Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparative Investigation of Comparative Investigation of Triboelectric Energy Harvesting Modes: A Simulation Study Energy Harvesting Modes: A Simulation Study

Yıl 2025, Sayı: ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.17134/khosbd.1559922

Öz

This study presents a comparative analysis focused on simulating the operational modes of a triboelectric nanogenerator (TENG) using simulation-based method. Simulation modeling was performed using a demo version of the Comsol Multiphysics software. The simulations were conducted under both open circuit and short circuit conditions. The study provides the voltages across the surface of the electrodes under open circuit conditions and the transferred electrical charges under short circuit conditions, along with their respective graphs. The study examines the four main operating modes of a TENG—Vertical Contact-Separation Mode, Lateral Sliding Mode, Single-Electrode Mode, and Freestanding Mode—simulated under specific parameter sets. These results hold significant importance in the design stage of a Triboelectric Nanogenerator (TENG), as each working mode necessitates a specific interface circuit to harvest energy efficiently. Therefore, the evaluation of the findings of this study can be instrumental in the design optimization of TENG structures.

Kaynakça

  • [1] Q. He, F. Tapia, A. Reith, Quantifying the influence of nature-based solutions on building cooling and heating energy demand: A climate specific review, Renewable and Sustainable Energy Reviews, Volume 186, 2023, 113660, ISSN 1364-0321,
  • [2] S. Taslim, DM. Parapari, A. Shafaghat ,Urban design guidelines to mitigate urban heat island effects in hot-dry cities. Jurnal Teknologi, Volume 74, Issue 4, 2015.
  • [3] Y.H. Chen, Y.Z. Li, H. Jiang, Z. Huang, Research on household energy demand patterns, data acquisition and influencing factors: A review, Sustainable Cities and Society, Volume 99, 2023, 104916, ISSN 2210-6707
  • [4] M. -H. Chi, IC Technologies and Systems for Green Future, 2022 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 1-5, 2022. doi: 10.1109/CSTIC55103.2022.9856769.
  • [5] A. Torrisi, K. S. Yildirim and D. Brunelli, Low-Power Circuits and Energy-Aware Protocols for Connecting Batteryless Sensors, IEEE Communications Magazine, Volume. 61, No. 1, Pages 82-88, 2023. doi: 10.1109/MCOM.001.2200363.
  • [6] M. Wajahat, AZ. Kouzani, SY. Khoo, M. Map. Comparative study and multi-parameter analysis to optimize device structure of triboelectric nanogenerators, Nanotechnology, Volume 34, No 42, 2023.
  • [7] M. Song, et al., Current amplification through deformable arch-shaped film based direct-current triboelectric nanogenerator for harvesting wind energy, APPl. Energy, Volume 344, Pages 121248, 2023. DOI: 10.1016/j.apenergy.2023.121248.
  • [8] A. E. Özdemir, Triboelectric-Based Wind-Driven Nano-Power Energy Generator, Electric Power Components and Systems, Volume 52, Issue 7, 1191-1199, 2024. DOI: 10.1080/15325008.2024.2317346
  • [9] N.D. Yılmaz, Energy Harvesting with Triboelectric Nanogenerators: Theoretical Roots, Working Principles and Working Modes, Konya Journal of Engineering Sciences, Volume 9, Issue 1, Pages 232 – 249, 2021.
  • [10] S. Pan, Z. ZhangFundamental theories and basic principles of triboelectric effect: A review, Friction, Volume 7, Pages 2–17, 2019. https://doi.org/10.1007/s40544-018-0217-7
  • [11] L. Dhakar, Study of Effect of Topography on Triboelectric Nanogenerator Performance Using Patterned Arrays. In: Triboelectric Devices for Power Generation and Self-Powered Sensing Applications, Springer Theses, Springer, 2017, Singapore. https://doi.org/10.1007/978-981-10-3815-0_3
  • [12] F.-R. Fan, Z. Q. Tian and Z. L. Wang, Flexible triboelectric generator, Nano Energy, Volume 1, No 2, 328–334, 2012. DOI: 10.1016/j.nanoen.2012.01.004.
  • [13] Y. Zhang, Shao, T. Effect of contact deformation on contact electrification: A first-principles calculation. J Phys Appl Phys 46: 235304, 2013.
  • [14] S. Lin, T. Shao, Bipolar charge transfer induced by water: Experimental and first-principles studies. Phys Chem Chem Phys 19: 29418–29423, 2017.
  • [15] X. Xiong, J. Liang and W. Wu, “Principle and recent progress of triboelectric pressure sensors for wearable applications,” Nano Energy, vol. 113, 108542, 2023. DOI: 10.1016/j.nanoen.2023.108542.
  • [16] Q. Zheng, B. Shi, Z. Li and Z. L. Wang, “Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems,” Adv. Sci., vol. 4, no. 7, 1–23, 2017. DOI: 10.1002/advs.201700029.
  • [17] Z. L. Wang, L. Lin, J. Chen, S. Niu and Y. Zi, 2016, Triboelectric nanogenerator: vertical contact-separation mode,” In Triboelectric Nanogenerators. Green Energy and Technology. Cham: Springer. DOI: 10.1007/978-3-319-40039-6_2.
  • [18] Z. L. Wang, L. Lin, J. Chen, S. Niu and Y. Zi, 2016, “Triboelectric nanogenerator: single-electrode mode,” In Triboelectric Nanogenerators. Green Energy and Technology. Cham: Springer. DOI: 10.1007/978-3-319-40039-6_4.
  • [19] Z. L. Wang, L. Lin, J. Chen, S. Niu and Y. Zi, 2016, “Triboelectric nanogenerator: lateral sliding mode,” In Triboelectric Nanogenerators. Green Energy and Technology. Cham: Springer. DOI: 10.1007/978-3-319- 40039-6_3.
  • [20] Z. L. Wang, L. Lin, J. Chen, S. Niu and Y. Zi, 2016, “Triboelectric nanogenerator: freestanding triboelectric-layer mode,” In Triboelectric Nanogenerators. Green Energy and Technology. Cham: Springer. DOI: 10.1007/978-3-319-40039-6_5.
  • [21] M. Davoudi, C.Y. An, DE. Kim, A Review on Triboelectric Nanogenerators, Recent Applications, and Challenges. Int. J. of Precis. Eng. and Manuf.-Green Tech. 2023. https://doi.org/10.1007/s40684-023-00569-6.
  • [22] A.F. Diaz, R.M. Felix-Navarro, A semi-quantitative tribo-electric series for polymeric materials: The infuence of chemical structure and properties. Journal of Electrostatics, 62(4), 277–290,2004. https://doi.org/10.1016/j.elstat.2004.05.005.

Triboelektrik Enerji Hasat Modlarının Karşılaştırmalı İncelenmesi: Bir Simülasyon Çalışması

Yıl 2025, Sayı: ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.17134/khosbd.1559922

Öz

Bu çalışma, simülasyon tabanlı yöntem kullanılarak bir triboelektrik nanojeneratörün (TENG) çalışma modlarının simüle edilmesine odaklanan karşılaştırmalı bir analiz sunmaktadır. Simülasyon modellemesi Comsol Multiphysics yazılımının demo versiyonu kullanılarak yapıldı. Simülasyonlar hem açık devre hem de kısa devre koşullarında gerçekleştirilmiştir. Çalışma, açık devre koşulları altında elektrotların yüzeyindeki voltajları ve kısa devre koşulları altında aktarılan elektrik yüklerini ilgili grafikleriyle birlikte sağlar. Çalışma, belirli parametre setleri altında simüle edilen bir TENG'in dört ana çalışma modunu (Dikey Kontak Ayırma Modu, Yanal Kayma Modu, Tek Elektrot Modu ve Bağımsız Mod) inceliyor. Bu sonuçlar, Triboelektrik Nanojeneratörün (TENG) tasarım aşamasında büyük önem taşıyor çünkü her çalışma modu, enerjiyi verimli bir şekilde toplamak için özel bir arayüz devresi gerektiriyor. Bu nedenle, bu çalışmanın bulgularının değerlendirilmesi TENG yapılarının tasarım optimizasyonunda faydalı olabilir.

Kaynakça

  • [1] Q. He, F. Tapia, A. Reith, Quantifying the influence of nature-based solutions on building cooling and heating energy demand: A climate specific review, Renewable and Sustainable Energy Reviews, Volume 186, 2023, 113660, ISSN 1364-0321,
  • [2] S. Taslim, DM. Parapari, A. Shafaghat ,Urban design guidelines to mitigate urban heat island effects in hot-dry cities. Jurnal Teknologi, Volume 74, Issue 4, 2015.
  • [3] Y.H. Chen, Y.Z. Li, H. Jiang, Z. Huang, Research on household energy demand patterns, data acquisition and influencing factors: A review, Sustainable Cities and Society, Volume 99, 2023, 104916, ISSN 2210-6707
  • [4] M. -H. Chi, IC Technologies and Systems for Green Future, 2022 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 1-5, 2022. doi: 10.1109/CSTIC55103.2022.9856769.
  • [5] A. Torrisi, K. S. Yildirim and D. Brunelli, Low-Power Circuits and Energy-Aware Protocols for Connecting Batteryless Sensors, IEEE Communications Magazine, Volume. 61, No. 1, Pages 82-88, 2023. doi: 10.1109/MCOM.001.2200363.
  • [6] M. Wajahat, AZ. Kouzani, SY. Khoo, M. Map. Comparative study and multi-parameter analysis to optimize device structure of triboelectric nanogenerators, Nanotechnology, Volume 34, No 42, 2023.
  • [7] M. Song, et al., Current amplification through deformable arch-shaped film based direct-current triboelectric nanogenerator for harvesting wind energy, APPl. Energy, Volume 344, Pages 121248, 2023. DOI: 10.1016/j.apenergy.2023.121248.
  • [8] A. E. Özdemir, Triboelectric-Based Wind-Driven Nano-Power Energy Generator, Electric Power Components and Systems, Volume 52, Issue 7, 1191-1199, 2024. DOI: 10.1080/15325008.2024.2317346
  • [9] N.D. Yılmaz, Energy Harvesting with Triboelectric Nanogenerators: Theoretical Roots, Working Principles and Working Modes, Konya Journal of Engineering Sciences, Volume 9, Issue 1, Pages 232 – 249, 2021.
  • [10] S. Pan, Z. ZhangFundamental theories and basic principles of triboelectric effect: A review, Friction, Volume 7, Pages 2–17, 2019. https://doi.org/10.1007/s40544-018-0217-7
  • [11] L. Dhakar, Study of Effect of Topography on Triboelectric Nanogenerator Performance Using Patterned Arrays. In: Triboelectric Devices for Power Generation and Self-Powered Sensing Applications, Springer Theses, Springer, 2017, Singapore. https://doi.org/10.1007/978-981-10-3815-0_3
  • [12] F.-R. Fan, Z. Q. Tian and Z. L. Wang, Flexible triboelectric generator, Nano Energy, Volume 1, No 2, 328–334, 2012. DOI: 10.1016/j.nanoen.2012.01.004.
  • [13] Y. Zhang, Shao, T. Effect of contact deformation on contact electrification: A first-principles calculation. J Phys Appl Phys 46: 235304, 2013.
  • [14] S. Lin, T. Shao, Bipolar charge transfer induced by water: Experimental and first-principles studies. Phys Chem Chem Phys 19: 29418–29423, 2017.
  • [15] X. Xiong, J. Liang and W. Wu, “Principle and recent progress of triboelectric pressure sensors for wearable applications,” Nano Energy, vol. 113, 108542, 2023. DOI: 10.1016/j.nanoen.2023.108542.
  • [16] Q. Zheng, B. Shi, Z. Li and Z. L. Wang, “Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems,” Adv. Sci., vol. 4, no. 7, 1–23, 2017. DOI: 10.1002/advs.201700029.
  • [17] Z. L. Wang, L. Lin, J. Chen, S. Niu and Y. Zi, 2016, Triboelectric nanogenerator: vertical contact-separation mode,” In Triboelectric Nanogenerators. Green Energy and Technology. Cham: Springer. DOI: 10.1007/978-3-319-40039-6_2.
  • [18] Z. L. Wang, L. Lin, J. Chen, S. Niu and Y. Zi, 2016, “Triboelectric nanogenerator: single-electrode mode,” In Triboelectric Nanogenerators. Green Energy and Technology. Cham: Springer. DOI: 10.1007/978-3-319-40039-6_4.
  • [19] Z. L. Wang, L. Lin, J. Chen, S. Niu and Y. Zi, 2016, “Triboelectric nanogenerator: lateral sliding mode,” In Triboelectric Nanogenerators. Green Energy and Technology. Cham: Springer. DOI: 10.1007/978-3-319- 40039-6_3.
  • [20] Z. L. Wang, L. Lin, J. Chen, S. Niu and Y. Zi, 2016, “Triboelectric nanogenerator: freestanding triboelectric-layer mode,” In Triboelectric Nanogenerators. Green Energy and Technology. Cham: Springer. DOI: 10.1007/978-3-319-40039-6_5.
  • [21] M. Davoudi, C.Y. An, DE. Kim, A Review on Triboelectric Nanogenerators, Recent Applications, and Challenges. Int. J. of Precis. Eng. and Manuf.-Green Tech. 2023. https://doi.org/10.1007/s40684-023-00569-6.
  • [22] A.F. Diaz, R.M. Felix-Navarro, A semi-quantitative tribo-electric series for polymeric materials: The infuence of chemical structure and properties. Journal of Electrostatics, 62(4), 277–290,2004. https://doi.org/10.1016/j.elstat.2004.05.005.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektronik Harp
Bölüm Makaleler
Yazarlar

Ali Ekber Özdemir 0000-0002-4186-6244

Sibel Akkaya Oy 0000-0002-1209-920X

Erken Görünüm Tarihi 19 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 2 Ekim 2024
Kabul Tarihi 21 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Sayı: ERKEN GÖRÜNÜM

Kaynak Göster

IEEE A. E. Özdemir ve S. Akkaya Oy, “Comparative Investigation of Comparative Investigation of Triboelectric Energy Harvesting Modes: A Simulation Study Energy Harvesting Modes: A Simulation Study”, Savunma Bilimleri Dergisi, sy. ERKEN GÖRÜNÜM, ss. 1–1, Ocak 2025, doi: 10.17134/khosbd.1559922.