Research Article
BibTex RIS Cite

İZMİR'DE BİR BANLİYÖ KONUTU İÇİN YENİLEME VE İYİLEŞTİRME STRATEJİLERİ: URLA BAĞIMSIZ KONUTLARININ SİMÜLASYON TABANLI BİR VAKA ÇALIŞMASI

Year 2024, Volume: 3 Issue: 2, 199 - 219, 31.12.2024

Abstract

Avrupa Birliği, 2030 yılına kadar karbon emisyonlarını %55 oranında azaltmayı hedeflemekte ve bu nedenle kapsamlı bina yenilemelerini teşvik etmek amacıyla “Renovation Wave” girişimini başlatmaktadır. Binaların yenilenmesi ve iyileştirilmesi, CO₂ emisyonlarını ve enerji tüketimini azaltmakta kritik bir öneme sahiptir. Türkiye'de, bina sektörü toplam enerji tüketiminin %36’sını ve enerjiyle ilişkili CO₂ emisyonlarının %32’sini oluşturmaktadır. Bu tüketimin %75’i ise konutlardan kaynaklanmaktadır. Özellikle şehir merkezi dışındaki banliyö alanları, önemli enerji tasarrufu potansiyeline sahiptir ve ulusal enerji standartlarına uyum için acil yenilemeler ve iyileştirmeler yapılması gerekmektedir. Bu çalışma; doğal gaz hatlarına bağlı olmayan konutlarda, sera gazı emisyonlarını, enerji tüketimini ve işletme maliyetlerini azaltmaya yönelik stratejileri ele almaktadır. İnşa edilmiş bir banliyö konutunun mevcut durum simülasyon modeli oluşturulmuş ve Design Builder yazılımı kullanılarak doğrulanmıştır. Ardından, beş farklı yenileme ve iyileştirme stratejisi sırasıyla uygulanmıştır. Bunlar; bina zarfı malzemeleri, pencere camlama, merdiven boşluğuna dayalı doğal havalandırma, gölgelendirme elemanları ve camlı bir oda eklenmesidir. Her adımın ardından simülasyonlar gerçekleştirilmiş ve CO₂ emisyonları ile yakıt tüketimi açısından analiz edilmiştir. Yenileme ve iyileştirme önlemleri sonucunda CO₂ emisyonlarında önemli bir azalma gözlemlenmiştir. CO₂ emisyonu toplamda 45.681 kg'dan 11.827 kg'a düşürülerek %74 oranında bir azalma sağlanmıştır. Ayrıca, yıllık yakıt tüketimi de 66.688 kWh'den 17.266 kWh'e düşerek %74 oranında azalmıştır. Elde edilen sonuçlar, uygulanan stratejilerin etkinliğini açıkça ortaya koymaktadır.

References

  • Apeksha Gupta, C. J. H., Yacine Rezgui (2011). A Low-Energy Retrofit Study Of An Off-Gas Welsh Village Using Renewable Energy Simulation Combined with the UK Standard Assessment Procedure. Proceedings of Building Simulation, 14-16.
  • Aşıkoğlu, A. (2024). The potential of the effect of insulation and photovoltaic panel use in buildings on energy performance for Turkey and LCC analysis. Indoor and Built Environment, 1420326X241231203.
  • Battles, S. (1995). Defining Energy Efficiency and Its Measurement. Retrieved from URL: http://www.eia.gov/emeu/efficiency/ee_report_html.htm
  • Bishop, K. C., & Kiribrahim-Sarikaya, O. (2024). Energy-efficient investments in housing. Regional Science and Urban Economics, 103994.
  • Bolattürk, A. (2008). Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey. Building and Environment, 43(6), 1055-1064.
  • Chen, W., & Lai, J. (2024). Performance assessment of residential building renovation: a scientometric analysis and qualitative review of literature. Smart and Sustainable Built Environment.
  • Clark, G. (2007). Evolution of the global sustainable consumption and production policy and the United Nations Environment Programme's (UNEP) supporting activities. Journal of Cleaner Production, 15(6), 492-498.
  • D'Agostino, D., Congedo, P. M., Albanese, P. M., Rubino, A., & Baglivo, C. (2024). Impact of climate change on the energy performance of building envelopes and implications on energy regulations across Europe. Energy, 288, 129886.
  • D'Agostino, D., Tzeiranaki, S. T., Zangheri, P., & Bertoldi, P. (2021). Assessing nearly zero energy buildings (NZEBs) development in Europe. Energy Strategy Reviews, 36, 100680.
  • DCC. (2018). The Seventh National Communication of Turkey Uder The UNFCCC. Retrieved from https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/496715_Turkey-NC7-1-7th%20National%20Communication%20of%20Turkey.pdf
  • Dimoudi, A. (2009). Solar Chimneys in Buildings - The State of the Art. Advances in Building Energy Research (ABER), 3(1), 21-44.
  • EIIMD. (2018). Environmental Indicators 2016. Retrieved from https://webdosya.csb.gov.tr/db/ced/icerikler/env-romental-ind-cators-2016-20180618144837.pdf
  • Elsayed, M., Romagnoni, P., Pelsmakers, S., Castaño-Rosa, R., & Klammsteiner, U. (2023). The actual performance of retrofitted residential apartments: post-occupancy evaluation study in Italy. Building Research & Information, 51(4), 411-429.
  • EU. (2003). Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings. Official Journal of the European Communities, 32002L0091(L 1), 65-71.
  • EU. (2010). DIRECTIVE 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal of the European Communities, 32010L0031(L 153), 13-35.
  • EU Commission. (2011). A Roadmap for moving to a competitive low carbon economy in 2050. [COM(2011) 112 final]. EU Printing Office, COM(2011)(112 final), 1-15.
  • EU Commission. (2014). Nearly Zero-Energy Buildings.
  • EU Council. (2014). European Council (23 and 24 October 2014) "Conclusions on 2030 Climate and Energy Policy Framework". EU Printing Office, SN 79(14), 1-10.
  • Fathy, H. (1986). Natural energy and vernacular architecture.
  • Fathy, H. (2010). Architecture for the poor: an experiment in rural Egypt: University of Chicago press.
  • Fayaz, R., & Kari, B. M. (2009). Comparison of energy conservation building codes of Iran, Turkey, Germany, China, ISO 9164 and EN 832. Applied Energy, 86(10), 1949-1955. doi:10.1016/j.apenergy.2008.12.024
  • Granadeiro, V., Duarte, J. P., Correia, J. R., & Leal, V. M. S. (2013). Building envelope shape design in early stages of the design process: Integrating architectural design systems and energy simulation. Automation in Construction, 32, 196-209. doi:10.1016/j.autcon.2012.12.003
  • Gucyeter, B., & Gunaydin, H. M. (2012). Optimization of an envelope retrofit strategy for an existing office building. Energy and Buildings, 55, 647-659.
  • Gupta, A., Hopfe, C. J., & Rezgui, Y. (2011). A low-energy retrofit study of an off-gas welsh village using renewable energy simulation combined with the UK standard assessment procedure. Paper presented at the 12th Conference of International Building Performance Simulation Association.
  • IEA. (2019). 2019 Global Status Report for Buildings and Construction "Towards a zero-emissions, efficient and resilient buildings and construction sector". Retrieved from https://webstore.iea.org/2019-global-status-report-for-buildings-and-construction
  • Jankovic, L. (2012). Designing zero carbon buildings using dynamic simulation methods. London and New York: Routledge.
  • Kim, B. S., & Degelman, L. O. (1998). An interface system for computerized energy analyses for building designers. Energy & Buildings, 27, 97-107. doi:10.1016/S0378-7788(97)00057-1
  • Lam, J. C., Wan, K. K. W., Tsang, C. L., & Yang, L. (2008). Building energy efficiency in different climates. Energy Conversion and Management, 49(8), 2354-2366. doi:10.1016/j.enconman.2008.01.013
  • Lam, K. P. (1994). A computational design support system for interactive hygro-thermal analysis of building enclosures. (9500625 Ph.D.), Carnegie Mellon University, Ann Arbor. Retrieved from http://search.proquest.com/docview/304087675?accountid=15253 ProQuest Dissertations & Theses A&I: Science & Technology; ProQuest Dissertations & Theses A&I: The Arts database.
  • Lapisa, R., Bozonnet, E., Abadie, M. O., & Salagnac, P. (2013). Cool roof and ventilation efficiency as passive cooling strategies for commercial low-rise buildings - ground thermal inertia impact. Advances in Building Energy Research (ABER), 7(2), 192-208.
  • López-Ochoa, L. M., Las-Heras-Casas, J., González-Caballín, J. M., & Carpio, M. (2023). Towards nearly zero-energy residential buildings in Mediterranean countries: The implementation of the Energy Performance of Buildings Directive 2018 in Spain. Energy, 276, 127539.
  • Mejri, O., Palomo Del Barrio, E., & Ghrab-Morcos, N. (2011). Energy performance assessment of occupied buildings using model identification techniques. Energy and Buildings, 43(2-3), 285-299. doi:10.1016/j.enbuild.2010.09.010
  • Molin, A., Rohdin, P., & Moshfegh, B. (2011). Investigation of energy performance of newly built low-energy buildings in Sweden. Energy and Buildings, 43(10), 2822-2831. doi:10.1016/j.enbuild.2011.06.041
  • Olasolo-Alonso, P., López-Ochoa, L. M., Las-Heras-Casas, J., & López-González, L. M. (2023). Energy performance of buildings directive implementation in southern European countries: a review. Energy and Buildings, 281, 112751.
  • Poel, B., van Cruchten, G., & Balaras, C. A. (2007). Energy performance assessment of existing dwellings. Energy and Buildings, 39(4), 393-403.
  • Sarıca, K., Harputlugil, G. U., İnaner, G., & Kollugil, E. T. (2023). Building sector emission reduction assessment from a developing European economy: A bottom-up modelling approach. Energy Policy, 174, 113429.
  • Shiel, J. (2009). Practical greenhouse gas reduction strategies for the existing building stock. Architectural Science Review, 52(4), 270-278.
  • Taşçı, G. G. (2023). Defining Nearly Zero-Energy Buildings (NZEB) for Turkey in terms of Boundary Conditions. Paper presented at the Proceedings of the International Conference of Contemporary Affairs in Architecture and Urbanism-ICCAUA.
  • TSI. (2008). Thermal insulation requirements for buildings. Ankara: Turkish Standards Institute TSI Retrieved from https://sayfam.btu.edu.tr/upload/dosyalar/1458664642TS-825_Standard.pdf.
  • Turkish Ministry of Energy. (2008 ). BEP-EN 13790 and EN Net Energy Calculation Method - EN 13790 ve BEP-TR Net Enerji Hesaplama Yöntemi - "Binalarda Enerji Performansi Yönetmeliği". Ankara.
  • United Nations. (1998). Kyoto Protocol To The United Nations Framework Convention On Climate Change (pp. 21). NY, USA: UNITED NATIONS.
  • United Nations. (2020). Working Group III Mitigation of Climate Change "Technological and Economic Potential of Greenhouse Gas Emissions Reduction". Retrieved from https://archive.ipcc.ch/ipccreports/tar/wg3/index.php?idp=93

RETROFITTING STRATEGIES FOR A SUBURBAN DWELLING IN IZMIR: A SIMULATION-BASED CASE STUDY OF URLA INDEPENDENT HOUSING

Year 2024, Volume: 3 Issue: 2, 199 - 219, 31.12.2024

Abstract

The European Union aims to reduce carbon emissions by 55% by 2030 and has therefore launched the ‘Renovation Wave’ initiative to promote comprehensive building renovations. Renovation and retrofitting of buildings are critical in reducing CO₂ emissions and energy consumption. In Turkey, the building sector accounts for 36% of total energy consumption and 32% of energy-related CO₂ emissions. 75% of this consumption comes from residential buildings. Suburban areas, especially outside the city centre, have significant energy saving potential and urgent renovations and retrofits are required to comply with national energy standards. This study addresses strategies to reduce GHG emissions, energy consumption and operating costs in residential buildings not connected to natural gas lines. A baseline simulation model of a built suburban dwelling is created and validated using Design Builder software. Then, five different renovations and retrofit strategies were implemented respectively. These are building envelope materials, window glazing, stairwell-based natural ventilation, shading elements and the addition of a glazed room. After each step, simulations were carried out and analysed in terms of CO₂ emissions and fuel consumption. As a result of the renovation and improvement measures, a significant reduction in CO₂ emissions was observed. CO₂ emissions were reduced from 45,681 kg to 11,827 kg in total, resulting in a 74% reduction. In addition, annual fuel consumption decreased from 66,688 kWh to 17,266 kWh, a 74% reduction. The results obtained clearly demonstrate the effectiveness of the implemented strategies.

References

  • Apeksha Gupta, C. J. H., Yacine Rezgui (2011). A Low-Energy Retrofit Study Of An Off-Gas Welsh Village Using Renewable Energy Simulation Combined with the UK Standard Assessment Procedure. Proceedings of Building Simulation, 14-16.
  • Aşıkoğlu, A. (2024). The potential of the effect of insulation and photovoltaic panel use in buildings on energy performance for Turkey and LCC analysis. Indoor and Built Environment, 1420326X241231203.
  • Battles, S. (1995). Defining Energy Efficiency and Its Measurement. Retrieved from URL: http://www.eia.gov/emeu/efficiency/ee_report_html.htm
  • Bishop, K. C., & Kiribrahim-Sarikaya, O. (2024). Energy-efficient investments in housing. Regional Science and Urban Economics, 103994.
  • Bolattürk, A. (2008). Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey. Building and Environment, 43(6), 1055-1064.
  • Chen, W., & Lai, J. (2024). Performance assessment of residential building renovation: a scientometric analysis and qualitative review of literature. Smart and Sustainable Built Environment.
  • Clark, G. (2007). Evolution of the global sustainable consumption and production policy and the United Nations Environment Programme's (UNEP) supporting activities. Journal of Cleaner Production, 15(6), 492-498.
  • D'Agostino, D., Congedo, P. M., Albanese, P. M., Rubino, A., & Baglivo, C. (2024). Impact of climate change on the energy performance of building envelopes and implications on energy regulations across Europe. Energy, 288, 129886.
  • D'Agostino, D., Tzeiranaki, S. T., Zangheri, P., & Bertoldi, P. (2021). Assessing nearly zero energy buildings (NZEBs) development in Europe. Energy Strategy Reviews, 36, 100680.
  • DCC. (2018). The Seventh National Communication of Turkey Uder The UNFCCC. Retrieved from https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/496715_Turkey-NC7-1-7th%20National%20Communication%20of%20Turkey.pdf
  • Dimoudi, A. (2009). Solar Chimneys in Buildings - The State of the Art. Advances in Building Energy Research (ABER), 3(1), 21-44.
  • EIIMD. (2018). Environmental Indicators 2016. Retrieved from https://webdosya.csb.gov.tr/db/ced/icerikler/env-romental-ind-cators-2016-20180618144837.pdf
  • Elsayed, M., Romagnoni, P., Pelsmakers, S., Castaño-Rosa, R., & Klammsteiner, U. (2023). The actual performance of retrofitted residential apartments: post-occupancy evaluation study in Italy. Building Research & Information, 51(4), 411-429.
  • EU. (2003). Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings. Official Journal of the European Communities, 32002L0091(L 1), 65-71.
  • EU. (2010). DIRECTIVE 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings. Official Journal of the European Communities, 32010L0031(L 153), 13-35.
  • EU Commission. (2011). A Roadmap for moving to a competitive low carbon economy in 2050. [COM(2011) 112 final]. EU Printing Office, COM(2011)(112 final), 1-15.
  • EU Commission. (2014). Nearly Zero-Energy Buildings.
  • EU Council. (2014). European Council (23 and 24 October 2014) "Conclusions on 2030 Climate and Energy Policy Framework". EU Printing Office, SN 79(14), 1-10.
  • Fathy, H. (1986). Natural energy and vernacular architecture.
  • Fathy, H. (2010). Architecture for the poor: an experiment in rural Egypt: University of Chicago press.
  • Fayaz, R., & Kari, B. M. (2009). Comparison of energy conservation building codes of Iran, Turkey, Germany, China, ISO 9164 and EN 832. Applied Energy, 86(10), 1949-1955. doi:10.1016/j.apenergy.2008.12.024
  • Granadeiro, V., Duarte, J. P., Correia, J. R., & Leal, V. M. S. (2013). Building envelope shape design in early stages of the design process: Integrating architectural design systems and energy simulation. Automation in Construction, 32, 196-209. doi:10.1016/j.autcon.2012.12.003
  • Gucyeter, B., & Gunaydin, H. M. (2012). Optimization of an envelope retrofit strategy for an existing office building. Energy and Buildings, 55, 647-659.
  • Gupta, A., Hopfe, C. J., & Rezgui, Y. (2011). A low-energy retrofit study of an off-gas welsh village using renewable energy simulation combined with the UK standard assessment procedure. Paper presented at the 12th Conference of International Building Performance Simulation Association.
  • IEA. (2019). 2019 Global Status Report for Buildings and Construction "Towards a zero-emissions, efficient and resilient buildings and construction sector". Retrieved from https://webstore.iea.org/2019-global-status-report-for-buildings-and-construction
  • Jankovic, L. (2012). Designing zero carbon buildings using dynamic simulation methods. London and New York: Routledge.
  • Kim, B. S., & Degelman, L. O. (1998). An interface system for computerized energy analyses for building designers. Energy & Buildings, 27, 97-107. doi:10.1016/S0378-7788(97)00057-1
  • Lam, J. C., Wan, K. K. W., Tsang, C. L., & Yang, L. (2008). Building energy efficiency in different climates. Energy Conversion and Management, 49(8), 2354-2366. doi:10.1016/j.enconman.2008.01.013
  • Lam, K. P. (1994). A computational design support system for interactive hygro-thermal analysis of building enclosures. (9500625 Ph.D.), Carnegie Mellon University, Ann Arbor. Retrieved from http://search.proquest.com/docview/304087675?accountid=15253 ProQuest Dissertations & Theses A&I: Science & Technology; ProQuest Dissertations & Theses A&I: The Arts database.
  • Lapisa, R., Bozonnet, E., Abadie, M. O., & Salagnac, P. (2013). Cool roof and ventilation efficiency as passive cooling strategies for commercial low-rise buildings - ground thermal inertia impact. Advances in Building Energy Research (ABER), 7(2), 192-208.
  • López-Ochoa, L. M., Las-Heras-Casas, J., González-Caballín, J. M., & Carpio, M. (2023). Towards nearly zero-energy residential buildings in Mediterranean countries: The implementation of the Energy Performance of Buildings Directive 2018 in Spain. Energy, 276, 127539.
  • Mejri, O., Palomo Del Barrio, E., & Ghrab-Morcos, N. (2011). Energy performance assessment of occupied buildings using model identification techniques. Energy and Buildings, 43(2-3), 285-299. doi:10.1016/j.enbuild.2010.09.010
  • Molin, A., Rohdin, P., & Moshfegh, B. (2011). Investigation of energy performance of newly built low-energy buildings in Sweden. Energy and Buildings, 43(10), 2822-2831. doi:10.1016/j.enbuild.2011.06.041
  • Olasolo-Alonso, P., López-Ochoa, L. M., Las-Heras-Casas, J., & López-González, L. M. (2023). Energy performance of buildings directive implementation in southern European countries: a review. Energy and Buildings, 281, 112751.
  • Poel, B., van Cruchten, G., & Balaras, C. A. (2007). Energy performance assessment of existing dwellings. Energy and Buildings, 39(4), 393-403.
  • Sarıca, K., Harputlugil, G. U., İnaner, G., & Kollugil, E. T. (2023). Building sector emission reduction assessment from a developing European economy: A bottom-up modelling approach. Energy Policy, 174, 113429.
  • Shiel, J. (2009). Practical greenhouse gas reduction strategies for the existing building stock. Architectural Science Review, 52(4), 270-278.
  • Taşçı, G. G. (2023). Defining Nearly Zero-Energy Buildings (NZEB) for Turkey in terms of Boundary Conditions. Paper presented at the Proceedings of the International Conference of Contemporary Affairs in Architecture and Urbanism-ICCAUA.
  • TSI. (2008). Thermal insulation requirements for buildings. Ankara: Turkish Standards Institute TSI Retrieved from https://sayfam.btu.edu.tr/upload/dosyalar/1458664642TS-825_Standard.pdf.
  • Turkish Ministry of Energy. (2008 ). BEP-EN 13790 and EN Net Energy Calculation Method - EN 13790 ve BEP-TR Net Enerji Hesaplama Yöntemi - "Binalarda Enerji Performansi Yönetmeliği". Ankara.
  • United Nations. (1998). Kyoto Protocol To The United Nations Framework Convention On Climate Change (pp. 21). NY, USA: UNITED NATIONS.
  • United Nations. (2020). Working Group III Mitigation of Climate Change "Technological and Economic Potential of Greenhouse Gas Emissions Reduction". Retrieved from https://archive.ipcc.ch/ipccreports/tar/wg3/index.php?idp=93
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Architectural Science and Technology, Sustainable Architecture, Architecture (Other)
Journal Section Research Articles
Authors

Kamal Eldin Mohamed 0000-0003-4657-749X

Publication Date December 31, 2024
Submission Date October 5, 2024
Acceptance Date December 6, 2024
Published in Issue Year 2024 Volume: 3 Issue: 2

Cite

APA Mohamed, K. E. (2024). İZMİR’DE BİR BANLİYÖ KONUTU İÇİN YENİLEME VE İYİLEŞTİRME STRATEJİLERİ: URLA BAĞIMSIZ KONUTLARININ SİMÜLASYON TABANLI BİR VAKA ÇALIŞMASI. Karesi Journal of Architecture, 3(2), 199-219.

Creative Commons Lisansı
The papers published in KJA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.