Research Article
BibTex RIS Cite

N(κ)-contact metric manifolds admitting Z-tensor

Year 2020, Volume: 2 Issue: 1, 64 - 69, 29.12.2020

Abstract

Contact manifolds have many applications to medical science, technology, geometric optics, geometric quantization, control theory, thermodynamics, and classical mechanics. Therefore, studies on the Riemann geometry of contact manifolds are important. On the other hand, one of the important tools of Riemann geometry are curvature tensors. By using curvature tensors, some geometric properties and physical applications of contact manifolds can be examined. Especially, important results are obtained on symmetry of manifolds which is the one of the main study topics of Riemannian geometry. A special kind of curvature tensor is the (0,2) -type $\mathcal{Z}$-tensor which has some geometric properties different from Ricci curvature tensor. This type of tensor gives us important results on contact manifolds. Especially, semi-symmetry conditions which are related to $\mathcal{Z}$-tensor present nice results. In this study, we work on$N(k)$- contact metric manifolds which are a special kind of contact manifolds. We present some results on $N(k)$-contact metric manifolds by using$\mathcal{Z}$-tensor. We classify the manifolds by using some semi-symetry conditions such as $R(\xi ,W).\mathcal{Z}=0$, $\mathcal{P}(\xi ,W).\mathcal{Z}=0$, $\mathcal{L}(\xi ,W).\mathcal{Z}=0$ and \[{{\mathcal{W}}_{2}}(\xi ,W).\mathcal{Z}=0\], where R the Riemann curvature tensor, $\mathcal{P}$is the Projective curvature tensor, $\mathcal{L}$ is the concircular curvature tensor and \[{{\mathcal{W}}_{2}}\]is the $W_2$ curvature tensor.

References

  • [1]. Blair, D. E., Koufogiorgos, T., Papantoniou, B. J. (1995). Contact metric manifolds satisfying a nullity condition. Israel Journal of Mathematics, 91(1-3), 189-214.
  • [2]. Majhi, P., and De, U. C. (2015). Classifications of contact metric manifolds satisfying certain curvature conditions. Acta Mathematica Universitatis Comenianae, 84(1), 167-178.
  • [3]. De, U. C. (2018). Certain results on contact metric manifolds. Tamkang Journal of Mathematics, 49(3), 205-220.
  • [4]. Ingalahalli, G., Anil, S., and Bagewadi, C. (2019). Certain Results on N(k)-Contact Metric Manifold. Asian Journal of Mathematics and Computer Research, 123-130.
  • [5]. Özgur, C., and Sular, S. (2008). On contact metric manifolds satisfying certain conditions. SUT J. Math, 44(1), 89-99.
  • [6]. Yıldız A., De, U. C., Murathan, C.,and and Arslan, K. (2010). On the Weyl projective curvature tensor of an --contact metric manifold. Mathematica Panonoica, 21(1), 129-142.
  • [7]. Ünal, İ., and Altin, M. (2020). contact Metric Manifolds with Generalized Tanaka-Webster Connection. arXiv preprint arXiv:2004.02536.
  • [8]. Altın, M. 2020., Projective Curvature Tensor on N(k)contact metric manifold with respect to semi-symmetric non-metric connection, Fundamental Journal of Mathematics and Applications , 3 (2), accepted
  • [9]. Blair, J-S. Kim and M.M. Tripathi, On the concircular curvature tensor of a contact metric manifold. J. Korean Math. Soc. 42 (2005), 883{892}.
  • [10]. C. A. Mantica and L. G. Molonari, Weakly Z symmetric manifolds, Acta Math. Hunger., 135(2012), 80–96.
  • [11]. Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds, 2nd edn. Birkh\"{a}user,Boston (2010).
  • [12]. Blair, D. E. (1977). Two remarks on contact metric structures. Tohoku Mathematical Journal, Second Series, 29(3), 319-324.
  • [13]. E. Boeckx, A full classification of contact metric $(k,\mu)$-spaces. Illinois J. Math. 44 (2000), 1, 212--219.
  • [14]. De, U. C., Yildiz, A., and Ghosh, S. (2014). On a class of $ N (k) $-contact metric manifolds. Math. Reports, 16, 66.

N(κ)-Contact Metric Manifolds Admitting Z-Tensor

Year 2020, Volume: 2 Issue: 1, 64 - 69, 29.12.2020

Abstract

Kontakt manifoldların tıp bilimi, teknoloji, geometrik optik, geometrik nicemleme, kontrol teorisi, termodinamik ve klasik mekanikte birçok uygulaması vardır. Bu nedenle, temas manifoldlarının Riemann geometrisi üzerine yapılan çalışmalar önemlidir. Eğrilik tensörleri Riemann geometrisinin önemli araçlarından biridir. Eğrilik tensörleri kullanılarak, kontakt manifoldların bazı geometrik özellikleri ve fiziksel uygulamaları incelenebilir. Özellikle, Riemann geometrisinin ana çalışma konularından biri olan simetri özellikleri hakkında önemli sonuçlar elde edilmektedir. Önemli eğrilik tensörlerinden biri olan $\mathcal{Z}$-tensör , Ricci tensöründen farklı bazı geometrik özelliklere sahip (0,2) -tipindeki bir tensördür. $\mathcal{Z}$-tensörü, kontakt manifoldlarda bize önemli sonuçlar verir. Özellikle, $\mathcal{Z}$-tensör ile ilişkili yarı-simetri koşulları üzerine önemli sonuçlar elde edilmektedir. Bu çalışmada, manifoldları olan temaslı metrik manifoldlar üzerinde çalışılmıştır. R the Riemann eğrilik tensörü, $\mathcal{P}$is the projectif eğrilik tenrösü, $\mathcal{L}$ is the concircular eğrilik tensörü and \[{{\mathcal{W}}_{2}}\]is the $W_2$ eğrilik tensörü olmak üzere, . manifoldlar $R(\xi ,W).\mathcal{Z}=0$, $\mathcal{P}(\xi ,W).\mathcal{Z}=0$, $\mathcal{L}(\xi ,W).\mathcal{Z}=0$ and \[{{\mathcal{W}}_{2}}(\xi ,W).\mathcal{Z}=0\] gibi yarı-simetri şartları altında incelenmiştir.

References

  • [1]. Blair, D. E., Koufogiorgos, T., Papantoniou, B. J. (1995). Contact metric manifolds satisfying a nullity condition. Israel Journal of Mathematics, 91(1-3), 189-214.
  • [2]. Majhi, P., and De, U. C. (2015). Classifications of contact metric manifolds satisfying certain curvature conditions. Acta Mathematica Universitatis Comenianae, 84(1), 167-178.
  • [3]. De, U. C. (2018). Certain results on contact metric manifolds. Tamkang Journal of Mathematics, 49(3), 205-220.
  • [4]. Ingalahalli, G., Anil, S., and Bagewadi, C. (2019). Certain Results on N(k)-Contact Metric Manifold. Asian Journal of Mathematics and Computer Research, 123-130.
  • [5]. Özgur, C., and Sular, S. (2008). On contact metric manifolds satisfying certain conditions. SUT J. Math, 44(1), 89-99.
  • [6]. Yıldız A., De, U. C., Murathan, C.,and and Arslan, K. (2010). On the Weyl projective curvature tensor of an --contact metric manifold. Mathematica Panonoica, 21(1), 129-142.
  • [7]. Ünal, İ., and Altin, M. (2020). contact Metric Manifolds with Generalized Tanaka-Webster Connection. arXiv preprint arXiv:2004.02536.
  • [8]. Altın, M. 2020., Projective Curvature Tensor on N(k)contact metric manifold with respect to semi-symmetric non-metric connection, Fundamental Journal of Mathematics and Applications , 3 (2), accepted
  • [9]. Blair, J-S. Kim and M.M. Tripathi, On the concircular curvature tensor of a contact metric manifold. J. Korean Math. Soc. 42 (2005), 883{892}.
  • [10]. C. A. Mantica and L. G. Molonari, Weakly Z symmetric manifolds, Acta Math. Hunger., 135(2012), 80–96.
  • [11]. Blair, D. E., Riemannian Geometry of Contact and Symplectic Manifolds, 2nd edn. Birkh\"{a}user,Boston (2010).
  • [12]. Blair, D. E. (1977). Two remarks on contact metric structures. Tohoku Mathematical Journal, Second Series, 29(3), 319-324.
  • [13]. E. Boeckx, A full classification of contact metric $(k,\mu)$-spaces. Illinois J. Math. 44 (2000), 1, 212--219.
  • [14]. De, U. C., Yildiz, A., and Ghosh, S. (2014). On a class of $ N (k) $-contact metric manifolds. Math. Reports, 16, 66.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

İnan Ünal 0000-0003-1318-9685

Publication Date December 29, 2020
Submission Date December 6, 2020
Published in Issue Year 2020 Volume: 2 Issue: 1

Cite

APA Ünal, İ. (2020). N(κ)-contact metric manifolds admitting Z-tensor. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, 2(1), 64-69.
AMA Ünal İ. N(κ)-contact metric manifolds admitting Z-tensor. KMUJENS. December 2020;2(1):64-69.
Chicago Ünal, İnan. “N(κ)-Contact Metric Manifolds Admitting Z-Tensor”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi 2, no. 1 (December 2020): 64-69.
EndNote Ünal İ (December 1, 2020) N(κ)-contact metric manifolds admitting Z-tensor. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 2 1 64–69.
IEEE İ. Ünal, “N(κ)-contact metric manifolds admitting Z-tensor”, KMUJENS, vol. 2, no. 1, pp. 64–69, 2020.
ISNAD Ünal, İnan. “N(κ)-Contact Metric Manifolds Admitting Z-Tensor”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 2/1 (December 2020), 64-69.
JAMA Ünal İ. N(κ)-contact metric manifolds admitting Z-tensor. KMUJENS. 2020;2:64–69.
MLA Ünal, İnan. “N(κ)-Contact Metric Manifolds Admitting Z-Tensor”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, vol. 2, no. 1, 2020, pp. 64-69.
Vancouver Ünal İ. N(κ)-contact metric manifolds admitting Z-tensor. KMUJENS. 2020;2(1):64-9.

The articles in KMUJENS are licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. Commercial use of the content is prohibited. Articles in the journal can be used as long as the author and original source are cited.