Research Article
BibTex RIS Cite
Year 2019, Volume: 3 Issue: 1, 0 - 0, 15.06.2019

Abstract

References

  • Balan, E. V., Priyan, M., Gokulnath, C., & Devi, G. U. (2015). Fuzzy based intrusion detection systems in MANET. Procedia Computer Science, 50, 109-114.
  • Chen, M.-H., Chang, P.-C., & Wu, J.-L. (2016). A population-based incremental learning approach with artificial immune system for network intrusion detection. Engineering Applications of Artificial Intelligence, 51, 171-181.
  • Chitrakar, R., & Huang, C. (2014). Selection of Candidate Support Vectors in incremental SVM for network intrusion detection. computers & security, 45, 231-241.
  • Chou, J.-S., & Thedja, J. P. P. (2016). Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems. Automation in Construction, 68, 65-80.
  • Chowdhury, A., Kautz, E., Yener, B., & Lewis, D. (2016). Image driven machine learning methods for microstructure recognition. Computational Materials Science, 123, 176-187.
  • Elkan, C. (2000). Results of the KDD'99 classifier learning. ACM SIGKDD Explorations Newsletter, 1(2), 63-64.
  • Esmaeili, M., Arjomandzadeh, A., Shams, R., & Zahedi, M. (2017). An Anti-Spam System using Naive Bayes Method and Feature Selection Methods. International Journal of Computer Applications, 165(4).
  • Guzella, T. S., & Caminhas, W. M. (2009). A review of machine learning approaches to spam filtering. Expert Systems with Applications, 36(7), 10206-10222.
  • Hanguang, L., & Yu, N. (2012). Intrusion detection technology research based on apriori algorithm. Physics Procedia, 24, 1615-1620.
  • Jiang, L., Li, C., Wang, S., & Zhang, L. (2016). Deep feature weighting for naive Bayes and its application to text classification. Engineering Applications of Artificial Intelligence, 52, 26-39.
  • Jones, D. E., Ghandehari, H., & Facelli, J. C. (2016). A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles. Computer Methods and Programs in Biomedicine, 132, 93-103.
  • Kumar, S., Gao, X., Welch, I., & Mansoori, M. (2016). A machine learning based web spam filtering approach. Paper presented at the Advanced Information Networking and Applications (AINA), 2016 IEEE 30th International Conference on.
  • Labs, M. (2017). Threats report. https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-dec-2017.pdf.
  • Li, Y., & Guo, L. (2007). An active learning based TCM-KNN algorithm for supervised network intrusion detection. computers & security, 26(7), 459-467.
  • Ling, J., Jones, R., & Templeton, J. (2016). Machine learning strategies for systems with invariance properties. Journal of Computational Physics, 318, 22-35.
  • Mahoney, M. V., & Chan, P. K. (2003). An analysis of the 1999 DARPA/Lincoln Laboratory evaluation data for network anomaly detection. Paper presented at the International Workshop on Recent Advances in Intrusion Detection.
  • Mitchell, T. M. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45, 37.
  • Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., & Rajarajan, M. (2013). A survey of intrusion detection techniques in cloud. Journal of Network and Computer Applications, 36(1), 42-57.
  • Rajendran, P. K., Muthukumar, B., & Nagarajan, G. (2015). Hybrid intrusion detection system for private cloud: a systematic approach. Procedia Computer Science, 48, 325-329.
  • Ravale, U., Marathe, N., & Padiya, P. (2015). Feature Selection Based Hybrid Anomaly Intrusion Detection System Using K Means and RBF Kernel Function. Procedia Computer Science, 45, 428-435.
  • Sánchez-Oro, J., Duarte, A., & Salcedo-Sanz, S. (2016). Robust total energy demand estimation with a hybrid Variable Neighborhood Search–Extreme Learning Machine algorithm. Energy Conversion and Management, 123, 445-452.
  • Scott, S. L. (2004). A Bayesian paradigm for designing intrusion detection systems. Computational statistics & data analysis, 45(1), 69-83.
  • Simon, P. (2013). Too Big to Ignore: The Business Case for Big Data (Vol. 72): John Wiley & Sons.
  • Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., & Nakao, K. (2011). Statistical analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation. Paper presented at the Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security.
  • Tada, R., Kobayashi, R., Shimada, H., & Takakura, H. Kyoto 2016 Dataset.
  • UCIKDD. (1999). The third international knowledge discovery and data mining tools competition dataset KDD Cup 1999 data.
  • Varma, P. R. K., Kumari, V. V., & Kumar, S. S. (2016). Feature Selection Using Relative Fuzzy Entropy and Ant Colony Optimization Applied to Real-time Intrusion Detection System. Procedia Computer Science, 85, 503-510.

Bilgisayar ağ güvenliğinde naive bayes algoritmasının kullanımı

Year 2019, Volume: 3 Issue: 1, 0 - 0, 15.06.2019

Abstract

Makine öğrenmesi bilgisayar bilimlerinin önemli bir alt dalıdır ve
verilerden öğrenen ve veriler üzerinde tahminler yapan algoritmaların
geliştirilmesini araştırmaktadır. Bu tür algoritmalar, çıktı olarak verilere
dayalı tahminler yapmak için giriş gözlemlerinin örnek bir eğitim kümesinden
bir model oluşturarak çalışırlar. Makine öğrenmesi algoritmalarının kullanıldığı
alanlardan bir tanesi de bilgisayar ağ güvenliğidir. Bu çalışmada, ağ saldırı
tespitinde naive bayes algoritmasının güncel veriler üzerinde kullanımı
incelenmektedir. Deneylerde veri kümesi olarak Kyoto 2016 ve KDD’99 verileri
kullanılmıştır. Kyoto 2016 veri kümesinde 309060 tane bağlantı bulunmaktadır ve her bir
bağlantı 23 parametreden oluşmaktadır. Algoritmanın başarısını test etmek için
10-katmanlı çapraz doğrulama yöntemi kullanılmıştır. KDD’99 veri kümesinde ise 444616
tane bağlantı bulunmaktadır ve her bir bağlantı 41 parametreden oluşmaktadır.
Ayrıca,  KDD’99 veri kümesinde saldırının
tipi de sınıflandırılmaktadır. Deneylerde, algoritmanın sınıflandırma başarı
oranları verilmektedir. Deney sonuçlarına göre, naive
bayes algoritmasının saldırı tespitinde başarılı olduğu görülmektedir.

References

  • Balan, E. V., Priyan, M., Gokulnath, C., & Devi, G. U. (2015). Fuzzy based intrusion detection systems in MANET. Procedia Computer Science, 50, 109-114.
  • Chen, M.-H., Chang, P.-C., & Wu, J.-L. (2016). A population-based incremental learning approach with artificial immune system for network intrusion detection. Engineering Applications of Artificial Intelligence, 51, 171-181.
  • Chitrakar, R., & Huang, C. (2014). Selection of Candidate Support Vectors in incremental SVM for network intrusion detection. computers & security, 45, 231-241.
  • Chou, J.-S., & Thedja, J. P. P. (2016). Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems. Automation in Construction, 68, 65-80.
  • Chowdhury, A., Kautz, E., Yener, B., & Lewis, D. (2016). Image driven machine learning methods for microstructure recognition. Computational Materials Science, 123, 176-187.
  • Elkan, C. (2000). Results of the KDD'99 classifier learning. ACM SIGKDD Explorations Newsletter, 1(2), 63-64.
  • Esmaeili, M., Arjomandzadeh, A., Shams, R., & Zahedi, M. (2017). An Anti-Spam System using Naive Bayes Method and Feature Selection Methods. International Journal of Computer Applications, 165(4).
  • Guzella, T. S., & Caminhas, W. M. (2009). A review of machine learning approaches to spam filtering. Expert Systems with Applications, 36(7), 10206-10222.
  • Hanguang, L., & Yu, N. (2012). Intrusion detection technology research based on apriori algorithm. Physics Procedia, 24, 1615-1620.
  • Jiang, L., Li, C., Wang, S., & Zhang, L. (2016). Deep feature weighting for naive Bayes and its application to text classification. Engineering Applications of Artificial Intelligence, 52, 26-39.
  • Jones, D. E., Ghandehari, H., & Facelli, J. C. (2016). A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles. Computer Methods and Programs in Biomedicine, 132, 93-103.
  • Kumar, S., Gao, X., Welch, I., & Mansoori, M. (2016). A machine learning based web spam filtering approach. Paper presented at the Advanced Information Networking and Applications (AINA), 2016 IEEE 30th International Conference on.
  • Labs, M. (2017). Threats report. https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-dec-2017.pdf.
  • Li, Y., & Guo, L. (2007). An active learning based TCM-KNN algorithm for supervised network intrusion detection. computers & security, 26(7), 459-467.
  • Ling, J., Jones, R., & Templeton, J. (2016). Machine learning strategies for systems with invariance properties. Journal of Computational Physics, 318, 22-35.
  • Mahoney, M. V., & Chan, P. K. (2003). An analysis of the 1999 DARPA/Lincoln Laboratory evaluation data for network anomaly detection. Paper presented at the International Workshop on Recent Advances in Intrusion Detection.
  • Mitchell, T. M. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45, 37.
  • Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., & Rajarajan, M. (2013). A survey of intrusion detection techniques in cloud. Journal of Network and Computer Applications, 36(1), 42-57.
  • Rajendran, P. K., Muthukumar, B., & Nagarajan, G. (2015). Hybrid intrusion detection system for private cloud: a systematic approach. Procedia Computer Science, 48, 325-329.
  • Ravale, U., Marathe, N., & Padiya, P. (2015). Feature Selection Based Hybrid Anomaly Intrusion Detection System Using K Means and RBF Kernel Function. Procedia Computer Science, 45, 428-435.
  • Sánchez-Oro, J., Duarte, A., & Salcedo-Sanz, S. (2016). Robust total energy demand estimation with a hybrid Variable Neighborhood Search–Extreme Learning Machine algorithm. Energy Conversion and Management, 123, 445-452.
  • Scott, S. L. (2004). A Bayesian paradigm for designing intrusion detection systems. Computational statistics & data analysis, 45(1), 69-83.
  • Simon, P. (2013). Too Big to Ignore: The Business Case for Big Data (Vol. 72): John Wiley & Sons.
  • Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., & Nakao, K. (2011). Statistical analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation. Paper presented at the Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security.
  • Tada, R., Kobayashi, R., Shimada, H., & Takakura, H. Kyoto 2016 Dataset.
  • UCIKDD. (1999). The third international knowledge discovery and data mining tools competition dataset KDD Cup 1999 data.
  • Varma, P. R. K., Kumari, V. V., & Kumar, S. S. (2016). Feature Selection Using Relative Fuzzy Entropy and Ant Colony Optimization Applied to Real-time Intrusion Detection System. Procedia Computer Science, 85, 503-510.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Computer Software
Journal Section Genel
Authors

Şaban Gülcü

Publication Date June 15, 2019
Published in Issue Year 2019 Volume: 3 Issue: 1

Cite

APA Gülcü, Ş. (2019). Bilgisayar ağ güvenliğinde naive bayes algoritmasının kullanımı. Kilis 7 Aralık Üniversitesi Fen Ve Mühendislik Dergisi, 3(1).
AMA Gülcü Ş. Bilgisayar ağ güvenliğinde naive bayes algoritmasının kullanımı. KİFMD. June 2019;3(1).
Chicago Gülcü, Şaban. “Bilgisayar Ağ güvenliğinde Naive Bayes algoritmasının kullanımı”. Kilis 7 Aralık Üniversitesi Fen Ve Mühendislik Dergisi 3, no. 1 (June 2019).
EndNote Gülcü Ş (June 1, 2019) Bilgisayar ağ güvenliğinde naive bayes algoritmasının kullanımı. Kilis 7 Aralık Üniversitesi Fen ve Mühendislik Dergisi 3 1
IEEE Ş. Gülcü, “Bilgisayar ağ güvenliğinde naive bayes algoritmasının kullanımı”, KİFMD, vol. 3, no. 1, 2019.
ISNAD Gülcü, Şaban. “Bilgisayar Ağ güvenliğinde Naive Bayes algoritmasının kullanımı”. Kilis 7 Aralık Üniversitesi Fen ve Mühendislik Dergisi 3/1 (June 2019).
JAMA Gülcü Ş. Bilgisayar ağ güvenliğinde naive bayes algoritmasının kullanımı. KİFMD. 2019;3.
MLA Gülcü, Şaban. “Bilgisayar Ağ güvenliğinde Naive Bayes algoritmasının kullanımı”. Kilis 7 Aralık Üniversitesi Fen Ve Mühendislik Dergisi, vol. 3, no. 1, 2019.
Vancouver Gülcü Ş. Bilgisayar ağ güvenliğinde naive bayes algoritmasının kullanımı. KİFMD. 2019;3(1).