, 2025, doi: 10.1016/j.surfin.2025.106989.
  • [60] B. Kucharska, J. Michalski, and G. Wójcik, “Mechanical and microstructural aspects of C20-steel blades subjected to gas nitriding,” Archives of Civil and Mechanical Engineering, vol. 19, 2019, doi: 10.1016/j.acme.2018.09.006.
  • [61] A. Alsaran, H. Altun, M. Karakan, and A. Çelik, “Effect of post-oxidizing on tribological and corrosion behaviour of plasma nitrided AISI 5140 steel,” Surf Coat Technol, vol. 176, 2004, doi: 10.1016/S0257-8972(03)00770-9.
  • [62] Y. Z. Shen, K. H. Oh, and D. N. Lee, “Nitriding of steel in potassium nitrate salt bath,” Scr Mater, vol. 53, 2005, doi: 10.1016/j.scriptamat.2005.08.032.
  • [63] K. Farokhzadeh and A. Edrisy, 2.4 Surface Hardening by Gas Nitriding. 2016. doi: 10.1016/B978-0-12-803581-8.09163-3.
  • [64] W.-S. Shin, C. Park, and Y.-J. Kim, “Growth behaviors of aluminum nitride in steel during laser nitriding: Insights into interfacial energy and segregation throughout its growth habit,” Mater Charact, vol. 183, 2022, doi: 10.1016/j.matchar.2021.111625.
  • [65] A. Chala et al., “Effect of duplex treatments by plasma nitriding and triode sputtering on corrosion behaviour of 32CDV13 low alloy steel,” Surf Coat Technol, vol. 200, 2006, doi: 10.1016/j.surfcoat.2005.11.036.
  • [66] A. Alsaran, “Determination of tribological properties of ion-nitrided AISI 5140 steel,” Mater Charact, vol. 49, 2002, doi: 10.1016/S1044-5803(03)00008-1.
  • [67] H. P. Bloch, Protecting machinery parts against the loss of surface. 2019. doi: 10.1016/B978-0-12-818729-6.00010-1.
  • [68] D. R. Srinivasan, D. Nirmala Devi, U. Rani Bhagavathula, B. Kiran Kumar, Y. M. Sonkhaskar, and P. Sivasubramanian, “Nitriding treatment for improvement of eroded surfaces by electroerosion,” Mater Today Proc, 2023, doi: 10.1016/j.matpr.2023.07.197.
  • [69] P. Schaaf, “Laser nitriding of metals,” Prog Mater Sci, vol. 47, 2002, doi: 10.1016/S0079-6425(00)00003-7.
  • [70] K. Liu et al., “Nitride layers on uranium surfaces,” Prog Surf Sci, vol. 93, 2018, doi: 10.1016/j.progsurf.2018.08.002.
  • [71] H.-J. Spies and A. Dalke, Case Structure and Properties of Nitrided Steels. 2014. doi: 10.1016/B978-0-08-096532-1.01216-4.
  • [72] J. Klemm-Toole, A. J. Clarke, and K. O. Findley, “Improving the fatigue performance of vanadium and silicon alloyed medium carbon steels after nitriding through increased core fatigue strength and compressive residual stress,” Materials Science and Engineering: A, vol. 810, 2021, doi: 10.1016/j.msea.2021.141008.
  • [73] K. T. Cho, K. Song, S. H. Oh, Y.-K. Lee, and W. B. Lee, “Surface hardening of shot peened H13 steel by enhanced nitrogen diffusion,” Surf Coat Technol, vol. 232, 2013, doi: 10.1016/j.surfcoat.2013.06.123.
  • [74] J.-Q. Sun, Z.-F. Yan, H.-Z. Cui, J. Li, J.-S. Wang, and Y.-B. Chen, “Surface catalysis gaseous nitriding of alloy cast iron at lower temperature,” Catal Today, vol. 158, 2010, doi: 10.1016/j.cattod.2010.03.028.
  • [75] I. Ozbek and C. Bindal, “Kinetics of borided AISI M2 high speed steel,” Vacuum, vol. 86, 2011, doi: 10.1016/j.vacuum.2011.08.004.
  • [76] S. Y. Lee, G. S. Kim, and B.-S. Kim, “Mechanical properties of duplex layer formed on AISI 403 stainless steel by chromizing and boronizing treatment,” Surf Coat Technol, vol. 177, 2004, doi: 10.1016/j.surfcoat.2003.07.009.
  • [77] Y. Kayali, İ. Güneş, and S. Ulu, “Diffusion kinetics of borided AISI 52100 and AISI 440C steels,” Vacuum, vol. 86, 2012, doi: 10.1016/j.vacuum.2012.03.030.
  • [78] D. Wang, H.-Y. Zhao, A. Wu, L. Wang, X. Zhang, and W. Huang, “The effect of Na 2 S 2 O 3 on RE-boronizing behavior of 45 carbon steel,” Mater Des, vol. 67, 2015, doi: 10.1016/j.matdes.2014.11.009.
  • [79] S. Sen, U. Sen, and C. Bindal, “The growth kinetics of borides formed on boronized AISI 4140 steel,” Vacuum, vol. 77, 2005, doi: 10.1016/j.vacuum.2004.09.005.
  • [80] T. Balusamy, T. S. N. Sankara Narayanan, K. Ravichandran, I. S. Park, and M. H. Lee, “Effect of surface mechanical attrition treatment (SMAT) on pack boronizing of AISI 304 stainless steel,” Surf Coat Technol, vol. 232, 2013, doi: 10.1016/j.surfcoat.2013.04.053.
  • [81] O. Allaoui, N. Bouaouadja, and G. Saindernan, “Characterization of boronized layers on a XC38 steel,” Surf Coat Technol, vol. 201, 2006, doi: 10.1016/j.surfcoat.2006.07.238.
  • [82] U. Öztürk, H. Hazar, and F. Yılmaz, “Comparative performance and emission characteristics of peanut seed oil methyl ester (PSME) on a thermal isolated diesel engine,” Energy, vol. 167, 2019, doi: 10.1016/j.energy.2018.10.198.
  • [83] M. Kulka, N. Makuch, and M. Popławski, “Two-stage gas boriding of Nisil in N 2 –H 2 –BCl 3 atmosphere,” Surf Coat Technol, vol. 244, 2014, doi: 10.1016/j.surfcoat.2014.01.057.
  • [84] M. Tabur, M. Izciler, F. Gul, and I. Karacan, “Abrasive wear behavior of boronized AISI 8620 steel,” Wear, vol. 266, 2009, doi: 10.1016/j.wear.2009.03.006.
  • [85] E. Medvedovski, G. Ravier, and G. L. Mendoza, “Evaluation of boronized steel for corrosion resistance enhancement of tubing in soultz-sous-forets and rittershoffen geothermal plants,” Geothermics, vol. 104, 2022, doi: 10.1016/j.geothermics.2022.102460.
  • [86] Yu. Chivel and O. Kuznechik, “Atmospheric pressure pulsed-periodic source of high energy plasma flows and its applications,” Surf Coat Technol, vol. 205, 2011, doi: 10.1016/j.surfcoat.2011.03.138.
  • [87] S. P. Neog, S. Das Bakshi, and S. Das, “Microstructural evolution of novel continuously cooled carbide free bainitic steel during sliding wear,” Wear, vol. 456, 2020, doi: 10.1016/j.wear.2020.203359.
  • [88] C. J. Coetzee, A. H. Basson, and P. A. Vermeer, “Discrete and continuum modelling of excavator bucket filling,” J Terramech, vol. 44, 2007, doi: 10.1016/j.jterra.2006.07.001.
  • [89] J. L. McCrea and G. Palumbo, Nanocoatings for commercial and industrial applications. 2011. doi: 10.1533/9780857091123.4.663.
  • [90] Z. Zhong and S. J. Clouser, “Nickel–tungsten alloy brush plating for engineering applications,” Surf Coat Technol, vol. 240, 2014, doi: 10.1016/j.surfcoat.2013.12.059.
  • [91] A. S. El-Amoush, A. Abu-Rob, H. Edwan, K. Atrash, and M. Igab, “Tribological properties of hard chromium coated 1010 mild steel under different sliding distances,” Solid State Sci, vol. 13, 2011, doi: 10.1016/j.solidstatesciences.2010.12.020.
  • [92] R. Singh, Stresses, shrinkage, and distortion in weldments. 2020. doi: 10.1016/B978-0-12-821348-3.00018-5.
  • [93] C. V. Nielsen, Tool design *. 2021. doi: 10.1016/B978-0-323-85255-5.00009-1.
  • [94] F. Bénière, Diffusion in Solids. 2001. doi: 10.1016/B0-08-043152-6/00390-9.
  • [95] X. Lin et al., “Characterization of pulsed plasma nitriding and physical vapor deposition duplex-treated CrAlN coatings,” Thin Solid Films, vol. 825, 2025, doi: 10.1016/j.tsf.2025.140726.
  • [96] O. Pshyk, B. Wicher, J. Palisaitis, L. Hultman, and G. Greczynski, “Advanced film/substrate interface engineering for adhesion improvement employing time- and energy-controlled metal ion irradiation,” Appl Surf Sci, vol. 669, 2024, doi: 10.1016/j.apsusc.2024.160554.
  • [97] Y. Zhang, L. Pei, H. Cai, Y. Xue, and Y. Yu, “Effect of Cr doping on mechanical and tribological properties of Re-Cr-N coatings,” Int J Refract Metals Hard Mater, vol. 134, 2026, doi: 10.1016/j.ijrmhm.2025.107470.
  • [98] G. G. Fuentes et al., “Investigation on the sliding of aluminium thin foils against PVD-coated carbide forming-tools during micro-forming,” J Mater Process Technol, vol. 177, 2006, doi: 10.1016/j.jmatprotec.2006.03.235.
  • [99] Y.-S. Yang, T.-P. Cho, and C.-F. Huang, “Annealing effect on the hydrophobic property of Cr 2 N coatings,” Surf Coat Technol, vol. 231, 2013, doi: 10.1016/j.surfcoat.2012.09.016.
  • [100] G. L. Doll, Rolling bearing mechanics. 2023. doi: 10.1016/B978-0-12-822141-9.00010-8.
  • [101] G. Osugi, A. Ito, M. Hotta, and T. Goto, “Microstructure and hardness of SiC–TiC nanocomposite thin films prepared by radiofrequency magnetron sputtering,” Thin Solid Films, vol. 520, 2012, doi: 10.1016/j.tsf.2012.05.021.
  • [102] D. Blanco, J. L. Viesca, M. T. Mallada, B. Ramajo, R. González, and A. H. Battez, “Wettability and corrosion of [NTf 2 ] anion-based ionic liquids on steel and PVD (TiN, CrN, ZrN) coatings,” Surf Coat Technol, vol. 302, 2016, doi: 10.1016/j.surfcoat.2016.05.051.
  • [103] İ. Azgın, H. Arbağ, M. A. Eryılmaz, and Z. E. Çelik, “The effects of local and intraperitoneal zinc treatments on maxillofacial fracture healing in rabbits,” Journal of Cranio-Maxillofacial Surgery, vol. 48, 2020, doi: 10.1016/j.jcms.2020.01.013.
  • [104] K. Weigel et al., “Electron irradiation induced modifications of Ti (1-x) Al x N coatings and related buffer layers on steel substrates,” Vacuum, vol. 185, 2021, doi: 10.1016/j.vacuum.2020.110028.
  • [105] Y. Zhao, Y. Zheng, W. Zhou, and X. Lv, “Characterization of functionally gradient Ti(C, N)-based cermets fabricated by vacuum liquid phase sintering and nitriding treatment during cooling,” Int J Refract Metals Hard Mater, vol. 46, 2014, doi: 10.1016/j.ijrmhm.2014.05.003.
  • [106] A. V. Pshyk, I. Petrov, B. Bakhit, J. Lu, L. Hultman, and G. Greczynski, “Energy-efficient physical vapor deposition of dense and hard Ti-Al-W-N coatings deposited under industrial conditions,” Mater Des, vol. 227, 2023, doi: 10.1016/j.matdes.2023.111753.
  • [107] S. Richter et al., “Reactively grown Al/Si-based top coatings protecting TM-diborides (TM = W, Ti, Hf) against high-temperature oxidation,” Surf Coat Technol, vol. 476, 2024, doi: 10.1016/j.surfcoat.2023.130191.
  • [108] M. Shakeel Ahmad, A. K. Pandey, and N. Abd Rahim, “Advancements in the development of TiO 2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review,” Renewable and Sustainable Energy Reviews, vol. 77, 2017, doi: 10.1016/j.rser.2017.03.129.
  • [109] V. Lakkannavar, K. B. Yogesha, C. D. Prasad, R. K. Phanden, S. G, and S. C. Prasad, “Thermal spray coatings on high-temperature oxidation and corrosion applications – A comprehensive review,” Results in Surfaces and Interfaces, vol. 16, 2024, doi: 10.1016/j.rsurfi.2024.100250.
  • [110] Y. Wen et al., “Surface structural engineering of self-supported HER electrodes: Multiscale micro/nanostructure regulation and their roles in HER process,” Sustainable Materials and Technologies, vol. 45, 2025, doi: 10.1016/j.susmat.2025.e01570.
  • [111] Md. M. Alam, Mohd. Imran, A. Abutaleb, M. E. Khan, and W. Ali, Fabrication approaches of nanocomposites. 2023. doi: 10.1016/B978-0-323-99704-1.00020-5.
  • [112] P. Papavasileiou et al., “An efficient chemistry-enhanced CFD model for the investigation of the rate-limiting mechanisms in industrial Chemical Vapor Deposition reactors,” Chemical Engineering Research and Design, vol. 186, 2022, doi: 10.1016/j.cherd.2022.08.005.
  • [113] Y. Wang et al., “Deformation mechanism of CrN/nitriding coated steel in wear and nano-scratch experiments under heavy loading conditions,” Appl Surf Sci, vol. 447, 2018, doi: 10.1016/j.apsusc.2018.03.213.
  • [114] A. A. D. Sarhan, E. Zalnezhad, and M. Hamdi, “The influence of higher surface hardness on fretting fatigue life of hard anodized aerospace AL7075-T6 alloy,” Materials Science and Engineering: A, vol. 560, 2013, doi: 10.1016/j.msea.2012.09.082.
  • [115] H. Chen, C. Xu, J. Chen, H. Zhao, L. Zhang, and Z. Wang, “Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear,” Wear, vol. 264, 2008, doi: 10.1016/j.wear.2007.01.132.
  • [116] A. H. Choolakkal, P. Niiranen, S. Dorri, J. Birch, and H. Pedersen, “Competitive co-diffusion as a route to enhanced step coverage in chemical vapor deposition,” Nat Commun, vol. 15, 2024, doi: 10.1038/s41467-024-55007-1.
  • [117] Z. Peng, H. Miao, L. Qi, S. Yang, and C. Liu, “Hard and wear-resistant titanium nitride coatings for cemented carbide cutting tools by pulsed high energy density plasma,” Acta Mater, vol. 51, 2003, doi: 10.1016/S1359-6454(03)00119-8.
  • [118] K. Weigel et al., “Effects of electron beam treatment on Ti (1− x ) Al x N coatings on steel,” Vacuum, vol. 107, 2014, doi: 10.1016/j.vacuum.2014.04.023.
  • [119] K. Weigel et al., “Electron irradiation induced modifications of Ti (1-x) Al x N coatings and related buffer layers on steel substrates,” Vacuum, vol. 185, 2021, doi: 10.1016/j.vacuum.2020.110028.
There are 119 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Tribology, Plating Technology
Journal Section Review
Authors

Yasemin Yahşi

Submission Date November 28, 2025
Acceptance Date December 18, 2025
Published in Issue Year 2025 Volume: 2 Issue: 2

Cite

IEEE Y. Yahşi, “Surface Engineering Technologies for Enhancing Wear and Corrosion Resistance in Earthmoving Components of Heavy Equipment: A Comprehensive Review”, Kuzey Ege Teknik Bilimler ve Teknoloji Dergisi, vol. 2, no. 2, pp. 63–87.