Research Article
BibTex RIS Cite

Trajectories Generated by Special Smarandache Curves According to Positional Adapted Frame

Year 2021, Volume: 3 Issue: 1, 15 - 23, 28.06.2021

Abstract

In differential geometry, the theory of curves has an important place. The concept of moving frame defined on curves is an important part of this theory. Recently, \"Ozen and Tosun have introduced a new moving frame for the trajectories with non-vanishing angular momentum in 3-dimensional Euclidean space (J. Math. Sci. Model. 4(1), 2021). This frame is denoted by $\left\{\mathbf{T}, \mathbf{M}, \mathbf{Y} \right\}$ and called as positional adapted frame. In the present study, we investigate the special trajectories generated by $\mathbf{TM}$, $\mathbf{TY}$ and $\mathbf{MY}-$Smarandache curves according to positional adapted frame in ${{E}^{3}}$ and we calculate the Serret-Frenet apparatus of these trajectories. Later, we consider a specific curve and obtain the parametric equations of the aforesaid special trajectories for this curve. Finally, we give the graphics of these obtained special trajectories which were drawn with the mathematica program. The results obtained here are new contributions to the field. We expect that these results will be useful in some specific applications of differential geometry and particle kinematics in the future.

References

  • Chen B.Y., When does the position vector of a space curve always lie in its rectifying plane?, Am. Math. Mon., 110(2), 147-152, (2003).
  • Erkan E., and Yüce S., Serret-Frenet frame and curvatures of Bezier curves, Mathematics, 6(12), 321, (2018).
  • İlarslan K., and Nesovic E., Some characterizations of osculating curves in the Euclidean spaces, Demonstr. Math., 41(4), 931-939, (2008).
  • Ali A.T., Special Smarandache curves in the Euclidian space, International J. Math. Combin., 2, 30-36, (2010).
  • Özen K.E., and Tosun M., A new moving frame for trajectories with non-vanishing angular momentum, J. Math. Sci. Model., 4(1), 7-18, (2021).
  • Şenyurt S., and Çalışkan A., Smarandache curves of Bertrand curves pair according to Frenet frame, Boletim da Sociedade Paranaense de Matematica, 39(5), 163-173, (2021).
  • Shifrin T., Differential Geometry: A First Course in Curves and Surfaces, University of Georgia, Preliminary Version (2008).
  • Bishop R.L., There is more than one way to frame a curve, Am. Math. Mon., 82, 246-251, (1975).
  • Yılmaz S., and Turgut M., A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl., 371(2), 764-776, (2010).
  • Soliman M.A., Abdel-All N.H., Hussien R.A., and Youssef T., Evolution of space curves using Type-3 Bishop frame, Caspian J. Math. Sci., 8(1), 58-73, (2019).
  • Turgut M., and Yılmaz S., Smarandache curves in Minkowski space-time, International J. Math. Combin., 3, 51-55, (2008).
  • Bektaş Ö., and Yüce S., Smarandache curves according to Darboux frame in $E^3$, Romanian Journal of Mathematics and Computer Science, 3(1), 48-59, (2013).
  • Çetin M., Tuncer Y., and Karacan M.K., Smarandache curves according to Bishop frame in Euclidean 3-space, Gen. Math. Notes, 20, 50-66, (2014).
  • Taşköprü K., and Tosun M., Smarandache curves on $S^2$, Boletim da Sociedade Paranaense de Matematica, 32(1), 51-59, (2014).
  • Şenyurt S., Altun Y., and Cevahir C. Smarandache curves according to Sabban frame belonging to Mannheim curves pair, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 500-513, (2019).
  • Özen K.E., and Tosun M., A new moving frame for trajectories on regular surfaces, Ikonion Journal of Mathematics, 3(1), 20-34, (2021).
Year 2021, Volume: 3 Issue: 1, 15 - 23, 28.06.2021

Abstract

Diferansiyel geometride eğriler teorisi önemli bir yere sahiptir. Eğriler üzerinde tanımlanan hareketli çatı kavramı bu teorinin önemli bir parçasıdır. Yakın geçmişte, Özen ve Tosun, 3 boyutlu Öklid uzayında sıfırlanmayan açısal momentuma sahip yörüngeler için yeni bir hareketli çatı tanıttı (J. Math. Sci. Model. 4(1), 2021). Bu çatı $\left\{\mathbf{T}, \mathbf{M}, \mathbf{Y} \right\}$ile gösterilir ve konumsal uyarlanmış çatı olarak adlandırılır. Bu çalışmada konumsal uyarlanmış çatıya göre $\mathbf{TM}$, $\mathbf{TY}$ ve $\mathbf{MY}-$Smarandache eğrilerinin ürettiği özel yörüngeleri ${{E}^{3}}$ de araştırdık ve bu yörüngelerin Serret-Frenet elemanlarını hesapladık. Daha sonra, spesifik bir eğriyi ele aldık ve bu eğri için, daha önce belirtilen özel yörüngelerin parametrik denklemlerini elde ettik. Son olarak elde edilen bu özel yörüngelerin mathematica programıyla çizilmiş grafiklerini verdik. Burada elde edilen sonuçlar alana yeni birer katkıdır. Bu sonuçların gelecekte diferansiyel geometri ve parçacık kinematiğinin bazı özel uygulamalarında faydalı olacağını umuyoruz.

References

  • Chen B.Y., When does the position vector of a space curve always lie in its rectifying plane?, Am. Math. Mon., 110(2), 147-152, (2003).
  • Erkan E., and Yüce S., Serret-Frenet frame and curvatures of Bezier curves, Mathematics, 6(12), 321, (2018).
  • İlarslan K., and Nesovic E., Some characterizations of osculating curves in the Euclidean spaces, Demonstr. Math., 41(4), 931-939, (2008).
  • Ali A.T., Special Smarandache curves in the Euclidian space, International J. Math. Combin., 2, 30-36, (2010).
  • Özen K.E., and Tosun M., A new moving frame for trajectories with non-vanishing angular momentum, J. Math. Sci. Model., 4(1), 7-18, (2021).
  • Şenyurt S., and Çalışkan A., Smarandache curves of Bertrand curves pair according to Frenet frame, Boletim da Sociedade Paranaense de Matematica, 39(5), 163-173, (2021).
  • Shifrin T., Differential Geometry: A First Course in Curves and Surfaces, University of Georgia, Preliminary Version (2008).
  • Bishop R.L., There is more than one way to frame a curve, Am. Math. Mon., 82, 246-251, (1975).
  • Yılmaz S., and Turgut M., A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl., 371(2), 764-776, (2010).
  • Soliman M.A., Abdel-All N.H., Hussien R.A., and Youssef T., Evolution of space curves using Type-3 Bishop frame, Caspian J. Math. Sci., 8(1), 58-73, (2019).
  • Turgut M., and Yılmaz S., Smarandache curves in Minkowski space-time, International J. Math. Combin., 3, 51-55, (2008).
  • Bektaş Ö., and Yüce S., Smarandache curves according to Darboux frame in $E^3$, Romanian Journal of Mathematics and Computer Science, 3(1), 48-59, (2013).
  • Çetin M., Tuncer Y., and Karacan M.K., Smarandache curves according to Bishop frame in Euclidean 3-space, Gen. Math. Notes, 20, 50-66, (2014).
  • Taşköprü K., and Tosun M., Smarandache curves on $S^2$, Boletim da Sociedade Paranaense de Matematica, 32(1), 51-59, (2014).
  • Şenyurt S., Altun Y., and Cevahir C. Smarandache curves according to Sabban frame belonging to Mannheim curves pair, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 500-513, (2019).
  • Özen K.E., and Tosun M., A new moving frame for trajectories on regular surfaces, Ikonion Journal of Mathematics, 3(1), 20-34, (2021).
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Kahraman Esen Özen 0000-0002-3299-6709

Murat Tosun 0000-0002-4888-1412

Publication Date June 28, 2021
Submission Date June 11, 2021
Published in Issue Year 2021 Volume: 3 Issue: 1

Cite

APA Özen, K. E., & Tosun, M. (2021). Trajectories Generated by Special Smarandache Curves According to Positional Adapted Frame. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, 3(1), 15-23.
AMA Özen KE, Tosun M. Trajectories Generated by Special Smarandache Curves According to Positional Adapted Frame. KMUJENS. June 2021;3(1):15-23.
Chicago Özen, Kahraman Esen, and Murat Tosun. “Trajectories Generated by Special Smarandache Curves According to Positional Adapted Frame”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi 3, no. 1 (June 2021): 15-23.
EndNote Özen KE, Tosun M (June 1, 2021) Trajectories Generated by Special Smarandache Curves According to Positional Adapted Frame. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 3 1 15–23.
IEEE K. E. Özen and M. Tosun, “Trajectories Generated by Special Smarandache Curves According to Positional Adapted Frame”, KMUJENS, vol. 3, no. 1, pp. 15–23, 2021.
ISNAD Özen, Kahraman Esen - Tosun, Murat. “Trajectories Generated by Special Smarandache Curves According to Positional Adapted Frame”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 3/1 (June 2021), 15-23.
JAMA Özen KE, Tosun M. Trajectories Generated by Special Smarandache Curves According to Positional Adapted Frame. KMUJENS. 2021;3:15–23.
MLA Özen, Kahraman Esen and Murat Tosun. “Trajectories Generated by Special Smarandache Curves According to Positional Adapted Frame”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, vol. 3, no. 1, 2021, pp. 15-23.
Vancouver Özen KE, Tosun M. Trajectories Generated by Special Smarandache Curves According to Positional Adapted Frame. KMUJENS. 2021;3(1):15-23.

The articles in KMUJENS are licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. Commercial use of the content is prohibited. Articles in the journal can be used as long as the author and original source are cited.