Research Article
BibTex RIS Cite

ÖNEM ÖRNEKLEMESİNİN BLACK SCHOLES OPSİYON FİYATLANDIRMA MODELİNE ETKİSİNİN İNCELENMESİ

Year 2024, Issue: 5, 14 - 29, 31.03.2024
https://doi.org/10.62080/kmfed.1398592

Abstract

Çalışma, Varyans Azaltma Teknikleri arasında yer alan Önem Örneklemesi yönteminin kullanımını ve Black-Scholes opsiyon fiyatlandırma modelindeki etkinliğini incelemek amacıyla yapılmıştır. Önem Örneklemesi yöntemi, opsiyon fiyatlandırma modellerinde tahminlerin doğruluğunu ve güvenilirliğini artırma potansiyeline sahiptir. Bu yöntemin, opsiyon fiyatlandırma süreçlerinde sağladığı iyileştirmeler ve bu iyileştirmelerin pratik uygulamalardaki etkileri, araştırmanın temel odağını oluşturmaktadır. Araştırma, Python programlama dili kullanılarak yürütülmüş ve uygulaması Avrupa tipi Alım Opsiyonları ile Black-Scholes modeli üzerinde yapılmıştır. Çalışmanın uygulama kısmında farklı kullanım fiyatları ve simülasyon sayıları için Ortalama Kate Hata (MSE) ve Standart Hata (SE) sayıları karşılaştırılmaktadır.
Elde edilen bulgular, Önem Örneklemesi yönteminin, Black-Scholes modeline göre genellikle daha düşük MSE ve SE değerleri sunduğunu ortaya koymaktadır. Yüksek kullanım fiyatlarında bu yöntemin daha etkili sonuçlar verdiği gözlemlenmektedir. Simülasyon sayısı arttıkça, her iki yöntem arasındaki farkların azaldığı, ancak Önem Örneklemesi yönteminin yüksek simülasyon sayılarında bile üstün sonuçlar sunmaya devam ettiği belirlenmiştir.
Sonuç olarak, bu çalışma, finansal piyasalardaki karmaşık problemlere daha etkili ve güvenilir çözümler sunmayı amaçlamaktadır. Önem Örneklemesi yöntemi, opsiyon fiyatlandırmada daha doğru sonuçlar sağlamakta ve ulusal akademik çalışmalara yeni perspektifler ve yöntemler sunmayı hedeflemektedir.

Ethical Statement

Çalışma sürecince etik ilkelere bağlı kalınmıştır

Supporting Institution

Yok

Project Number

Yok

References

  • Andral, C. (2022). An Attempt to Trace the Birth of Importance Sampling, Centre de Recherches en Mathématiques de la Decision, Université Paris Dauphine, Paris.
  • Arouna, B. (2004). “Robbins-Monro Algorithms and Variance Reduction in Finance”. Journal of Computational Finance, 7(2): 35-62.
  • Black, F. ve Scholes, M. (1973). “The Pricing of Options and Corporate Liabilities”. Journal of Political Economy, 81(3): 637-654.
  • Boire, F.-M., Reesor, M.& Stentoft, L. (2021). “Efficient Variance Reduction with Least-Squares Monte Carlo Pricing”. Journal of Risk and Financial Management, 14(11): 504.
  • Boyle, P. P. (1977). “Options: A Monte Carlo Approach”. Journal of Financial Economics, 4(3): 323-338.
  • Chan, N. H. & Wong, H. Y. (2013). Risk Management: Simulations and Case Studies. John Wiley & Sons Yayınevi.
  • Dupuis, P. & Wang, H. (2004). “Importance Sampling, Large Deviations, and Differential Games”. Stochastics and Stochastics Reports, 76(6): 481–508.
  • Dupuis, P. & Wang, H. (2005). “Dynamic Importance Sampling for Uniformly Recurrent Markov Chains”. Annals of Applied Probability, 15(1A): 1–38.
  • Dupuis, P., Spiliopoulos, K. & Wang, H. (2012). “Importance Sampling for Multiscale Diffusions”. Multiscale Modeling & Simulation, 10(1): 1–27.
  • Dupuis, P., Spiliopoulos, K. & Zhou, X. (2015). “Escaping from an Attractor: Importance Sampling and Rest Points I”. Annals of Applied Probability, 25(5): 2909-2958
  • Elvira, V., Martino, L., & Robert, C. P. (2022). “Rethinking the Effective Sample Size”. International Statistical Review, 90(3): 525–550.
  • Fouque, J.-P., & Han, C.-H. (2004). “Variance Reduction for Monte Carlo Methods to Evaluate Option Prices under Multi-Factor Stochastic Volatility Models”. Quantitative Finance, 597-606.
  • Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering, Stochastic Modelling and Applied Probability
  • Glasserman, P., Heidelberger, P. & Shahabuddin, P. (1999). “Asymptotically Optimal İmportance Sampling and Stratification for Pricing Path-Dependent Options”. Mathematical Finance, 9(2): 117-152.
  • Glasserman, P. & Li, J. (2005). “Importance sampling for Portfolio Credit Risk”. Management Science, 51(11)1: 1643-1656.
  • Boyle, P., Broadie, M., & Glasserman, P. (1997). “Monte Carlo Methods for Security Pricing”. Journal of Economic Dynamics and Control, 21(8–9): 1267-1321.
  • Guasoni, P. & Robertson, S. (2008). “Optimal Importance Sampling with Explicit Formulas in Continuous Time”. Finance and Stochastics, 12: 1-19.
  • Heston, S. (1993). “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options”. Review of Financial Studies, 6(2): 327-43.
  • Hintz, E., Hofert, M. & Lemieux, C.(2022). “Single-Index Importance Sampling with Stratification”. Methodology and Computing in Applied Probability, 24: 3049–3073.
  • Hull, J. C. (2017). Options, Futures, and Other Derivatives, 7. Baskı, Pearson Yayınevi.
  • Josheski, D.& Apostolov, M. (2020). “A Review of the Binomial and Trinomial Models for Option Pricing and Their Convergence to the Black-Scholes Model Determined Option Prices”. Econometrics. Advances in Applied Data Analysis, 24(2): 53-85
  • Karthika, P. & Karthikeyan, P. (2013). “Option Investment Strategy and Their Benefits- An Analysis”. International Journal of Management Focus, 1-10.
  • Korkmaz, T. (1999). Hisse Senedi Opsiyonları ve Opsiyon Fiyatlama Modelleri. Ekin Kitabevi Yayınları.
  • Korkmaz, T., & Pekkaya, M. (2012). Excel Uygulamalı Finans Matematiği (3. baskı). Ekin Basım Yayın.
  • McLeish, D. L. (2005), Monte Carlo Simulation and Finance, 1. Baskı, Wiley Yayınevi.
  • Merton, R. C. (1973). “Theory of Rational Option Pricing”. Bell Journal of Economics and Management Science, 4(1): 141-183.
  • Miller, S. & Childers, D. (2012). Probability and Random Processes: With Applications to Signal Processing and Communications. Academic Press.
  • Moran, P. A. P. (1975). “The Estimation of Standard Errors in Monte Carlo Simulation Experiments”. Biometrika, 62(1): 1–4.
  • Neddermeyer, J. C. (2011). “Non-Parametric Partial Importance Sampling for Financial Derivative Pricing”. Quantitative Finance, 11(8): 1193-1206.
  • Rubinstein, R. Y. & Kroese, D. P. (2017). Simulation and the Monte Carlo Method, 3. Baskı, John Wiley & Sons, Inc. Yayınevi.
  • Saliby, E., Marins, J. & Santos, J. (2005). “Out-of-the-Money Monte Carlo Simulation Option Pricing: The Joint Use of Importance Sampling and Descriptive Sampling”. In Proceedings - Winter Simulation Conference, ss.7.
  • Su, Y. & Fu, M. C. (2000). “Simulation in Financial Engineering: Importance Sampling in Derivative Securities Pricing”. In Proceedings of the 32nd Conference, Society for Computer Simulation International, ss. 587-596.
  • Washburn, B., & Dik, M. (2021). “Derivation of Black-Scholes Equation Using Ito’s Lemma”. Proceedings of International Mathematical Sciences, 3(1): 38-49.
  • Wilmott, P. (2006). Paul Wilmott on Quantitative Finance, 2. Baskı, John Wiley & Sons Yayınevi.
  • Xiao, Y. (2023). “Option Pricing Based on Black-Scholes Model, Monte Carlo Method and Binomial Tree Model”. BCP Business & Management, 38: 3411-3416.
  • Yön, S.& Goldsman, D. (2006). “Variance Reduction via İmportance Sampling”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 5(10): 35-41.
  • Zhao, Q., Liu, G. & Gu, G. (2013). “Variance Reduction Techniques of Importance Sampling Monte Carlo Methods for Pricing Options”. Journal of Mathematical Finance, 3(4): 431-436.
Year 2024, Issue: 5, 14 - 29, 31.03.2024
https://doi.org/10.62080/kmfed.1398592

Abstract

Project Number

Yok

References

  • Andral, C. (2022). An Attempt to Trace the Birth of Importance Sampling, Centre de Recherches en Mathématiques de la Decision, Université Paris Dauphine, Paris.
  • Arouna, B. (2004). “Robbins-Monro Algorithms and Variance Reduction in Finance”. Journal of Computational Finance, 7(2): 35-62.
  • Black, F. ve Scholes, M. (1973). “The Pricing of Options and Corporate Liabilities”. Journal of Political Economy, 81(3): 637-654.
  • Boire, F.-M., Reesor, M.& Stentoft, L. (2021). “Efficient Variance Reduction with Least-Squares Monte Carlo Pricing”. Journal of Risk and Financial Management, 14(11): 504.
  • Boyle, P. P. (1977). “Options: A Monte Carlo Approach”. Journal of Financial Economics, 4(3): 323-338.
  • Chan, N. H. & Wong, H. Y. (2013). Risk Management: Simulations and Case Studies. John Wiley & Sons Yayınevi.
  • Dupuis, P. & Wang, H. (2004). “Importance Sampling, Large Deviations, and Differential Games”. Stochastics and Stochastics Reports, 76(6): 481–508.
  • Dupuis, P. & Wang, H. (2005). “Dynamic Importance Sampling for Uniformly Recurrent Markov Chains”. Annals of Applied Probability, 15(1A): 1–38.
  • Dupuis, P., Spiliopoulos, K. & Wang, H. (2012). “Importance Sampling for Multiscale Diffusions”. Multiscale Modeling & Simulation, 10(1): 1–27.
  • Dupuis, P., Spiliopoulos, K. & Zhou, X. (2015). “Escaping from an Attractor: Importance Sampling and Rest Points I”. Annals of Applied Probability, 25(5): 2909-2958
  • Elvira, V., Martino, L., & Robert, C. P. (2022). “Rethinking the Effective Sample Size”. International Statistical Review, 90(3): 525–550.
  • Fouque, J.-P., & Han, C.-H. (2004). “Variance Reduction for Monte Carlo Methods to Evaluate Option Prices under Multi-Factor Stochastic Volatility Models”. Quantitative Finance, 597-606.
  • Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering, Stochastic Modelling and Applied Probability
  • Glasserman, P., Heidelberger, P. & Shahabuddin, P. (1999). “Asymptotically Optimal İmportance Sampling and Stratification for Pricing Path-Dependent Options”. Mathematical Finance, 9(2): 117-152.
  • Glasserman, P. & Li, J. (2005). “Importance sampling for Portfolio Credit Risk”. Management Science, 51(11)1: 1643-1656.
  • Boyle, P., Broadie, M., & Glasserman, P. (1997). “Monte Carlo Methods for Security Pricing”. Journal of Economic Dynamics and Control, 21(8–9): 1267-1321.
  • Guasoni, P. & Robertson, S. (2008). “Optimal Importance Sampling with Explicit Formulas in Continuous Time”. Finance and Stochastics, 12: 1-19.
  • Heston, S. (1993). “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options”. Review of Financial Studies, 6(2): 327-43.
  • Hintz, E., Hofert, M. & Lemieux, C.(2022). “Single-Index Importance Sampling with Stratification”. Methodology and Computing in Applied Probability, 24: 3049–3073.
  • Hull, J. C. (2017). Options, Futures, and Other Derivatives, 7. Baskı, Pearson Yayınevi.
  • Josheski, D.& Apostolov, M. (2020). “A Review of the Binomial and Trinomial Models for Option Pricing and Their Convergence to the Black-Scholes Model Determined Option Prices”. Econometrics. Advances in Applied Data Analysis, 24(2): 53-85
  • Karthika, P. & Karthikeyan, P. (2013). “Option Investment Strategy and Their Benefits- An Analysis”. International Journal of Management Focus, 1-10.
  • Korkmaz, T. (1999). Hisse Senedi Opsiyonları ve Opsiyon Fiyatlama Modelleri. Ekin Kitabevi Yayınları.
  • Korkmaz, T., & Pekkaya, M. (2012). Excel Uygulamalı Finans Matematiği (3. baskı). Ekin Basım Yayın.
  • McLeish, D. L. (2005), Monte Carlo Simulation and Finance, 1. Baskı, Wiley Yayınevi.
  • Merton, R. C. (1973). “Theory of Rational Option Pricing”. Bell Journal of Economics and Management Science, 4(1): 141-183.
  • Miller, S. & Childers, D. (2012). Probability and Random Processes: With Applications to Signal Processing and Communications. Academic Press.
  • Moran, P. A. P. (1975). “The Estimation of Standard Errors in Monte Carlo Simulation Experiments”. Biometrika, 62(1): 1–4.
  • Neddermeyer, J. C. (2011). “Non-Parametric Partial Importance Sampling for Financial Derivative Pricing”. Quantitative Finance, 11(8): 1193-1206.
  • Rubinstein, R. Y. & Kroese, D. P. (2017). Simulation and the Monte Carlo Method, 3. Baskı, John Wiley & Sons, Inc. Yayınevi.
  • Saliby, E., Marins, J. & Santos, J. (2005). “Out-of-the-Money Monte Carlo Simulation Option Pricing: The Joint Use of Importance Sampling and Descriptive Sampling”. In Proceedings - Winter Simulation Conference, ss.7.
  • Su, Y. & Fu, M. C. (2000). “Simulation in Financial Engineering: Importance Sampling in Derivative Securities Pricing”. In Proceedings of the 32nd Conference, Society for Computer Simulation International, ss. 587-596.
  • Washburn, B., & Dik, M. (2021). “Derivation of Black-Scholes Equation Using Ito’s Lemma”. Proceedings of International Mathematical Sciences, 3(1): 38-49.
  • Wilmott, P. (2006). Paul Wilmott on Quantitative Finance, 2. Baskı, John Wiley & Sons Yayınevi.
  • Xiao, Y. (2023). “Option Pricing Based on Black-Scholes Model, Monte Carlo Method and Binomial Tree Model”. BCP Business & Management, 38: 3411-3416.
  • Yön, S.& Goldsman, D. (2006). “Variance Reduction via İmportance Sampling”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 5(10): 35-41.
  • Zhao, Q., Liu, G. & Gu, G. (2013). “Variance Reduction Techniques of Importance Sampling Monte Carlo Methods for Pricing Options”. Journal of Mathematical Finance, 3(4): 431-436.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Finance
Journal Section Research Articles
Authors

Sibel Vatansever 0009-0003-3547-875X

Hicran Yıldız 0000-0003-4241-5231

Project Number Yok
Early Pub Date May 2, 2024
Publication Date March 31, 2024
Submission Date November 30, 2023
Acceptance Date January 7, 2024
Published in Issue Year 2024 Issue: 5

Cite

APA Vatansever, S., & Yıldız, H. (2024). ÖNEM ÖRNEKLEMESİNİN BLACK SCHOLES OPSİYON FİYATLANDIRMA MODELİNE ETKİSİNİN İNCELENMESİ. Kapanaltı Dergisi(5), 14-29. https://doi.org/10.62080/kmfed.1398592