Review
BibTex RIS Cite
Year 2021, Volume: 3 Issue: 1, 44 - 73, 28.06.2021

Abstract

Isı transferi birçok endüstriyel ve tüketici sisteminde önemli bir role sahiptir. Isı borusu, ısı transferi için kullanılan yüksek ısı iletkenliğine sahip bir cihazdır. Isı borusu üç bölümden oluşur; ısıyı çalışma sıvısına ileten buharlaştırıcı bölümü: ısı transferi için kullanılan adyabatik bölüm ve çalışma sıvısını soğutan yoğunlaştırıcı bölüm. Isı borusunun temel çalışma prensibi, içinde bulunan çalışma sıvısının fazını değiştirmektir. Isı borusu, evaporatörden ısıyı emer, adyabatik bölümden yoğunlaştırıcıya dönüşür ve sıcaklığını ortama iletir, yani ısıyı bir bölgeden diğerine buharlaşma ve yoğuşma fazı değişikliği kullanarak aktarır. Isı borusunda kullanılan geleneksel çalışma akışkanlarının zayıf ısıl iletkenliği, ısı transferinin etkinliğini ve uygulamasını sınırlar. Bu nedenle, geleneksel çalışma sıvısını yüksek ısı transfer performansına sahip bir çalışma sıvısı ile değiştirme fikri oluşmuştur. Bilim adamları ve mühendisler, nano boyutlu parçacıkları sıvılara dağıtarak bu temel sorunun üstesinden gelmek için büyük çaba sarf ettiler. Nanosıvılar, nanopartiküllerin geleneksel çalışma sıvısı ile karıştırılmasıyla oluşturulan kararlı katı-sıvı süspansiyonlardır. Bu çalışmada, ısı borularında kullanılan nanoakışkanlar üzerinde deneysel ve sayısal araştırmalar incelenmiştir. Isı borusunun ısıl performansı ve ısıl direnci birçok deneysel koşula bağlıdır. Bu koşullar, ısı borusu tipleri, nanoakışkan özellikleri, ısı borularının tasarımı ve çalışma koşulları gibi farklı parametreleri içerir.

References

  • [1] Babita, Sharma, S. K. and Gupta, S. M. (2016). Preparation and evaluation of stable nanofluids for heat transfer application: A review. Experimental Thermal and Fluid Science, 79 (December 2016), 202-212.
  • [2] Bergles, A. E. (1998). The imperative to enhance heat transfer. Heat Transfer Enhancement of Heat Exchangers. S. Kakac, A. E. Bergles, H. Mayinger and H. Yuncu. Dordrecht, Springer: 13-29.
  • [3] Lee, S., Choi, S. U.-S., Li, S. and Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280289.
  • [4] Wen, D. and Ding, Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 47(24), 5181-5188.
  • [5] Hızal, G., Aras, M., Driver, B., Flow, p. and Bugatekin, R. A. (2011). CPU cooling with heat pipe. Vocational Elective II Term Project.
  • [6] Ali, N., Teixeira, J. A. and Addali, A. (2018) "A review on nanofluids: fabrication, stability, and thermophysical properties." Journal of Nanomaterials 2018, 1-33 DOI: 10.1155/2018/6978130.
  • [7] Xuan, Y. and Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 58-64.
  • [8] Eggers, J. R. and Kabelac, S. (2016). Nanofluids revisited. Applied Thermal Engineering, 106(5 August 2016), 1114-1126.
  • [9] Wang, G.-S., Song, B. and Liu, Z.-H. (2010). Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids. Experimental Thermal and Fluid Science, 34(8), 1415-1421.
  • [10] Liu, Z.-H., Li, Y.-Y. and Bao, R. (2010). Thermal performance of inclined grooved heat pipes using nanofluids. International Journal of Thermal Sciences, 49(9), 1680-1687.
  • [11] Do, K. H. and Jang, S. P. (2010b). Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. International Journal of Heat and Mass Transfer, 53(9-10), 2183-2192.
  • [12] Mehrali, M., Sadeghinezhad, E., Azizian, R., Akhiani, A. R., Tahan Latibari, S., Mehrali, M. and Metselaar, H. S. C. (2016). Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Conversion and Management, 118, 459-473.
  • [13] Wei, W. C., Tsai, S. H., Yang, S. Y. and Kang, S. W. (2005). Effect of nanofluid on heat pipe thermal performance. 3rd IASME / WSEAS Int. Conf. on Heat Transfer, Thermal Engıneerıng And Envıronment, Corfu, Greece.
  • [14] Liu, Z.-h. X., Jian-guo Bao, Ran (2007). Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. International Journal of Multiphase Flow, 33(12), 1284-1295.
  • [15] Liu, Z.-H. L., Yuan-Yang Bao, Ran (2011). Compositive effect of nanoparticle parameter on thermal performance of cylindrical micro-grooved heat pipe using nanofluids. International Journal of Thermal Sciences, 50(4), 558-568.
  • [16] Aly, W. I. A., Elbalshouny, M. A., Abd El-Hameed, H. M. and Fatouh, M. (2017). Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3 nanofluid at different inclination angle and filling ratio. Applied Thermal Engineering, 110(5 January 2017), 1294-1304.
  • [17] Kole, M. and Dey, T. K. (2013). Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids. Applied Thermal Engineering, 50(1), 763-770.
  • [18] Do, K. H., Ha, H. J. and Jang, S. P. (2010a). Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids. International Journal of Heat and Mass Transfer, 53(25-26), 5888-5894.
  • [19] Putra, N., Septiadi, W. N., Rahman, H. and Irwansyah, R. (2012). Thermal performance of screen mesh wick heat pipes with nanofluids. Experimental Thermal and Fluid Science, 40, 10-17.
  • [20] Wang, P.-Y., Chen, X.-J., Liu, Z.-H. and Liu, Y.-P. (2012). Application of nanofluid in an inclined mesh wicked heat pipes. Thermochimica Acta, 539, 100-108.
  • [21] Solomon, A. B., Ramachandran, K. and Pillai, B. C. (2012). Thermal performance of a heat pipe with nanoparticles coated wick. Applied Thermal Engineering, 36, 106-112.
  • [22] Asirvatham, L. G., Nimmagadda, R. and Wongwises, S. (2013). Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid. International Journal of Heat and Mass Transfer, 60(May 2013), 201-209.
  • [23] Saleh, R., Putra, N., Prakoso, S. P. and Septiadi, W. N. (2013). Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids. International Journal of Thermal Sciences, 63, 125-132.
  • [24] Liu, Z.-H. and Zhu, Q. (2011). Application of aqueous nanofluids in a horizontal mesh heat pipe. Energy Conversion and Management, 52(1), 292-300.
  • [25] Senthilkumar, R., Vaidyanathan, S. and Sivaraman, B. (2012). Effect of ınclination angle in heat pipe performance using copper nanofluid. Procedia Engineering, 38, 3715-3721.
  • [26] Hajian, R., Layeghi, M. and Abbaspour Sani, K. (2012). Experimental study of nanofluid effects on the thermal performance with response time of heat pipe. Energy Conversion and Management, 56(April 2012), 63-68.
  • [27] Ghanbarpour, M., Nikkam, N., Khodabandeh, R., Toprak, M. S. and Muhammed, M. (2015b). Thermal performance of screen mesh heat pipe with Al2O3 nanofluid. Experimental Thermal and Fluid Science, 66(September 2015), 213-220.
  • [28] Tsai, C. Y., Chien, H. T., Ding, P. P., Chan, B., Luh, T. Y. and Chen, P. H. (2004). Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Materials Letters, 58(9), 1461-1465.
  • [29] Senthil, R., Ratchagaraja, D., Silambarasan, R. and Manikandan, R. (2016). Contemplation of thermal characteristics by filling ratio of Al2O3 nanofluid in wire mesh heat pipe. Alexandria Engineering Journal, 55(2), 1063-1068.
  • [30] Kumaresan, G., Venkatachalapathy, S., Asirvatham, L. G. and Wongwises, S. (2014b). Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids. International Communications in Heat and Mass Transfer, 57, 208-215.
  • [31] Kim, K. M., Jeong, Y. S., Kim, I. G. and Bang, I. C. (2015). Comparison of thermal performances of water-filled, SiC nanofluid-filled and SiC nanoparticles-coated heat pipes. International Journal of Heat and Mass Transfer, 88, 862-871.
  • [32] Ghanbarpour, M., Nikkam, N., Khodabandeh, R. and Toprak, M. S. (2015a). Thermal performance of inclined screen mesh heat pipes using silver nanofluids. International Communications in Heat and Mass Transfer, 67, 14-20.
  • [33] Kang, S.-W., Wei, W.-C., Tsai, S.-H. and Huang, C.-C. (2009). Experimental investigation of nanofluids on sintered heat pipe thermal performance. Applied Thermal Engineering, 29(5-6), 973-979.
  • [34] Keshavarz Moraveji, M. and Razvarz, S. (2012). Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance. International Communications in Heat and Mass Transfer, 39(9), 1444-1448.
  • [35] Kumaresan, G., Venkatachalapathy, S. and Asirvatham, L. G. (2014a). Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids. International Journal of Heat and Mass Transfer, 72, 507-516.
  • [36] Sadeghinezhad, E., Mehrali, M., Rosen, M. A., Akhiani, A. R., Tahan Latibari, S., Mehrali, M. and Metselaar, H. S. C. (2016). Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Applied Thermal Engineering, 100, 775-787.
  • [37] Vijayakumar, M., Navaneethakrishnan, P., Kumaresan, G. and Kamatchi, R. (2017). A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al2O3 nanofluids. Journal of the Taiwan Institute of Chemical Engineers, 81, 190-198
  • [38] Noie, S. H., Heris, S. Z., Kahani, M. and Nowee, S. M. (2009). Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon. International Journal of Heat and Fluid Flow, 30(4), 700-705.
  • [39] Huminic, G. and Huminic, A. (2013). Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids. Energy Conversion and Management, 76, 393-399.
  • [40] Liu, Z.-H., Hu, R.-L., Lu, L., Zhao, F. and Xiao, H.-s. (2013). Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector. Energy Conversion and Management, 73, 135-143.
  • [41] Kamyar, A., Ong, K. S. and Saidur, R. (2013). Effects of nanofluids on heat transfer characteristics of a two-phase closed thermosyphon. International Journal of Heat and Mass Transfer, 65, 610-618.
  • [42] Yang, X.-F. and Liu, Z.-H. (2012). Flow boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid. International Journal of Heat and Mass Transfer, 55(25-26), 7375-7384.
  • [43] Sarafraz, M. M., Hormozi, F. and Peyghambarzadeh, S. M. (2014a). Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid. International Communications in Heat and Mass Transfer, 57, 297-303.
  • [44] Chen, Y.-j., Wang, P.-y. and Liu, Z.-h. (2013). Application of water-based SiO2 functionalized nanofluid in a loop thermosyphon. International Journal of Heat and Mass Transfer, 56(1-2), 59-68.
  • [45] Heris, S. Z., Mohammadpur, F. and Shakouri, A. (2014). Effect of electric field on thermal performance of thermosyphon heat pipes using nanofluids. Materials Research Bulletin, 53, 21-27.
  • [46] Menlik, T., Sozen, A., Guru, M. and Oztas, S. (2015). Heat transfer enhancement using MgO/water nanofluid in heat pipe. Journal of the Energy Institute, 88(3), 247-257.
  • [47] Sarafraz, M. M., Hormozi, F. and Peyghambarzadeh, S. M. (2014b). Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid. International Communications in Heat and Mass Transfer, 57, 297-303.
  • [48] Ciftci, E., Sozen, A. and Karaman, E. (2016). Experimental Investigation of Nano fluid Usage Including TiO2 on The Effect of Heat Pipe Performance. Politeknik Journal, 19(3), 367-376.
  • [49] Cakir, M. T. (2015). Improvıng The Effıcıency Performance Of Heat Pipes Using Alumina Containing Nano-Fluids. Journal of Faculty of Engineering and Architecture of Gazi University, 30(4), 547-556.
  • [50] Su, X., Zhang, M., Han, W. and Guo, X. (2016). Experimental study on the heat transfer performance of an oscillating heat pipe with self-rewetting nanofluid. International Journal of Heat and Mass Transfer, 100, 378-385.
  • [51] Ji, Y., Liu, G., Ma, H., Li, G. and Sun, Y. (2013). An experimental investigation of heat transfer performance in a polydimethylsiloxane (PDMS) oscillating heat pipe. Applied Thermal Engineering, 61(2), 690-697.
  • [52] Ji, Y., Ma, H., Su, F. and Wang, G. (2011). Particle size effect on heat transfer performance in an oscillating heat pipe. Experimental Thermal and Fluid Science, 35(4), 724-727.
  • [53] Qu, J. and Wu, H. (2011). Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids. International Journal of Thermal Sciences, 50(10), 1954-1962.
  • [54] Qu, J., Wu, H.-y. and Cheng, P. (2010). Thermal performance of an oscillating heat pipe with Al2O3–water nanofluids. International Communications in Heat and Mass Transfer, 37(2), 111-115.
  • [55] Tanshen, M. R., Munkhbayar, B., Nine, M. J., Chung, H. and Jeong, H. (2013). Effect of functionalized MWCNTs/water nanofluids on thermal resistance and pressure fluctuation characteristics in oscillating heat pipe. International Communications in Heat and Mass Transfer, 48, 93-98.
  • [56] Goshayeshi, H. R., Goodarzi, M. and Dahari, M. (2015). Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Experimental Thermal and Fluid Science, 68 (November 2015), 663-668.
  • [57] Riehl, R. R. and Santos, N. d. (2012). Water-copper nanofluid application in an open loop pulsating heat pipe. Applied Thermal Engineering, 42, 6-10.
  • [58] Gunnasegaran, P., Abdullah, M. Z. and Shuaib, N. H. (2013). Influence of nanofluid on heat transfer in a loop heat pipe. International Communications in Heat and Mass Transfer, 47(October 2013), 82-91
  • [59] Taslimifar, M., Mohammadi, M., Afshin, H., Saidi, M. H. and Shafii, M. B. (2013). Overall thermal performance of ferrofluidic open loop pulsating heat pipes: An experimental approach. International Journal of Thermal Sciences, 65, 234-241.
  • [60] Huminic, G. and Huminic, A. (2013). Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids. Energy Conversion and Management, 76, 393-399.
  • [61] Tahery AA, P. S., Zehforoosh A (2010). Numerical study of heat transfer performance of homogenous nanofluids under natural convection. International Journal of Chemical Engineering and Applications, 1(1), 49-54.
  • [62] Vasu, V., Krishna, K. and Kumar, A. (2008). Application of nanofluids in thermal design of compact heat exchanger. Int J Nanotechnol Appl, 2(1), 75-78.
  • [63] Murugesan, C. and Sivan, S. (2010). Limits for thermal conductivity of nanofluids. Thermal Science, 14(1), 65-71.
  • [64] Shafahi, M., Bianco, V., Vafai, K. and Manca, O. (2010a). An investigation of the thermal performance of cylindrical heat pipes using nanofluids. International Journal of Heat and Mass Transfer, 53(1-3), 376-383.

Investigation of The Effect of Nanofluids on Heat Transfer Performance of Heat Pipes

Year 2021, Volume: 3 Issue: 1, 44 - 73, 28.06.2021

Abstract

Heat transfer has an important role in many industrial and consumer systems. The heat pipe is a device with high thermal conductivity used for heat transfer. Heat pipe consists of three parts; the evaporator section, which transmits heat to the working fluid: the adiabatic section used for heat transport and the concentrator section that cools the working fluid. The basic working principle of the heat pipe is to change the phase of the working fluid contained in it. The heat pipe absorbs heat from the evaporator, transforms from adiabatic section to concentrator and transmits its temperature to the environment, i.e. transfer heat from one region to another using evaporation and condensation phase change. The weak thermal conductivity of the traditional working fluids used in the heat pipe limits the effectiveness and application of heat transfer. Therefore, the idea of replacing the traditional working fluid with a working fluid with high heat transfer performance has been formed. Scientists and engineers have made great efforts to overcome this fundamental problem by distributing nano-sized particles into liquids. Nanofluids are stable solid-liquid suspension created by mixing nanoparticles with traditional working fluid. In this study, experimental and numerical research on nanofluids used in heat pipes are examined. The thermal performance and thermal resistance of the heat pipe depend on many experimental conditions. These conditions contain different parameters such as heat pipe types, nanofluid properties, design of heat pipes and working conditions.

References

  • [1] Babita, Sharma, S. K. and Gupta, S. M. (2016). Preparation and evaluation of stable nanofluids for heat transfer application: A review. Experimental Thermal and Fluid Science, 79 (December 2016), 202-212.
  • [2] Bergles, A. E. (1998). The imperative to enhance heat transfer. Heat Transfer Enhancement of Heat Exchangers. S. Kakac, A. E. Bergles, H. Mayinger and H. Yuncu. Dordrecht, Springer: 13-29.
  • [3] Lee, S., Choi, S. U.-S., Li, S. and Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280289.
  • [4] Wen, D. and Ding, Y. (2004). Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 47(24), 5181-5188.
  • [5] Hızal, G., Aras, M., Driver, B., Flow, p. and Bugatekin, R. A. (2011). CPU cooling with heat pipe. Vocational Elective II Term Project.
  • [6] Ali, N., Teixeira, J. A. and Addali, A. (2018) "A review on nanofluids: fabrication, stability, and thermophysical properties." Journal of Nanomaterials 2018, 1-33 DOI: 10.1155/2018/6978130.
  • [7] Xuan, Y. and Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 58-64.
  • [8] Eggers, J. R. and Kabelac, S. (2016). Nanofluids revisited. Applied Thermal Engineering, 106(5 August 2016), 1114-1126.
  • [9] Wang, G.-S., Song, B. and Liu, Z.-H. (2010). Operation characteristics of cylindrical miniature grooved heat pipe using aqueous CuO nanofluids. Experimental Thermal and Fluid Science, 34(8), 1415-1421.
  • [10] Liu, Z.-H., Li, Y.-Y. and Bao, R. (2010). Thermal performance of inclined grooved heat pipes using nanofluids. International Journal of Thermal Sciences, 49(9), 1680-1687.
  • [11] Do, K. H. and Jang, S. P. (2010b). Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. International Journal of Heat and Mass Transfer, 53(9-10), 2183-2192.
  • [12] Mehrali, M., Sadeghinezhad, E., Azizian, R., Akhiani, A. R., Tahan Latibari, S., Mehrali, M. and Metselaar, H. S. C. (2016). Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Conversion and Management, 118, 459-473.
  • [13] Wei, W. C., Tsai, S. H., Yang, S. Y. and Kang, S. W. (2005). Effect of nanofluid on heat pipe thermal performance. 3rd IASME / WSEAS Int. Conf. on Heat Transfer, Thermal Engıneerıng And Envıronment, Corfu, Greece.
  • [14] Liu, Z.-h. X., Jian-guo Bao, Ran (2007). Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. International Journal of Multiphase Flow, 33(12), 1284-1295.
  • [15] Liu, Z.-H. L., Yuan-Yang Bao, Ran (2011). Compositive effect of nanoparticle parameter on thermal performance of cylindrical micro-grooved heat pipe using nanofluids. International Journal of Thermal Sciences, 50(4), 558-568.
  • [16] Aly, W. I. A., Elbalshouny, M. A., Abd El-Hameed, H. M. and Fatouh, M. (2017). Thermal performance evaluation of a helically-micro-grooved heat pipe working with water and aqueous Al2O3 nanofluid at different inclination angle and filling ratio. Applied Thermal Engineering, 110(5 January 2017), 1294-1304.
  • [17] Kole, M. and Dey, T. K. (2013). Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids. Applied Thermal Engineering, 50(1), 763-770.
  • [18] Do, K. H., Ha, H. J. and Jang, S. P. (2010a). Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids. International Journal of Heat and Mass Transfer, 53(25-26), 5888-5894.
  • [19] Putra, N., Septiadi, W. N., Rahman, H. and Irwansyah, R. (2012). Thermal performance of screen mesh wick heat pipes with nanofluids. Experimental Thermal and Fluid Science, 40, 10-17.
  • [20] Wang, P.-Y., Chen, X.-J., Liu, Z.-H. and Liu, Y.-P. (2012). Application of nanofluid in an inclined mesh wicked heat pipes. Thermochimica Acta, 539, 100-108.
  • [21] Solomon, A. B., Ramachandran, K. and Pillai, B. C. (2012). Thermal performance of a heat pipe with nanoparticles coated wick. Applied Thermal Engineering, 36, 106-112.
  • [22] Asirvatham, L. G., Nimmagadda, R. and Wongwises, S. (2013). Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid. International Journal of Heat and Mass Transfer, 60(May 2013), 201-209.
  • [23] Saleh, R., Putra, N., Prakoso, S. P. and Septiadi, W. N. (2013). Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids. International Journal of Thermal Sciences, 63, 125-132.
  • [24] Liu, Z.-H. and Zhu, Q. (2011). Application of aqueous nanofluids in a horizontal mesh heat pipe. Energy Conversion and Management, 52(1), 292-300.
  • [25] Senthilkumar, R., Vaidyanathan, S. and Sivaraman, B. (2012). Effect of ınclination angle in heat pipe performance using copper nanofluid. Procedia Engineering, 38, 3715-3721.
  • [26] Hajian, R., Layeghi, M. and Abbaspour Sani, K. (2012). Experimental study of nanofluid effects on the thermal performance with response time of heat pipe. Energy Conversion and Management, 56(April 2012), 63-68.
  • [27] Ghanbarpour, M., Nikkam, N., Khodabandeh, R., Toprak, M. S. and Muhammed, M. (2015b). Thermal performance of screen mesh heat pipe with Al2O3 nanofluid. Experimental Thermal and Fluid Science, 66(September 2015), 213-220.
  • [28] Tsai, C. Y., Chien, H. T., Ding, P. P., Chan, B., Luh, T. Y. and Chen, P. H. (2004). Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Materials Letters, 58(9), 1461-1465.
  • [29] Senthil, R., Ratchagaraja, D., Silambarasan, R. and Manikandan, R. (2016). Contemplation of thermal characteristics by filling ratio of Al2O3 nanofluid in wire mesh heat pipe. Alexandria Engineering Journal, 55(2), 1063-1068.
  • [30] Kumaresan, G., Venkatachalapathy, S., Asirvatham, L. G. and Wongwises, S. (2014b). Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids. International Communications in Heat and Mass Transfer, 57, 208-215.
  • [31] Kim, K. M., Jeong, Y. S., Kim, I. G. and Bang, I. C. (2015). Comparison of thermal performances of water-filled, SiC nanofluid-filled and SiC nanoparticles-coated heat pipes. International Journal of Heat and Mass Transfer, 88, 862-871.
  • [32] Ghanbarpour, M., Nikkam, N., Khodabandeh, R. and Toprak, M. S. (2015a). Thermal performance of inclined screen mesh heat pipes using silver nanofluids. International Communications in Heat and Mass Transfer, 67, 14-20.
  • [33] Kang, S.-W., Wei, W.-C., Tsai, S.-H. and Huang, C.-C. (2009). Experimental investigation of nanofluids on sintered heat pipe thermal performance. Applied Thermal Engineering, 29(5-6), 973-979.
  • [34] Keshavarz Moraveji, M. and Razvarz, S. (2012). Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance. International Communications in Heat and Mass Transfer, 39(9), 1444-1448.
  • [35] Kumaresan, G., Venkatachalapathy, S. and Asirvatham, L. G. (2014a). Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids. International Journal of Heat and Mass Transfer, 72, 507-516.
  • [36] Sadeghinezhad, E., Mehrali, M., Rosen, M. A., Akhiani, A. R., Tahan Latibari, S., Mehrali, M. and Metselaar, H. S. C. (2016). Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Applied Thermal Engineering, 100, 775-787.
  • [37] Vijayakumar, M., Navaneethakrishnan, P., Kumaresan, G. and Kamatchi, R. (2017). A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al2O3 nanofluids. Journal of the Taiwan Institute of Chemical Engineers, 81, 190-198
  • [38] Noie, S. H., Heris, S. Z., Kahani, M. and Nowee, S. M. (2009). Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon. International Journal of Heat and Fluid Flow, 30(4), 700-705.
  • [39] Huminic, G. and Huminic, A. (2013). Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids. Energy Conversion and Management, 76, 393-399.
  • [40] Liu, Z.-H., Hu, R.-L., Lu, L., Zhao, F. and Xiao, H.-s. (2013). Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector. Energy Conversion and Management, 73, 135-143.
  • [41] Kamyar, A., Ong, K. S. and Saidur, R. (2013). Effects of nanofluids on heat transfer characteristics of a two-phase closed thermosyphon. International Journal of Heat and Mass Transfer, 65, 610-618.
  • [42] Yang, X.-F. and Liu, Z.-H. (2012). Flow boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid. International Journal of Heat and Mass Transfer, 55(25-26), 7375-7384.
  • [43] Sarafraz, M. M., Hormozi, F. and Peyghambarzadeh, S. M. (2014a). Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid. International Communications in Heat and Mass Transfer, 57, 297-303.
  • [44] Chen, Y.-j., Wang, P.-y. and Liu, Z.-h. (2013). Application of water-based SiO2 functionalized nanofluid in a loop thermosyphon. International Journal of Heat and Mass Transfer, 56(1-2), 59-68.
  • [45] Heris, S. Z., Mohammadpur, F. and Shakouri, A. (2014). Effect of electric field on thermal performance of thermosyphon heat pipes using nanofluids. Materials Research Bulletin, 53, 21-27.
  • [46] Menlik, T., Sozen, A., Guru, M. and Oztas, S. (2015). Heat transfer enhancement using MgO/water nanofluid in heat pipe. Journal of the Energy Institute, 88(3), 247-257.
  • [47] Sarafraz, M. M., Hormozi, F. and Peyghambarzadeh, S. M. (2014b). Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid. International Communications in Heat and Mass Transfer, 57, 297-303.
  • [48] Ciftci, E., Sozen, A. and Karaman, E. (2016). Experimental Investigation of Nano fluid Usage Including TiO2 on The Effect of Heat Pipe Performance. Politeknik Journal, 19(3), 367-376.
  • [49] Cakir, M. T. (2015). Improvıng The Effıcıency Performance Of Heat Pipes Using Alumina Containing Nano-Fluids. Journal of Faculty of Engineering and Architecture of Gazi University, 30(4), 547-556.
  • [50] Su, X., Zhang, M., Han, W. and Guo, X. (2016). Experimental study on the heat transfer performance of an oscillating heat pipe with self-rewetting nanofluid. International Journal of Heat and Mass Transfer, 100, 378-385.
  • [51] Ji, Y., Liu, G., Ma, H., Li, G. and Sun, Y. (2013). An experimental investigation of heat transfer performance in a polydimethylsiloxane (PDMS) oscillating heat pipe. Applied Thermal Engineering, 61(2), 690-697.
  • [52] Ji, Y., Ma, H., Su, F. and Wang, G. (2011). Particle size effect on heat transfer performance in an oscillating heat pipe. Experimental Thermal and Fluid Science, 35(4), 724-727.
  • [53] Qu, J. and Wu, H. (2011). Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids. International Journal of Thermal Sciences, 50(10), 1954-1962.
  • [54] Qu, J., Wu, H.-y. and Cheng, P. (2010). Thermal performance of an oscillating heat pipe with Al2O3–water nanofluids. International Communications in Heat and Mass Transfer, 37(2), 111-115.
  • [55] Tanshen, M. R., Munkhbayar, B., Nine, M. J., Chung, H. and Jeong, H. (2013). Effect of functionalized MWCNTs/water nanofluids on thermal resistance and pressure fluctuation characteristics in oscillating heat pipe. International Communications in Heat and Mass Transfer, 48, 93-98.
  • [56] Goshayeshi, H. R., Goodarzi, M. and Dahari, M. (2015). Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Experimental Thermal and Fluid Science, 68 (November 2015), 663-668.
  • [57] Riehl, R. R. and Santos, N. d. (2012). Water-copper nanofluid application in an open loop pulsating heat pipe. Applied Thermal Engineering, 42, 6-10.
  • [58] Gunnasegaran, P., Abdullah, M. Z. and Shuaib, N. H. (2013). Influence of nanofluid on heat transfer in a loop heat pipe. International Communications in Heat and Mass Transfer, 47(October 2013), 82-91
  • [59] Taslimifar, M., Mohammadi, M., Afshin, H., Saidi, M. H. and Shafii, M. B. (2013). Overall thermal performance of ferrofluidic open loop pulsating heat pipes: An experimental approach. International Journal of Thermal Sciences, 65, 234-241.
  • [60] Huminic, G. and Huminic, A. (2013). Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids. Energy Conversion and Management, 76, 393-399.
  • [61] Tahery AA, P. S., Zehforoosh A (2010). Numerical study of heat transfer performance of homogenous nanofluids under natural convection. International Journal of Chemical Engineering and Applications, 1(1), 49-54.
  • [62] Vasu, V., Krishna, K. and Kumar, A. (2008). Application of nanofluids in thermal design of compact heat exchanger. Int J Nanotechnol Appl, 2(1), 75-78.
  • [63] Murugesan, C. and Sivan, S. (2010). Limits for thermal conductivity of nanofluids. Thermal Science, 14(1), 65-71.
  • [64] Shafahi, M., Bianco, V., Vafai, K. and Manca, O. (2010a). An investigation of the thermal performance of cylindrical heat pipes using nanofluids. International Journal of Heat and Mass Transfer, 53(1-3), 376-383.
There are 64 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Reviews
Authors

Nesrin Adıgüzel 0000-0001-7610-2757

Perihan Irgatoğlu 0000-0001-9854-7765

Publication Date June 28, 2021
Submission Date April 13, 2021
Published in Issue Year 2021 Volume: 3 Issue: 1

Cite

APA Adıgüzel, N., & Irgatoğlu, P. (2021). Investigation of The Effect of Nanofluids on Heat Transfer Performance of Heat Pipes. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, 3(1), 44-73.
AMA Adıgüzel N, Irgatoğlu P. Investigation of The Effect of Nanofluids on Heat Transfer Performance of Heat Pipes. KMUJENS. June 2021;3(1):44-73.
Chicago Adıgüzel, Nesrin, and Perihan Irgatoğlu. “Investigation of The Effect of Nanofluids on Heat Transfer Performance of Heat Pipes”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi 3, no. 1 (June 2021): 44-73.
EndNote Adıgüzel N, Irgatoğlu P (June 1, 2021) Investigation of The Effect of Nanofluids on Heat Transfer Performance of Heat Pipes. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 3 1 44–73.
IEEE N. Adıgüzel and P. Irgatoğlu, “Investigation of The Effect of Nanofluids on Heat Transfer Performance of Heat Pipes”, KMUJENS, vol. 3, no. 1, pp. 44–73, 2021.
ISNAD Adıgüzel, Nesrin - Irgatoğlu, Perihan. “Investigation of The Effect of Nanofluids on Heat Transfer Performance of Heat Pipes”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 3/1 (June 2021), 44-73.
JAMA Adıgüzel N, Irgatoğlu P. Investigation of The Effect of Nanofluids on Heat Transfer Performance of Heat Pipes. KMUJENS. 2021;3:44–73.
MLA Adıgüzel, Nesrin and Perihan Irgatoğlu. “Investigation of The Effect of Nanofluids on Heat Transfer Performance of Heat Pipes”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, vol. 3, no. 1, 2021, pp. 44-73.
Vancouver Adıgüzel N, Irgatoğlu P. Investigation of The Effect of Nanofluids on Heat Transfer Performance of Heat Pipes. KMUJENS. 2021;3(1):44-73.

The articles in KMUJENS are licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. Commercial use of the content is prohibited. Articles in the journal can be used as long as the author and original source are cited.