Research Article
BibTex RIS Cite

3D Printed Patch Antenna Design with Coplanar Waveguide Feed for Ultra Wideband Wireless Communication Applications

Year 2024, Volume: 6 Issue: 1, 44 - 50, 15.06.2024
https://doi.org/10.55213/kmujens.1465533

Abstract

Advancements in wireless communication technologies are driving the need for high-speed data transfer. In this context, ultra-wideband (UWB) technology emerges as a new wireless communication solution capable of operating over a wide frequency range. The production of antennas, an essential component of this technology, is drawing attention to 3D printing technology. This study examines the design, production, and characterization of a compact monopole patch antenna designed for use in wideband wireless communication systems using 3D printing technology. A triangular patch serving as the radiator is fed by a coplanar waveguide resembling a tapered trapezoid. This compact antenna, with a total size of 20.7×28.6 mm², utilizes PLA material with a thickness of 1 mm as the substrate. The conductive parts consisting of the patch and ground planes of the proposed UWB antenna are constructed using copper tape. With a working frequency range of 2.75-13 GHz and a 165% fractional bandwidth, the antenna provides over 83% radiation efficiency across the operating band. The antenna exhibits a maximum gain of 5.5 dBi and features omnidirectional radiation characteristics. Additionally, measurements confirm the radiation performance of the proposed antenna. This study highlights the usability and design flexibility of 3D printing technology in patch antenna production. Future research on this technology is expected to further contribute to the advancement of wireless communication systems.

References

  • ASTM (2012). Standard terminology for additive manufacturing technologies. ASTM International F2792-12a, 46:10918-10928.
  • Bjorgaard J, Hoyack M, Huber E, Mirzaee M, Chang YH, Noghanian S (2018). Design and fabrication of antennas using 3D printing. Progress In Electromagnetics Research C, 84:119-134.
  • Chen LF, Ong CK, Neo CP, Varadan VV, Varadan VK (2004). Microwave electronics: measurement and materials characterization. John Wiley & Sons.
  • FCC (2002). Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems. Federal Communications Commission.
  • Garg R, Bhartia P, Bahl I, Ittipiboon I (2001). Microstrip antenna design handbook. Artech House.
  • Hull CW (1984). Apparatus for production of three-dimensional objects by stereolithography. United States Patent, Appl. No. 638905.
  • Kirtania SG, Younes BA, Hossain AR, Karacolak T, Sekhar PK (2021). CPW-fed flexible ultra-wideband antenna for IoT applications. Micromachines, 12(4):453.
  • Musa L, Kumar NK, Rahim SZA, Rasidi MSM, Rennie AEW, Rahman R, Kanani AY, Azmi AA (2022). A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling. Journal of Materials Research and Technology, 20:2841-2858.
  • Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143:172-196.
  • Olan-Nuñez KN, Murphy-Arteaga RS (2023). Dual-band antenna on 3D-printed substrate for 2.4/5.8 GHz ISM-band applications. Electronics, 12(11):2368.
  • Peram A, Reddy ASR, Prasad MNG (2019). Miniaturized single layer ultra wide band (UWB) patch antenna using a partial ground plane. Wireless Personal Communications, 106(3):1275-1291.
  • Ramadan M, Dahle R (2019). Characterization of 3-D printed flexible heterogeneous substrate designs for wearable antennas. IEEE Transactions on Antennas and Propagation, 67(5):2896–2903.
  • Sawant KK, Kumar CS (2015). CPW fed hexagonal micro strip fractal antenna for UWB wireless communications. AEU-International Journal of Electronics and Communications, 69(1):31-38.
  • Schantz HG (2004). A brief history of UWB antennas. IEEE Aerospace and Electronic Systems Magazine, 19(4):22-26.
  • Simons RN (2004). Coplanar waveguide circuits, components, and systems. John Wiley & Sons.
  • Tariq S, Hussain Q, Alzaidi MS, Ghoniem RM, Alibakhshikenari M, Althuwayb AA, Virdee BS, Aslam M (2023). Frequency selective surfaces-based miniaturized wideband high-gain monopole antenna for UWB systems. AEU-International Journal of Electronics and Communications, 170:154841.
  • Toktaş A, Yerlikaya M, Yiğit E (2016). Microstrip-fed Triangular UWB Microstrip Antenna Based on DGS. International Journal of Applied Mathematics Electronics and Computers, Special Issue-1:43-47.
  • Verma S, Kumar P (2014). Printed Newton's egg curved monopole antenna for ultrawideband applications. IET Microwaves, Antennas & Propagation, 8(4): 278-286.
  • Yadav A, Singh VK, Bhoi AK, Marques G, Garcia-Zapirain B, Díez IT (2020). Wireless body area networks: UWB wearable textile antenna for telemedicine and mobile health systems. Micromachines, 11(6):558.
  • Wang Y, Zhang X, Su R, Chen M, Shen C, Xu H, He R (2023). 3D printed antennas for 5G communication: current progress and future challenges. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2(1):100065.

Ultra Geniş Bant Kablosuz Haberleşme Uygulamaları İçin Eş Düzlemsel Dalga Kılavuz Beslemeli 3D Baskılı Yama Anten Tasarımı

Year 2024, Volume: 6 Issue: 1, 44 - 50, 15.06.2024
https://doi.org/10.55213/kmujens.1465533

Abstract

Kablosuz iletişim teknolojilerindeki gelişmeler, yüksek hızlı veri transferi için ihtiyacı artırıyor. Bu bağlamda, ultra geniş bant (UGB) teknolojisi, geniş frekans aralığında çalışabilen yeni bir kablosuz iletişim çözümü olarak öne çıkıyor. Bu teknolojinin önemli bir bileşeni olan antenlerin üretimi için ise 3D baskı teknolojisi dikkat çekiyor. Bu çalışmada, geniş bantlı kablosuz haberleşme sistemlerinde kullanılmak üzere tasarlanmış kompakt bir monopol yama antenin 3D baskı teknolojisi ile tasarımı, üretimi ve karakterizasyonu incelenmiştir. Işıyıcı olarak kullanılan üçgen bir yama, dik yamuğa benzeyen toprak düzlemlerinden oluşan eş düzlemsel dalga kılavuz beslenmiştir. Toplam boyutu 20.7×28.6 mm2 olan bu kompakt antenin üretiminde alttaş olarak 1 mm kalınlığında PLA malzemesi tercih edilmiştir. Önerilen UGB antenin yama ve toprak düzlemlerinden oluşan iletken kısımları ise bakır bant ile kaplanarak oluşturulmuştur. 2.75-13 GHz çalışma frekans aralığı ile %165 oransal bant genişliğine sahip anten çalışma bandı boyunca %83’ün üzerinde bir ışıma verimliği sunmaktadır. Maksimum kazanç değerinin 5.5 dBi olduğu 3D baskılı UGB yama anten, çok yönlü ışıma karakteristiğine de sahiptir. Ayrıca, yapılan ölçümlerle önerilen antenin ışıma performansı da doğrulanmıştır. Bu çalışma ile 3D baskı teknolojisinin yama antenlerin üretimindeki kullanılabilirliği ve tasarım esnekliği vurgulanmaktadır. Gelecekte, bu teknoloji üzerindeki çalışmaların kablosuz haberleşme sistemlerinin daha da gelişmesine katkı sağlaması beklenmektedir.

References

  • ASTM (2012). Standard terminology for additive manufacturing technologies. ASTM International F2792-12a, 46:10918-10928.
  • Bjorgaard J, Hoyack M, Huber E, Mirzaee M, Chang YH, Noghanian S (2018). Design and fabrication of antennas using 3D printing. Progress In Electromagnetics Research C, 84:119-134.
  • Chen LF, Ong CK, Neo CP, Varadan VV, Varadan VK (2004). Microwave electronics: measurement and materials characterization. John Wiley & Sons.
  • FCC (2002). Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems. Federal Communications Commission.
  • Garg R, Bhartia P, Bahl I, Ittipiboon I (2001). Microstrip antenna design handbook. Artech House.
  • Hull CW (1984). Apparatus for production of three-dimensional objects by stereolithography. United States Patent, Appl. No. 638905.
  • Kirtania SG, Younes BA, Hossain AR, Karacolak T, Sekhar PK (2021). CPW-fed flexible ultra-wideband antenna for IoT applications. Micromachines, 12(4):453.
  • Musa L, Kumar NK, Rahim SZA, Rasidi MSM, Rennie AEW, Rahman R, Kanani AY, Azmi AA (2022). A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling. Journal of Materials Research and Technology, 20:2841-2858.
  • Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143:172-196.
  • Olan-Nuñez KN, Murphy-Arteaga RS (2023). Dual-band antenna on 3D-printed substrate for 2.4/5.8 GHz ISM-band applications. Electronics, 12(11):2368.
  • Peram A, Reddy ASR, Prasad MNG (2019). Miniaturized single layer ultra wide band (UWB) patch antenna using a partial ground plane. Wireless Personal Communications, 106(3):1275-1291.
  • Ramadan M, Dahle R (2019). Characterization of 3-D printed flexible heterogeneous substrate designs for wearable antennas. IEEE Transactions on Antennas and Propagation, 67(5):2896–2903.
  • Sawant KK, Kumar CS (2015). CPW fed hexagonal micro strip fractal antenna for UWB wireless communications. AEU-International Journal of Electronics and Communications, 69(1):31-38.
  • Schantz HG (2004). A brief history of UWB antennas. IEEE Aerospace and Electronic Systems Magazine, 19(4):22-26.
  • Simons RN (2004). Coplanar waveguide circuits, components, and systems. John Wiley & Sons.
  • Tariq S, Hussain Q, Alzaidi MS, Ghoniem RM, Alibakhshikenari M, Althuwayb AA, Virdee BS, Aslam M (2023). Frequency selective surfaces-based miniaturized wideband high-gain monopole antenna for UWB systems. AEU-International Journal of Electronics and Communications, 170:154841.
  • Toktaş A, Yerlikaya M, Yiğit E (2016). Microstrip-fed Triangular UWB Microstrip Antenna Based on DGS. International Journal of Applied Mathematics Electronics and Computers, Special Issue-1:43-47.
  • Verma S, Kumar P (2014). Printed Newton's egg curved monopole antenna for ultrawideband applications. IET Microwaves, Antennas & Propagation, 8(4): 278-286.
  • Yadav A, Singh VK, Bhoi AK, Marques G, Garcia-Zapirain B, Díez IT (2020). Wireless body area networks: UWB wearable textile antenna for telemedicine and mobile health systems. Micromachines, 11(6):558.
  • Wang Y, Zhang X, Su R, Chen M, Shen C, Xu H, He R (2023). 3D printed antennas for 5G communication: current progress and future challenges. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2(1):100065.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering Electromagnetics, Antennas and Propagation
Journal Section Research Articles
Authors

Mehmet Yerlikaya 0000-0001-8018-840X

İbrahim Kuşulay 0009-0005-6847-4442

Huseyin Duysak 0000-0002-2748-0660

Early Pub Date June 13, 2024
Publication Date June 15, 2024
Submission Date April 5, 2024
Acceptance Date May 28, 2024
Published in Issue Year 2024 Volume: 6 Issue: 1

Cite

APA Yerlikaya, M., Kuşulay, İ., & Duysak, H. (2024). Ultra Geniş Bant Kablosuz Haberleşme Uygulamaları İçin Eş Düzlemsel Dalga Kılavuz Beslemeli 3D Baskılı Yama Anten Tasarımı. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, 6(1), 44-50. https://doi.org/10.55213/kmujens.1465533
AMA Yerlikaya M, Kuşulay İ, Duysak H. Ultra Geniş Bant Kablosuz Haberleşme Uygulamaları İçin Eş Düzlemsel Dalga Kılavuz Beslemeli 3D Baskılı Yama Anten Tasarımı. KMUJENS. June 2024;6(1):44-50. doi:10.55213/kmujens.1465533
Chicago Yerlikaya, Mehmet, İbrahim Kuşulay, and Huseyin Duysak. “Ultra Geniş Bant Kablosuz Haberleşme Uygulamaları İçin Eş Düzlemsel Dalga Kılavuz Beslemeli 3D Baskılı Yama Anten Tasarımı”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi 6, no. 1 (June 2024): 44-50. https://doi.org/10.55213/kmujens.1465533.
EndNote Yerlikaya M, Kuşulay İ, Duysak H (June 1, 2024) Ultra Geniş Bant Kablosuz Haberleşme Uygulamaları İçin Eş Düzlemsel Dalga Kılavuz Beslemeli 3D Baskılı Yama Anten Tasarımı. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 6 1 44–50.
IEEE M. Yerlikaya, İ. Kuşulay, and H. Duysak, “Ultra Geniş Bant Kablosuz Haberleşme Uygulamaları İçin Eş Düzlemsel Dalga Kılavuz Beslemeli 3D Baskılı Yama Anten Tasarımı”, KMUJENS, vol. 6, no. 1, pp. 44–50, 2024, doi: 10.55213/kmujens.1465533.
ISNAD Yerlikaya, Mehmet et al. “Ultra Geniş Bant Kablosuz Haberleşme Uygulamaları İçin Eş Düzlemsel Dalga Kılavuz Beslemeli 3D Baskılı Yama Anten Tasarımı”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 6/1 (June 2024), 44-50. https://doi.org/10.55213/kmujens.1465533.
JAMA Yerlikaya M, Kuşulay İ, Duysak H. Ultra Geniş Bant Kablosuz Haberleşme Uygulamaları İçin Eş Düzlemsel Dalga Kılavuz Beslemeli 3D Baskılı Yama Anten Tasarımı. KMUJENS. 2024;6:44–50.
MLA Yerlikaya, Mehmet et al. “Ultra Geniş Bant Kablosuz Haberleşme Uygulamaları İçin Eş Düzlemsel Dalga Kılavuz Beslemeli 3D Baskılı Yama Anten Tasarımı”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, vol. 6, no. 1, 2024, pp. 44-50, doi:10.55213/kmujens.1465533.
Vancouver Yerlikaya M, Kuşulay İ, Duysak H. Ultra Geniş Bant Kablosuz Haberleşme Uygulamaları İçin Eş Düzlemsel Dalga Kılavuz Beslemeli 3D Baskılı Yama Anten Tasarımı. KMUJENS. 2024;6(1):44-50.

The articles in KMUJENS are licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. Commercial use of the content is prohibited. Articles in the journal can be used as long as the author and original source are cited.