Review
BibTex RIS Cite

The Impact of Personalized Medicine in the Treatment of Ventricular Septal Defects to Evaluate the Accuracy of Surgery Using 3D Printed Hearts

Year 2018, Volume: 21 Issue: 2, 174 - 176, 19.08.2018

Abstract

Ventricular
septal defect (VSD) is a well-known anomaly among congenital heart diseases
typically diagnosed in infancy. Defects in the ventricular septum cause an
interventricular shunt. The excess amount of mixed blood passes through the
pulmonary circuit and overfills the lungs, leading to pulmonary hypertension.
Approximately 0.3% of infants are born with congenital heart defects, and
approximately 20%-30% of them are VSD related. Studies show that mutations in
genes, such as NKX2-5 and TBX5, have significant effects on the
etiology of VSD. In this study, we suggest a unique perspective. To cure the
disease and avoid complications, a personalized approach would be more
efficient in surgical operations. Here, we focus on the importance of
three-dimensional printing of the patient’s heart in critical cases. Inspired
from the quote “treat the patient not the disease,” we believe that each defect
emerges with different outcomes. Using the specific three-dimensional (3D)
printed heart model, a thorough preoperative planning of the operation can be
achieved. We believe that 3D printers open to medical use will allow the
widespread use of this method in the future.

References

  • 1. Lee MS, Flammer AJ, Lerman LO, Lerman A. Personalized medicine in cardiovascular diseases. Korean Circ J 2012;42:583-91.
  • 2. US President’s Council of Advisors on Science and Technology (PCAST). Priorities for personalized medicine. Washington DC: Executive Office of the President of United States, 2008.
  • 3. Jørgensen JT. A challenging drug development process in the era of personalized medicine. Drug Discov Today 2011;16:891-7.
  • 4. Zineh I, Pebanco GD, Aquilante CL, Gerhard T, Beitelshees AL, Beasley BN, et al. Discordance between availability of pharmacogenetics studies and pharmacogenetics-based prescribing information for the top 200 drugs. Ann Pharmacother 2006;40:639-44.
  • 5. Cinteză EE, Butera G. Complex ventricular septal defects. Update on percutaneous closure. Rom J Morphol Embryol 2016;57:1195-205.
  • 6. Lillehei CW, Cohen M, Warden HE, Ziegler NR, Varco RL. The results of direct vision closure of ventricular septal defects in eight patients by means of controlled cross circulation. Surg Gynecol Obstet 1955;101:446-66.
  • 7. Visconti KJ, Bichell DP, Jonas RA, Newburger JW, Bellinger DC. Developmental outcome after surgical versus interventional closure of secundum atrial septal defect in children. Circulation 1999;100(Suppl 19):II145-II150.
  • 8. Cima MJ, Sachs E, Cima LG, Yoo J, Khanuja S, Borland SW, et al. Computer derived microstructures by 3D printing: bio-and structural materials. Solid Freeform Fabr Symp Proc: DTIC Document, 1994:181-90.
  • 9. Griffith LG, Wu B, Cima MJ, Powers MJ, Chaignaud B, Vacanti JP. In vitro organogenesis of liver tissuea. Ann N Y Acad Sci 1997;831:382-97.
  • 10. Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ. Solid free-form fabrication of drug delivery devices. J Control Release 1996;40:77-87.
  • 11. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng 2015;9:4.
  • 12. Kim GB, Lee S, Kim H, Yang DH, Kim YH, Kyung YS, et al. Three-Dimensional Printing: Basic principles and applications in medicine and radiology. Korean J Radiol 2016;17:182-97.
  • 13. Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput Graphics 1987;21:163-9.
  • 14. Tiede U, Höehne KH, Bomans M, Pommert A, Riemer M, Wiebecke G. Investigation of medical 3D-rendering algorithms. Comput Graphics Appl 1990;10:41-53.
  • 15. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006;31:1116-28.
  • 16. Shattuck DW, Leahy RM. BrainSuite: an automated cortical surface identification tool. Med Image Anal 2002;6:129-42.
  • 17. Schroeder WJ, Zarge JA, Lorensen WE. Decimation of triangle meshes. SIGGRAPH Comput Graphics 1992;26:65-70.
  • 18. Field DA. Laplacian smoothing and Delaunay triangulations. Commun Appl Numer Methods 1988;4:709-12.
  • 19. Hinton E, Campbell JS. Local and global smoothing of discontinuous finite element functions using a least squares method. Int J Numer Method Eng 1974;8:461-80.

Kişiselleştirilmiş Tıbbın 3 Boyutlu Yazıcı ile Basılmış Kalp Yoluyla Ventriküler Septal Defekt Tedavisinde Uygun Cerrahi Değerlendirmenin Yapılmasında Önemi

Year 2018, Volume: 21 Issue: 2, 174 - 176, 19.08.2018

Abstract

Ventriküler
septal defekt (VSD) çoğunlukla bebeklikte tanı konan doğumsal kalp anomalileri
arasında en iyi bilinenlerden biridir. Ventriküler açıklık üzerinde yer alan
kusurlar, interventriküler şanta neden olur. 
Aşırı miktarda karışık kan pulmoner devreden geçerek akciğerleri aşırı
doldurur ve pulmoner hipertansiyona yol açar. 
Bebeklerin yaklaşık %0.3’ü konjenital kalp rahatsızlıkları ile doğar.
Bunun yaklaşık %20-30’u sebebi VSD bağlantılıdır. Çalışmalar NKX2-5 ve TBX5
gibi genlerdeki mutasyonların VSD etyolojisi üzerinde önemli etkileri olduğunu
göstermektedir. Biz bu çalışmada farklı bir perspektif önermekteyiz. Hastalığı
tedavi etmek ve komplikasyonları önlemek için kişiselleştirilmiş bir yaklaşım
cerrahi operasyonlarda daha etkin olacaktır. Bu nedenle, bu yazıda, kritik
olgularda hastanın kalbinin üç boyutlu baskısının önemine odaklanılacaktır.
Hastalığı değil hastayı tedavi mantığı ile baktığımızda herbir kusurun farklı
sonuçlar ortaya çıkardığını söyleyebiliriz. Böyle özel hastalar için 3 boyutlu basılı
kalp modeli ile ameliyat öncesinde kapsamlı bir ameliyat planlaması
yapılabilir. 3 boyutlu yazıcıların tıbbi kullanıma açıldığına, bu yöntemin
gelecekte yaygın olarak kullanılabileceğine inanıyoruz.

References

  • 1. Lee MS, Flammer AJ, Lerman LO, Lerman A. Personalized medicine in cardiovascular diseases. Korean Circ J 2012;42:583-91.
  • 2. US President’s Council of Advisors on Science and Technology (PCAST). Priorities for personalized medicine. Washington DC: Executive Office of the President of United States, 2008.
  • 3. Jørgensen JT. A challenging drug development process in the era of personalized medicine. Drug Discov Today 2011;16:891-7.
  • 4. Zineh I, Pebanco GD, Aquilante CL, Gerhard T, Beitelshees AL, Beasley BN, et al. Discordance between availability of pharmacogenetics studies and pharmacogenetics-based prescribing information for the top 200 drugs. Ann Pharmacother 2006;40:639-44.
  • 5. Cinteză EE, Butera G. Complex ventricular septal defects. Update on percutaneous closure. Rom J Morphol Embryol 2016;57:1195-205.
  • 6. Lillehei CW, Cohen M, Warden HE, Ziegler NR, Varco RL. The results of direct vision closure of ventricular septal defects in eight patients by means of controlled cross circulation. Surg Gynecol Obstet 1955;101:446-66.
  • 7. Visconti KJ, Bichell DP, Jonas RA, Newburger JW, Bellinger DC. Developmental outcome after surgical versus interventional closure of secundum atrial septal defect in children. Circulation 1999;100(Suppl 19):II145-II150.
  • 8. Cima MJ, Sachs E, Cima LG, Yoo J, Khanuja S, Borland SW, et al. Computer derived microstructures by 3D printing: bio-and structural materials. Solid Freeform Fabr Symp Proc: DTIC Document, 1994:181-90.
  • 9. Griffith LG, Wu B, Cima MJ, Powers MJ, Chaignaud B, Vacanti JP. In vitro organogenesis of liver tissuea. Ann N Y Acad Sci 1997;831:382-97.
  • 10. Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ. Solid free-form fabrication of drug delivery devices. J Control Release 1996;40:77-87.
  • 11. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng 2015;9:4.
  • 12. Kim GB, Lee S, Kim H, Yang DH, Kim YH, Kyung YS, et al. Three-Dimensional Printing: Basic principles and applications in medicine and radiology. Korean J Radiol 2016;17:182-97.
  • 13. Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput Graphics 1987;21:163-9.
  • 14. Tiede U, Höehne KH, Bomans M, Pommert A, Riemer M, Wiebecke G. Investigation of medical 3D-rendering algorithms. Comput Graphics Appl 1990;10:41-53.
  • 15. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006;31:1116-28.
  • 16. Shattuck DW, Leahy RM. BrainSuite: an automated cortical surface identification tool. Med Image Anal 2002;6:129-42.
  • 17. Schroeder WJ, Zarge JA, Lorensen WE. Decimation of triangle meshes. SIGGRAPH Comput Graphics 1992;26:65-70.
  • 18. Field DA. Laplacian smoothing and Delaunay triangulations. Commun Appl Numer Methods 1988;4:709-12.
  • 19. Hinton E, Campbell JS. Local and global smoothing of discontinuous finite element functions using a least squares method. Int J Numer Method Eng 1974;8:461-80.
There are 19 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Reviews
Authors

Ceyda Hayretdağ Örs This is me

Ender Coşkunpınar

Mehmet Umut Evci This is me

Zabihullah Erkin This is me

Hakan Ceyran This is me

Ali Can Hatemi This is me

Publication Date August 19, 2018
Published in Issue Year 2018 Volume: 21 Issue: 2

Cite

Vancouver Hayretdağ Örs C, Coşkunpınar E, Evci MU, Erkin Z, Ceyran H, Hatemi AC. The Impact of Personalized Medicine in the Treatment of Ventricular Septal Defects to Evaluate the Accuracy of Surgery Using 3D Printed Hearts. Koşuyolu Heart Journal. 2018;21(2):174-6.