Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Mechanical Properties of TiN-coated Ti6Al4V Alloy for Biomedical Applications

Yıl 2019, , 91 - 108, 06.11.2019
https://doi.org/10.17134/khosbd.642142

Öz

In
this study, the effect of the most commonly used TiN coating and heat treatment
applications on the mechanical properties of Ti6Al4V alloy was investigated. As
stated in the literature section, constant parameters which have positive
effects on the properties of Ti-6Al-4V alloy with heat treatment were
preferred. Heat treatment was applied on Ti-6Al-4V alloy and TiN coating was
done using PVD. Three-point bending tests were performed on Ti-6Al-4V/ TiN and
heat treated samples. The heat treatment was carried out in an argon protective
atmosphere at a temperature of 735 ° C for 1 hour and then the samples were allowed
to cool. The TiN coating was carried out using the technique of splashing from
physical vapor deposition techniques (PVD), and the average coating thickness
was 2 µm. Elemental analysis was performed using X-ray diffraction analysis. In
experimental studies, it was seen that the elastic modulus (E) of Ti-6Al-4V
alloy was not changed by the applied processes (105-120 GPa). The TiN coating
applied after the heat treatment maximized the bending strength, while the
yield stress was almost identical between TiN-AlAl-4V alloy that is TiN coated
after going through heat treatment and TiN-AlAl-4V alloy that is only TiN
coated. As a result of the heat treatment applied to the Ti-6Al-4V alloy, the
load capacity was increased. When TiN coating is applied alone, the decrease in
the load capacity can be explained by the fact that TiN is brittle. In both
heat treated and TiN coated samples, load capacity was not changed compared to just
TiN coated samples. Before and after the three-point bending test, SEM and
Optical microscope examinations were performed for evaluating surface
morphology. The benefits of surface coating to biofilm formation and
tribological properties are known but its effects on mechanical properties are
unknown. In this study, the effects of TiN coating and heat treatment
application on mechanical properties were determined.

Kaynakça

  • Makaleler
  • Bischoff U., Freeman M., Smith D., Tuke M., Gregson P. (1994). Wear induced by motion between bone and titanium or cobalt-chrome alloys. J Bone Jt. Surg. Br., 76,713–716. Bolognini, S., Mari, D., Viatte, T. and Benoit, W. (2001). Fracture toughness of coated TiCN-WC-Co cermets with graded composition. Int. J. Refractory Metals and Hard Materials, 19, 285-92. Brien W.W., Salvati E.A., Betts F., Bullough P., Wright T., Rimnac C., Buly R., Garvin K. (1992). Metal levels in cemented total hip arthroplasty: a comparison of well-fixed and loose implants. Clin. Orthop. Relat. Res., 276, 66–74. Chandler H., (1996). Heat Treater’s Guide Practices and Procedures For Nonferrous Alloys, ASM International, ISBN: 087170-565-6. Cui W., Qin W., Duan J., Wang H. (2017). A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility. Materials Science and Engineering, C71, 520-528. Danışman Ş., Odabas D., Teber M. (2018). The Effect of Coatings on the Wear Behavior of Ti6Al4V Alloy Used in Biomedical Applications. Materials Science and Engineering, 295, 012044, doi:10.1088/1757-899X/295/1/012044. Danışman Ş., Savaş S. (2006). The Effect of Ceramic Coatings on Corrosion and Wear Behaviour. Journal of the Balkan Tribological Association, 12, (1)104-113. Danışman Ş., Savaş S., Işık G., Bendeş O., Özbekler A. (2008) Wear Resistant Hard Ceramic Coatings Used in Biomedical Applications, 4 th National Biomechanics Congress, Erzurum. Gök K., İnal S.. Urtekin L., Gök A.. (2019). Biomechanical performance using finite element analysis of different screw materials in the parallel screw fixation of Salter–Harris Type 4 fractures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(3). Güven Ş. Y., (2014). Biyouyumluluk ve Biyomalzemelerin Seçimi. Süleyman Demirel Üniversitesi Mühendislik Bilimleri ve Tasarım Dergisi, 2(3), 303-311. Hirakawa K., Stulberg B.N., Wilde A.H., Bauer T.W., Secic M., (1998). Results of 2-stage reimplantation for infected total knee arthroplasty. J. Arthroplast., 13,22–28. Jacobs J.J., Gilbert J.L., Urban R.M. (1998). Current concepts review-corrosion of metal orthopaedic implants, J. Bone Jt. Surg., 80, 268–282. Jang H.W., Lee H.J., Ha J.Y., Kim K.H., Kwon T.Y. (2011).Surface characteristics and osteoblast cell response on TiN-and TiAlN-coated Ti implant. Biomed.Eng. Lett., 1,99–107. Leyens, C. and Peters, M. (2003). Titanium and Titanium Alloys: Fundamentals and Applications. Wiley-VCH, Weinhem. Lombardi Jr A. V.., Mallory T. H., Vaughn B. K., and Drouillard P. (1989). Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. Journal of Bone and Joint Surgery, 71,(9) 1337–1342. Maurer A. M., S. Brown A., Payer J. H., Merritt K., and Kawalec J. S. (1993). Reduction of fretting corrosion of Ti-6Al-4V by various surface treatments. Journal of Orthopaedic Research, 11(6) 865–873. McKellop H., Sarmiento A., Schwin C.P., Ebramzadeh E. (1990). In vivo wear of titanium-alloy hip prostheses. J. Bone Jt. Surg. Am., 72, 512. Mezger P. R. and Creugers N. H. J. (1992). Titanium nitride coatings in clinical dentistry. Journal of Dentistry, 20,(6) 342–344. Mori, T., Fukuda, S. and Takemura, Y. (2001). Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering. Surface and Coating Technology, 140, 122-7. Muller, D., Cho, Y.R. and Fromm, E. (1993). Measurement of TiN and Al coatings by fracture mechanics tests. Thin Solid Films, 236, 253-6. Namba R.S., Keyak J.H., Kim A.S., Vu L.P., Skinner H.B. (1998). Cementless implant composition and femoral stress: a finite element analysis. Clin. Orthop. Relat. Res., 347,261-267. Probst J., Gbureck U., Thull R. (2001). Binary Nitride and Oxynitride PVD Coatings on Titanium for biomedical Applications. Surface and Coatings Technology, 148, 226-23. Salvati E.A., Betts, F. Doty S.B. (1993). Particulate metallic debris in cemented total hip arthroplast., Clin. Orthop. Relat. Res., 293, 160–173. Sarrafa M., Zalnezhad E., Bushroa A.R., Hamouda A.M.S., Rafieerad A.R., Nasiri-Tabrizi B. (2015). Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti–6Al–4V. Ceramic International, 41, 7952–7962. Shaldach M., Hubmann M., Hardt R., and Weikl A. (1989). Titanium nitride cardiac pacemaker electrodes. Biomedizinische Technik, 34, 185–190. Sin D.-C., Kei H.-L., and Miao X. (2009). Surface coatings for ventricular assist devices. Expert Review of Medical Devices, 6,(1) 51–60. Urtekin L., (2015). Experimental investigation of process parameters for WEDM of Ti-6Al-4V/TiN composites. Science and Engineering of Composite Materials, 22 (6), 685-692. Vadıraj A., Kamaraj M. (2006). Characterization of Fretting Fatigue Damage of PVD TiN Coated Biomedical Titanium Alloys. Surface and Coatings Technology, 200, 4538-4542. Vadıraj A., Kamaraj M. (2007). Effect of Surface Treatments on Fretting Fatigue Damage of Biomedical Titanium Alloys. Tribology International, 40, 82-88. Wisbey A., Gregson P. J., and Tuke M. (1987). Application of PVD TiN coating to Co-Cr-Mo based surgical implants. Biomaterials, 8,(6) 477–480. Yilbas B.S., Sunar M., Qasem Z., Abdul Aleem B.J. and Zainaulabdeen S. (2005). Study into mechanical properties of TiN coating on Ti-6Al-4V alloy through three-point bending tests. Industrial Lubrication and Tribology, 57 (5), 193-196. Yilbas, B.S. and Hashmi, M.S.J. (2000). Laser treatment of Ti-6Al-4V alloy prior to plasma nitriding. Journal of Materials Processing Technology, 103, 304-9.

Biyomedikal Uygulamalar İçin TiN Kaplı Ti6Al4V Alaşımının Mekanik Özelliklerinin Araştırılması

Yıl 2019, , 91 - 108, 06.11.2019
https://doi.org/10.17134/khosbd.642142

Öz

Bu çalışmada, biyomedikal amaçlı en yaygın kullanılan TiN kaplama ve
ısıl işlem uygulamalarının Ti6Al4V alaşımının mekanik özelliklere etkisi
araştırılmıştır. Literatür kısmında belirtildiği üzere; ısıl işlem ile
Ti-6Al-4V alaşımının özelliklerine olumlu etkisi olan sabit parametreler tercih
edilmiştir. Ti-6Al-4V alaşımına ısıl işlem uygulanmış ve PVD ile TiN kaplama
yapılmıştır. Ti-6Al-4V/TiN ve ısıl işlemli numunelerine üç nokta eğme testleri
gerçekleştirilmiştir. Isıl işlem argon koruyucu atmosferinde 735 0C
sıcaklıkta 1 saat beklenerek ve tabi soğumaya bırakılarak gerçekleştirilmiştir.
TiN kaplama fiziksel buhar çöktürme tekniklerinden (PVD) sıçratma tekniği ile
gerçekleştirilmiş olup kaplama kalınlığı ortalama 2 µm’dur. X-ışınları kırınım
analizi ile elemental analiz yapılmıştır. Deneysel çalışmalarda Ti-6Al-4V
alaşımının elastik modülünün (E) uygulanan işlemlerle değişmediği (105-120 GPa)
görülmüştür. Isıl işlem sonrası uygulanan TiN kaplama eğme mukavemetini
maksimum seviyeye çıkarmakta iken akma gerilmesi ise TiN kaplanmış ve ısıl
işlem sonrası TiN kaplanmış Ti-6Al-4V alaşımı için ise hemen hemen aynı olduğu
belirlenmiştir. Ti-6Al-4V alaşımına uygulanan ısıl işlem sonucu yük kapasitesi
artmıştır. Sadece TiN kaplama yapıldığında ise bu yük kapasitesinin düştüğü TiN
kırılgan olmasıyla açıklanmıştır. Hem ısıl işlem hemde TiN kaplanan numunelerde
sadece TiN kaplanmış numunelere göre yük kapasitesi değişmediği saptanmıştır.
Üç nokta eğme deney öncesi ve sonrası yüzey morfolojisi için SEM ve Optik
mikroskop ile görüntüleme yapılmıştır. Yüzey kaplamsının biyo-filim oluşumuna
ve tribolojik özelliklere faydaları bilinmekte olup, mekanik özelliklere olan
etkisi tam bilinmemektedir. Bu çalışma ile TiN kaplamanın ve ısıl işlem
uygulamasının mekanik özelliklere olan ilgisi belirlenmiştir.

Kaynakça

  • Makaleler
  • Bischoff U., Freeman M., Smith D., Tuke M., Gregson P. (1994). Wear induced by motion between bone and titanium or cobalt-chrome alloys. J Bone Jt. Surg. Br., 76,713–716. Bolognini, S., Mari, D., Viatte, T. and Benoit, W. (2001). Fracture toughness of coated TiCN-WC-Co cermets with graded composition. Int. J. Refractory Metals and Hard Materials, 19, 285-92. Brien W.W., Salvati E.A., Betts F., Bullough P., Wright T., Rimnac C., Buly R., Garvin K. (1992). Metal levels in cemented total hip arthroplasty: a comparison of well-fixed and loose implants. Clin. Orthop. Relat. Res., 276, 66–74. Chandler H., (1996). Heat Treater’s Guide Practices and Procedures For Nonferrous Alloys, ASM International, ISBN: 087170-565-6. Cui W., Qin W., Duan J., Wang H. (2017). A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility. Materials Science and Engineering, C71, 520-528. Danışman Ş., Odabas D., Teber M. (2018). The Effect of Coatings on the Wear Behavior of Ti6Al4V Alloy Used in Biomedical Applications. Materials Science and Engineering, 295, 012044, doi:10.1088/1757-899X/295/1/012044. Danışman Ş., Savaş S. (2006). The Effect of Ceramic Coatings on Corrosion and Wear Behaviour. Journal of the Balkan Tribological Association, 12, (1)104-113. Danışman Ş., Savaş S., Işık G., Bendeş O., Özbekler A. (2008) Wear Resistant Hard Ceramic Coatings Used in Biomedical Applications, 4 th National Biomechanics Congress, Erzurum. Gök K., İnal S.. Urtekin L., Gök A.. (2019). Biomechanical performance using finite element analysis of different screw materials in the parallel screw fixation of Salter–Harris Type 4 fractures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(3). Güven Ş. Y., (2014). Biyouyumluluk ve Biyomalzemelerin Seçimi. Süleyman Demirel Üniversitesi Mühendislik Bilimleri ve Tasarım Dergisi, 2(3), 303-311. Hirakawa K., Stulberg B.N., Wilde A.H., Bauer T.W., Secic M., (1998). Results of 2-stage reimplantation for infected total knee arthroplasty. J. Arthroplast., 13,22–28. Jacobs J.J., Gilbert J.L., Urban R.M. (1998). Current concepts review-corrosion of metal orthopaedic implants, J. Bone Jt. Surg., 80, 268–282. Jang H.W., Lee H.J., Ha J.Y., Kim K.H., Kwon T.Y. (2011).Surface characteristics and osteoblast cell response on TiN-and TiAlN-coated Ti implant. Biomed.Eng. Lett., 1,99–107. Leyens, C. and Peters, M. (2003). Titanium and Titanium Alloys: Fundamentals and Applications. Wiley-VCH, Weinhem. Lombardi Jr A. V.., Mallory T. H., Vaughn B. K., and Drouillard P. (1989). Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. Journal of Bone and Joint Surgery, 71,(9) 1337–1342. Maurer A. M., S. Brown A., Payer J. H., Merritt K., and Kawalec J. S. (1993). Reduction of fretting corrosion of Ti-6Al-4V by various surface treatments. Journal of Orthopaedic Research, 11(6) 865–873. McKellop H., Sarmiento A., Schwin C.P., Ebramzadeh E. (1990). In vivo wear of titanium-alloy hip prostheses. J. Bone Jt. Surg. Am., 72, 512. Mezger P. R. and Creugers N. H. J. (1992). Titanium nitride coatings in clinical dentistry. Journal of Dentistry, 20,(6) 342–344. Mori, T., Fukuda, S. and Takemura, Y. (2001). Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering. Surface and Coating Technology, 140, 122-7. Muller, D., Cho, Y.R. and Fromm, E. (1993). Measurement of TiN and Al coatings by fracture mechanics tests. Thin Solid Films, 236, 253-6. Namba R.S., Keyak J.H., Kim A.S., Vu L.P., Skinner H.B. (1998). Cementless implant composition and femoral stress: a finite element analysis. Clin. Orthop. Relat. Res., 347,261-267. Probst J., Gbureck U., Thull R. (2001). Binary Nitride and Oxynitride PVD Coatings on Titanium for biomedical Applications. Surface and Coatings Technology, 148, 226-23. Salvati E.A., Betts, F. Doty S.B. (1993). Particulate metallic debris in cemented total hip arthroplast., Clin. Orthop. Relat. Res., 293, 160–173. Sarrafa M., Zalnezhad E., Bushroa A.R., Hamouda A.M.S., Rafieerad A.R., Nasiri-Tabrizi B. (2015). Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti–6Al–4V. Ceramic International, 41, 7952–7962. Shaldach M., Hubmann M., Hardt R., and Weikl A. (1989). Titanium nitride cardiac pacemaker electrodes. Biomedizinische Technik, 34, 185–190. Sin D.-C., Kei H.-L., and Miao X. (2009). Surface coatings for ventricular assist devices. Expert Review of Medical Devices, 6,(1) 51–60. Urtekin L., (2015). Experimental investigation of process parameters for WEDM of Ti-6Al-4V/TiN composites. Science and Engineering of Composite Materials, 22 (6), 685-692. Vadıraj A., Kamaraj M. (2006). Characterization of Fretting Fatigue Damage of PVD TiN Coated Biomedical Titanium Alloys. Surface and Coatings Technology, 200, 4538-4542. Vadıraj A., Kamaraj M. (2007). Effect of Surface Treatments on Fretting Fatigue Damage of Biomedical Titanium Alloys. Tribology International, 40, 82-88. Wisbey A., Gregson P. J., and Tuke M. (1987). Application of PVD TiN coating to Co-Cr-Mo based surgical implants. Biomaterials, 8,(6) 477–480. Yilbas B.S., Sunar M., Qasem Z., Abdul Aleem B.J. and Zainaulabdeen S. (2005). Study into mechanical properties of TiN coating on Ti-6Al-4V alloy through three-point bending tests. Industrial Lubrication and Tribology, 57 (5), 193-196. Yilbas, B.S. and Hashmi, M.S.J. (2000). Laser treatment of Ti-6Al-4V alloy prior to plasma nitriding. Journal of Materials Processing Technology, 103, 304-9.
Toplam 2 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Levent Urtekin

Ömer Keleş

Yayımlanma Tarihi 6 Kasım 2019
Gönderilme Tarihi 8 Şubat 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

IEEE L. Urtekin ve Ö. Keleş, “Biyomedikal Uygulamalar İçin TiN Kaplı Ti6Al4V Alaşımının Mekanik Özelliklerinin Araştırılması”, Savunma Bilimleri Dergisi, c. 18, sy. 36, ss. 91–108, 2019, doi: 10.17134/khosbd.642142.