Research Article
BibTex RIS Cite
Year 2021, Volume: 3 Issue: 1, 7 - 14, 28.06.2021

Abstract

Dairesel-hiperbolik Fibonacci ve Lucas kuaterniyonlarının bazı özelliklerini araştırıyoruz (kısaca $\mathbb{CH}FLQ $ ile gösterilen). Ayrıca negatif indislilerini tanıtıyoruz ve kombinatorik toplamlarını elde ediyoruz. Son olarak bu $\mathbb{CH}FLQ$ kuaterniyonlarının genel bir toplamını, üstel ve Poisson üreteçleri sunuyoruz.

References

  • S.L. Adler, \emph{Quaternionic quantum mechanics and quantum fields}, New York: Oxford University Press, 1994.
  • F.T. Aydın, \emph{Circular-hyperbolic Fibonacci quaternions}, Notes on Number Theory and Discrete Mathematics, \textbf{26}(2), (2020), 167-176.
  • F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, P. Zampetti, \emph{Hyperbolic Numbers} in Geometry of Minkowski Space-Time(pp.3-23), Springer, Heidelberg, 2011.
  • Cihan A., Azak A.Z., G\"{u}ng\"{o}r M.A., Tosun M., A study of Dual Hyperbolic Fibonacci and Lucas numbers, An. St. Univ. Ovidius Constanta, 27(1), 35–48, (2019).
  • Dattoli G., Licciardi S., Pidatella R.M., Sabia E., Hybrid complex numbers: The matrix version, Adv. Appl. Clifford Algebras, 28(3), 58, (2018).
  • Dixon G.M., Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics, Kluvwer Academic Publishers, ISBN 0-7923-2890-6, (1994).
  • Gargoubi H., Kossentini S., $f-$algebra structure on hyperbolic numbers, Adv. Appl. Clifford Algebras, 26(4), 1211–1233, (2016).
  • G\"{u}ng\"{o}r M.A. , Azak A.Z., Investigation of dual complex Fibonacci, dual complex Lucas numbers and their properties, Advances in Applied Clifford Algebras, 27(4), 3083–3096, (2017).
  • Halıcı S., On Fibonacci quaternions, Advances in Applied Clifford Algebras, 22, 321-327, (2012).
  • Hamilton W.R., Elements of Quaternions, Longmans, Green and Co., London, (1866).
  • Horadam A.F., Complex Fibonacci Numbers and Fibonacci Quaternions, Amer. Math. Monthly, 70, 289-291, (1963).
  • Horadam A.F., Quaternion recurrence relations, Ulam Quarterly, 2, 22-33, (1993).
  • Irmak N., More identities for Fibonacci and Lucas quaternions, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 369-375, (2020).
  • Iyer M.R., A note on Fibonacci quaternions, Fibonacci Quarterly, 3, 225-229, (1969).
  • Iyer M.R., Some results on Fibonacci quaternions, Fibonacci Quarterly, 7, 201-210, (1969).
  • Koshy T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc., NY, (2001).
  • Motter A.E., Rosa A.F., Hyperbolic calculus, Adv. Appl. Clifford Algebras, 8(1), 109–128, (1998).
  • Nurkan S.K., G\"{u}ven I.A., Dual Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 25(2), 403–414, (2015).
  • Nurkan S.K., G\"{u}ven I.A., A New Approach to Fibonacci, Lucas numbers and dual vectors, Adv. Appl. Clifford Algebras, 25(3), 577–590, (2015).
  • Ollerton R.L., Shannon A.G., An extension of circular and hyperbolic functions, International Journal of Mathematical Education in Science and Technology, 23(4), 611–635, (1992).
  • \c{S}ent\"{u}rk T.D., Bilgici G., Da\c{s}demir A., \"{U}nal Z., A Study on Horadam Hybrid Numbers, Turkish Journal of Mathematics, 44(4), 1212-1221, (2020).
  • Ward J.P., Quaternions and Cayley Numbers: Algebra and Applications, Springer Science and Business Media, (1997).

A study on circular-hyperbolic Fibonacci and Lucas quaternions

Year 2021, Volume: 3 Issue: 1, 7 - 14, 28.06.2021

Abstract

We investigate some properties of circular-hyperbolic Fibonacci and Lucas quaternions ($\mathbb{CH}FLQ$ for short), we introduce their negative subscripts and obtain several combinatorial sums. Finally, we present a general summation, exponential and Poisson generating functions of the $\mathbb{CH}FLQ$.

References

  • S.L. Adler, \emph{Quaternionic quantum mechanics and quantum fields}, New York: Oxford University Press, 1994.
  • F.T. Aydın, \emph{Circular-hyperbolic Fibonacci quaternions}, Notes on Number Theory and Discrete Mathematics, \textbf{26}(2), (2020), 167-176.
  • F. Catoni, D. Boccaletti, R. Cannata, V. Catoni, P. Zampetti, \emph{Hyperbolic Numbers} in Geometry of Minkowski Space-Time(pp.3-23), Springer, Heidelberg, 2011.
  • Cihan A., Azak A.Z., G\"{u}ng\"{o}r M.A., Tosun M., A study of Dual Hyperbolic Fibonacci and Lucas numbers, An. St. Univ. Ovidius Constanta, 27(1), 35–48, (2019).
  • Dattoli G., Licciardi S., Pidatella R.M., Sabia E., Hybrid complex numbers: The matrix version, Adv. Appl. Clifford Algebras, 28(3), 58, (2018).
  • Dixon G.M., Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics, Kluvwer Academic Publishers, ISBN 0-7923-2890-6, (1994).
  • Gargoubi H., Kossentini S., $f-$algebra structure on hyperbolic numbers, Adv. Appl. Clifford Algebras, 26(4), 1211–1233, (2016).
  • G\"{u}ng\"{o}r M.A. , Azak A.Z., Investigation of dual complex Fibonacci, dual complex Lucas numbers and their properties, Advances in Applied Clifford Algebras, 27(4), 3083–3096, (2017).
  • Halıcı S., On Fibonacci quaternions, Advances in Applied Clifford Algebras, 22, 321-327, (2012).
  • Hamilton W.R., Elements of Quaternions, Longmans, Green and Co., London, (1866).
  • Horadam A.F., Complex Fibonacci Numbers and Fibonacci Quaternions, Amer. Math. Monthly, 70, 289-291, (1963).
  • Horadam A.F., Quaternion recurrence relations, Ulam Quarterly, 2, 22-33, (1993).
  • Irmak N., More identities for Fibonacci and Lucas quaternions, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 369-375, (2020).
  • Iyer M.R., A note on Fibonacci quaternions, Fibonacci Quarterly, 3, 225-229, (1969).
  • Iyer M.R., Some results on Fibonacci quaternions, Fibonacci Quarterly, 7, 201-210, (1969).
  • Koshy T., Fibonacci and Lucas Numbers with Applications, John Wiley and Sons Inc., NY, (2001).
  • Motter A.E., Rosa A.F., Hyperbolic calculus, Adv. Appl. Clifford Algebras, 8(1), 109–128, (1998).
  • Nurkan S.K., G\"{u}ven I.A., Dual Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 25(2), 403–414, (2015).
  • Nurkan S.K., G\"{u}ven I.A., A New Approach to Fibonacci, Lucas numbers and dual vectors, Adv. Appl. Clifford Algebras, 25(3), 577–590, (2015).
  • Ollerton R.L., Shannon A.G., An extension of circular and hyperbolic functions, International Journal of Mathematical Education in Science and Technology, 23(4), 611–635, (1992).
  • \c{S}ent\"{u}rk T.D., Bilgici G., Da\c{s}demir A., \"{U}nal Z., A Study on Horadam Hybrid Numbers, Turkish Journal of Mathematics, 44(4), 1212-1221, (2020).
  • Ward J.P., Quaternions and Cayley Numbers: Algebra and Applications, Springer Science and Business Media, (1997).
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Nazmiye Yılmaz 0000-0002-7302-2281

Publication Date June 28, 2021
Submission Date May 3, 2021
Published in Issue Year 2021 Volume: 3 Issue: 1

Cite

APA Yılmaz, N. (2021). A study on circular-hyperbolic Fibonacci and Lucas quaternions. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, 3(1), 7-14.
AMA Yılmaz N. A study on circular-hyperbolic Fibonacci and Lucas quaternions. KMUJENS. June 2021;3(1):7-14.
Chicago Yılmaz, Nazmiye. “A Study on Circular-Hyperbolic Fibonacci and Lucas Quaternions”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi 3, no. 1 (June 2021): 7-14.
EndNote Yılmaz N (June 1, 2021) A study on circular-hyperbolic Fibonacci and Lucas quaternions. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 3 1 7–14.
IEEE N. Yılmaz, “A study on circular-hyperbolic Fibonacci and Lucas quaternions”, KMUJENS, vol. 3, no. 1, pp. 7–14, 2021.
ISNAD Yılmaz, Nazmiye. “A Study on Circular-Hyperbolic Fibonacci and Lucas Quaternions”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 3/1 (June 2021), 7-14.
JAMA Yılmaz N. A study on circular-hyperbolic Fibonacci and Lucas quaternions. KMUJENS. 2021;3:7–14.
MLA Yılmaz, Nazmiye. “A Study on Circular-Hyperbolic Fibonacci and Lucas Quaternions”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, vol. 3, no. 1, 2021, pp. 7-14.
Vancouver Yılmaz N. A study on circular-hyperbolic Fibonacci and Lucas quaternions. KMUJENS. 2021;3(1):7-14.

The articles in KMUJENS are licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. Commercial use of the content is prohibited. Articles in the journal can be used as long as the author and original source are cited.