Review
BibTex RIS Cite

Böbrek Doku Mühendisliğinde Hücresizleştirilmiş Hücre Dışı Matriks

Year 2025, Volume: 7 Issue: 1, 1 - 6
https://doi.org/10.55213/kmujens.1520796

Abstract

Böbrekler, vücudun atık ürünlerini filtreleyen ve hayati işlevleri yerine getiren organlardır. Bu hayati organların fonksiyonlarını yitirmesi sonucu, geri döndürülemez ve çeşitli sonuçlar doğuran böbrek hastalıkları ortaya çıkabilmektedir. Kronik böbrek hastalığı (KBH), akut böbrek hastalığı (ABH) ve böbrek yetmezliği gibi durumlar, ciddi sağlık sorunlarına yol açmakta ve genellikle diyaliz veya böbrek organ nakli gerektirmektedir. Böbrek doku mühendisliği, bu sorunlara yenilikçi çözümler sunmakta ve organ nakline olan ihtiyacı azaltmayı hedeflemektedir. Hücresizleştirme teknolojisi, donör böbreklerden elde edilen hücrelerin extraselüler matrikslerinden (ECM) hücresel bileşenlerin uzaklaştırılması ve doğal ECM’nin korunarak yeniden fonksiyonelleştirilmesi sürecini içermektedir. Bu yöntem, böbrek yetmezliği tedavisinde umut vaat etmekte ve klinik uygulamalarda büyük potansiyel taşımaktadır.

References

  • Agarwal R (2016). Defining end-stage renal disease in clinical trials: a framework for adjudication. Nephrol Dial Transplant, 31(6): 864-867.
  • Ajmal L, Ajmal S, Ajmal M, Nawaz G (2023). Organ regeneration through stem cells and tissue engineering. Cureus, 15(1): e34336.
  • Badylak SF, Freytes DO, Gilbert TW (2009). Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater, 5(1): 1-13.
  • Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F, Remuzzi G (2014). Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Engineering Part A, 20(9-10): 1486-1498.
  • Cox B, Emili A (2006). Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nature Protocols, 1(4): 1872-1878.
  • Crapo PM, Gilbert TW, Badylak SF (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32(12): 3233-3243.
  • Decker T, Lohmann-Matthes ML (1988). A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. Journal of Immunological Methods, 115(1): 61-69.
  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of Cell Biology, 119(3): 493-501.
  • Gilbert TW, Sellaro TL, Badylak SF (2006). Decellularization of tissues and organs. Biomaterials, 27(19): 3675-3683.
  • Gilpin A, Yang Y (2017). Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BioMed Research International, 2017: 9831534.
  • Havasi A, Borkan SC (2011). Apoptosis and acute kidney injury. Kidney International, 80(1): 29-40.
  • Hussein KH, Saleh T, Ahmed E, Kwak HH, Park KM, Yang SR, Woo HM (2018). Biocompatibility and hemocompatibility of efficiently decellularized whole porcine kidney for tissue engineering. Journal of Biomedical Materials Research Part A, 106(7): 2034-2047.
  • Ihlamur M, Akgül B, Abamor EŞ (2022). Farklı Hücre Hatlarında Besiyeri ve FBS’in Hücre Proliferasyonu Üzerindeki Etkilerinin İncelenmesi. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 17(1): 55–64.
  • Ihlamur M, Kelleci K, Zengin Y, Allahverdiyev MA, Abamor E (2024). Applications of exosome vesicles in different cancer types as biomarkers. Current Molecular Medicine, 24(3): 281-297.
  • Karihaloo A, Nickel C, Cantley LG, Neilson EG (2005). Signals for the initiation of renal tubule regeneration following acute kidney injury. Journal of the American Society of Nephrology, 16(9): 2477-2485.
  • Kelleci K, Allahverdiyev A, Bağirova M, Ihlamur M, Abamor E (2023). Particulate and non-particle adjuvants in Leishmaniasis vaccine designs: A review. Journal of Vector Borne Diseases, 60(2): 125-141.
  • Kriz W, Elger M, Lemley KV (2017). Structure and function of renal vasculature in health and disease. Physiological Reviews, 97(3): 593-646.
  • Lameire NH, Levin A, Kellum JA, Cheung M, Jadoul M, Winkelmayer WC, Stevens PE (2021). Harmonizing acute and chronic kidney disease definition and classification: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney International, 100(3): 516-526.
  • Loo DD, Wright EM (1997). Regulation of renal Na+/glucose cotransporters. Journal of Experimental Biology, 8(5): 511-515.
  • Jelkmann W. (2011). Regulation of erythropoietin production. The Journal of physiology, 589, 1251–1258.
  • Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2): 55-63.
  • Nalesso F, Garzotto F, Cattarin L, Bettin E, Cacciapuoti M, Silvestre C, Calò LA (2024). The future for end-stage kidney disease treatment: ımplantable bioartificial kidney challenge. Applied Sciences, 14(2).
  • Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Vacanti JP (2008). Regeneration and orthotopic transplantation of a bioartificial lung. Nature Medicine, 14(2): 207-215.
  • Park KM, Kim K, Choi JW, Yang DY (2018). Three-dimensional microenvironment for tissue regeneration: Dynamic cell–ECM interactions. Journal of Tissue Engineering, 9: 1-14.
  • Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Niklason LE (2010). Tissue-engineered lungs for in vivo implantation. Science, 329(5991): 538-541.
  • Quinteira R, Gimondi S, Monteiro NO, Sobreiro-Almeida R, Lasagni L, Romagnani P, Neves NM (2024). Decellularized kidney extracellular matrix-based hydrogels for renal tissue engineering. Acta Biomater, 180: 295-307.
  • Remuzzi A, Figliuzzi M, Bonandrini B, Silvani S, Azzollini N, Nossa R, Remuzzi G (2017). Experimental evaluation of kidney regeneration by organ scaffold recellularization. Scientific Reports, 7: 43502.
  • Rogers J, Katari R, Gifford S, Tamburrini R, Edgar L, Voigt M, Orlando G (2015). Kidney transplantation, bioengineering and regeneration: An originally immunology-based discipline destined to transition towards ad hoc organ manufacturing and repair. Expert Review of Clinical Immunology, 12.
  • Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, Batich CD (2009). Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. Journal of the American Society of Nephrology, 20(11): 2338-2347.
  • Rostami S, Ghaemi N, Amini H (2020). The role of incubators in maintaining cellular growth in tissue engineering. Cellular Medicine, 12(4): 215-225.
  • Scott RP, Quaggin SE (2015). Review series: The cell biology of renal filtration. Journal of Cell Biology, 209(2): 199-210.
  • Shahraki S, Moghaddam Matin M, Ebrahimzadeh Bideskan A, Aslzare M, Bahrami AR, Hosseinian S, Khajavi Rad A (2021). Kidney tissue engineering using a well-preserved acellular rat kidney scaffold and mesenchymal stem cells. Veterinary Research Forum, 12(3): 339-348.
  • Siew ED, Davenport A (2015). The growth of acute kidney injury: a rising tide or just closer attention to detail? Kidney International, 87(1): 46-61.
  • Sigdel TK, Fields PA, Liberto J, Damm I, Kerwin M, Hood J, Sarwal MM (2022). Perturbations of the T-cell immune repertoire in kidney transplant rejection. Frontiers in Immunology, 13: 1012042.
  • Simões T, Santos JD, Duarte AS, Marinho HS, Saramago B, Gonçalves IC (2017). Fibronectin adsorption modulates the biological activity of hydroxyapatite. Colloids and Surfaces B: Biointerfaces, 157: 178-187.
  • Sohn S, Buskirk MV, Buckenmeyer MJ, Londono R, Faulk D (2020). Whole organ engineering: approaches, challenges, and future directions. Applied Sciences, 10(12).
  • Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013). Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature Medicine, 19(5): 646-651.
  • Song JJ, Ott HC (2011). Organ engineering based on decellularized matrix scaffolds. Trends in Molecular Medicine, 17(8): 424-432.
  • Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q (2021). Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioactive materials, 6(9): 2927–2945.
  • Tzanakakis ES, Hansen LK, Searson PC (2015). Biochemical and mechanical regulation of liver and kidney development. Annual Review of Biomedical Engineering, 17(1): 399-429.
  • Wilmer MJ, Saleem MA, Heuvel LPW, Levtchenko EN (2010). Fifty years of research into the human condition: Lessons learned from nephronophthisis. Journal of Nephrology, 23(6): 677-683.
  • Wouk N (2021). End-stage renal disease: medical management. American Family Physician, 104(5): 493-499. Xu Y, He J, Li C (2019). Confocal microscopy for cell-ECM interactions in tissue engineering. Tissue Engineering Part B: Reviews, 25(2): 123-133.
  • Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C (2022). Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioactive Materials, 10: 15-31.
  • Zengin Y, Ihlamur M, Başarı H (2022). Immunostimulant/Cytotoxic Effect of Cardamom Extract with Adjuvant Combination on Breast Cancer Cell Line. Bayburt Üniversitesi Fen Bilimleri Dergisi, 5(2): 229-234.

Decellularized Extracellular Matrix in Kidney Tissue Engineering

Year 2025, Volume: 7 Issue: 1, 1 - 6
https://doi.org/10.55213/kmujens.1520796

Abstract

Kidneys are organs that filter the body's waste products and perform vital functions. Kidney diseases, which cause various irreversible consequences, may occur due to the loss of function in these vital organs. Conditions such as chronic kidney disease (CKD), acute kidney disease (AKI), and kidney failure cause serious health problems and often require dialysis or kidney transplantation. Kidney tissue engineering offers innovative solutions to these problems and aims to reduce the need for organ transplantation. Decellularization technology involves removing cellular components from the extracellular matrix (ECM) of donor kidneys and refunctionalizing the ECM while preserving its native structure. This method shows promise in treating renal failure and has great potential in clinical applications.

References

  • Agarwal R (2016). Defining end-stage renal disease in clinical trials: a framework for adjudication. Nephrol Dial Transplant, 31(6): 864-867.
  • Ajmal L, Ajmal S, Ajmal M, Nawaz G (2023). Organ regeneration through stem cells and tissue engineering. Cureus, 15(1): e34336.
  • Badylak SF, Freytes DO, Gilbert TW (2009). Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater, 5(1): 1-13.
  • Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F, Remuzzi G (2014). Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Engineering Part A, 20(9-10): 1486-1498.
  • Cox B, Emili A (2006). Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nature Protocols, 1(4): 1872-1878.
  • Crapo PM, Gilbert TW, Badylak SF (2011). An overview of tissue and whole organ decellularization processes. Biomaterials, 32(12): 3233-3243.
  • Decker T, Lohmann-Matthes ML (1988). A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. Journal of Immunological Methods, 115(1): 61-69.
  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of Cell Biology, 119(3): 493-501.
  • Gilbert TW, Sellaro TL, Badylak SF (2006). Decellularization of tissues and organs. Biomaterials, 27(19): 3675-3683.
  • Gilpin A, Yang Y (2017). Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BioMed Research International, 2017: 9831534.
  • Havasi A, Borkan SC (2011). Apoptosis and acute kidney injury. Kidney International, 80(1): 29-40.
  • Hussein KH, Saleh T, Ahmed E, Kwak HH, Park KM, Yang SR, Woo HM (2018). Biocompatibility and hemocompatibility of efficiently decellularized whole porcine kidney for tissue engineering. Journal of Biomedical Materials Research Part A, 106(7): 2034-2047.
  • Ihlamur M, Akgül B, Abamor EŞ (2022). Farklı Hücre Hatlarında Besiyeri ve FBS’in Hücre Proliferasyonu Üzerindeki Etkilerinin İncelenmesi. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 17(1): 55–64.
  • Ihlamur M, Kelleci K, Zengin Y, Allahverdiyev MA, Abamor E (2024). Applications of exosome vesicles in different cancer types as biomarkers. Current Molecular Medicine, 24(3): 281-297.
  • Karihaloo A, Nickel C, Cantley LG, Neilson EG (2005). Signals for the initiation of renal tubule regeneration following acute kidney injury. Journal of the American Society of Nephrology, 16(9): 2477-2485.
  • Kelleci K, Allahverdiyev A, Bağirova M, Ihlamur M, Abamor E (2023). Particulate and non-particle adjuvants in Leishmaniasis vaccine designs: A review. Journal of Vector Borne Diseases, 60(2): 125-141.
  • Kriz W, Elger M, Lemley KV (2017). Structure and function of renal vasculature in health and disease. Physiological Reviews, 97(3): 593-646.
  • Lameire NH, Levin A, Kellum JA, Cheung M, Jadoul M, Winkelmayer WC, Stevens PE (2021). Harmonizing acute and chronic kidney disease definition and classification: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney International, 100(3): 516-526.
  • Loo DD, Wright EM (1997). Regulation of renal Na+/glucose cotransporters. Journal of Experimental Biology, 8(5): 511-515.
  • Jelkmann W. (2011). Regulation of erythropoietin production. The Journal of physiology, 589, 1251–1258.
  • Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2): 55-63.
  • Nalesso F, Garzotto F, Cattarin L, Bettin E, Cacciapuoti M, Silvestre C, Calò LA (2024). The future for end-stage kidney disease treatment: ımplantable bioartificial kidney challenge. Applied Sciences, 14(2).
  • Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Vacanti JP (2008). Regeneration and orthotopic transplantation of a bioartificial lung. Nature Medicine, 14(2): 207-215.
  • Park KM, Kim K, Choi JW, Yang DY (2018). Three-dimensional microenvironment for tissue regeneration: Dynamic cell–ECM interactions. Journal of Tissue Engineering, 9: 1-14.
  • Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Niklason LE (2010). Tissue-engineered lungs for in vivo implantation. Science, 329(5991): 538-541.
  • Quinteira R, Gimondi S, Monteiro NO, Sobreiro-Almeida R, Lasagni L, Romagnani P, Neves NM (2024). Decellularized kidney extracellular matrix-based hydrogels for renal tissue engineering. Acta Biomater, 180: 295-307.
  • Remuzzi A, Figliuzzi M, Bonandrini B, Silvani S, Azzollini N, Nossa R, Remuzzi G (2017). Experimental evaluation of kidney regeneration by organ scaffold recellularization. Scientific Reports, 7: 43502.
  • Rogers J, Katari R, Gifford S, Tamburrini R, Edgar L, Voigt M, Orlando G (2015). Kidney transplantation, bioengineering and regeneration: An originally immunology-based discipline destined to transition towards ad hoc organ manufacturing and repair. Expert Review of Clinical Immunology, 12.
  • Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, Batich CD (2009). Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. Journal of the American Society of Nephrology, 20(11): 2338-2347.
  • Rostami S, Ghaemi N, Amini H (2020). The role of incubators in maintaining cellular growth in tissue engineering. Cellular Medicine, 12(4): 215-225.
  • Scott RP, Quaggin SE (2015). Review series: The cell biology of renal filtration. Journal of Cell Biology, 209(2): 199-210.
  • Shahraki S, Moghaddam Matin M, Ebrahimzadeh Bideskan A, Aslzare M, Bahrami AR, Hosseinian S, Khajavi Rad A (2021). Kidney tissue engineering using a well-preserved acellular rat kidney scaffold and mesenchymal stem cells. Veterinary Research Forum, 12(3): 339-348.
  • Siew ED, Davenport A (2015). The growth of acute kidney injury: a rising tide or just closer attention to detail? Kidney International, 87(1): 46-61.
  • Sigdel TK, Fields PA, Liberto J, Damm I, Kerwin M, Hood J, Sarwal MM (2022). Perturbations of the T-cell immune repertoire in kidney transplant rejection. Frontiers in Immunology, 13: 1012042.
  • Simões T, Santos JD, Duarte AS, Marinho HS, Saramago B, Gonçalves IC (2017). Fibronectin adsorption modulates the biological activity of hydroxyapatite. Colloids and Surfaces B: Biointerfaces, 157: 178-187.
  • Sohn S, Buskirk MV, Buckenmeyer MJ, Londono R, Faulk D (2020). Whole organ engineering: approaches, challenges, and future directions. Applied Sciences, 10(12).
  • Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013). Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature Medicine, 19(5): 646-651.
  • Song JJ, Ott HC (2011). Organ engineering based on decellularized matrix scaffolds. Trends in Molecular Medicine, 17(8): 424-432.
  • Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q (2021). Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioactive materials, 6(9): 2927–2945.
  • Tzanakakis ES, Hansen LK, Searson PC (2015). Biochemical and mechanical regulation of liver and kidney development. Annual Review of Biomedical Engineering, 17(1): 399-429.
  • Wilmer MJ, Saleem MA, Heuvel LPW, Levtchenko EN (2010). Fifty years of research into the human condition: Lessons learned from nephronophthisis. Journal of Nephrology, 23(6): 677-683.
  • Wouk N (2021). End-stage renal disease: medical management. American Family Physician, 104(5): 493-499. Xu Y, He J, Li C (2019). Confocal microscopy for cell-ECM interactions in tissue engineering. Tissue Engineering Part B: Reviews, 25(2): 123-133.
  • Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C (2022). Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioactive Materials, 10: 15-31.
  • Zengin Y, Ihlamur M, Başarı H (2022). Immunostimulant/Cytotoxic Effect of Cardamom Extract with Adjuvant Combination on Breast Cancer Cell Line. Bayburt Üniversitesi Fen Bilimleri Dergisi, 5(2): 229-234.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Nanobiotechnology, Animal Cell Culture and Tissue Engineering, Nanotechnology (Other)
Journal Section Reviews
Authors

Kevser Eryıldız 0009-0009-5667-936X

Murat Ihlamur 0000-0002-0458-5638

Early Pub Date January 9, 2025
Publication Date
Submission Date July 23, 2024
Acceptance Date November 3, 2024
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Eryıldız, K., & Ihlamur, M. (2025). Böbrek Doku Mühendisliğinde Hücresizleştirilmiş Hücre Dışı Matriks. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, 7(1), 1-6. https://doi.org/10.55213/kmujens.1520796
AMA Eryıldız K, Ihlamur M. Böbrek Doku Mühendisliğinde Hücresizleştirilmiş Hücre Dışı Matriks. KMUJENS. January 2025;7(1):1-6. doi:10.55213/kmujens.1520796
Chicago Eryıldız, Kevser, and Murat Ihlamur. “Böbrek Doku Mühendisliğinde Hücresizleştirilmiş Hücre Dışı Matriks”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi 7, no. 1 (January 2025): 1-6. https://doi.org/10.55213/kmujens.1520796.
EndNote Eryıldız K, Ihlamur M (January 1, 2025) Böbrek Doku Mühendisliğinde Hücresizleştirilmiş Hücre Dışı Matriks. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 7 1 1–6.
IEEE K. Eryıldız and M. Ihlamur, “Böbrek Doku Mühendisliğinde Hücresizleştirilmiş Hücre Dışı Matriks”, KMUJENS, vol. 7, no. 1, pp. 1–6, 2025, doi: 10.55213/kmujens.1520796.
ISNAD Eryıldız, Kevser - Ihlamur, Murat. “Böbrek Doku Mühendisliğinde Hücresizleştirilmiş Hücre Dışı Matriks”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik ve Doğa Bilimleri Dergisi 7/1 (January 2025), 1-6. https://doi.org/10.55213/kmujens.1520796.
JAMA Eryıldız K, Ihlamur M. Böbrek Doku Mühendisliğinde Hücresizleştirilmiş Hücre Dışı Matriks. KMUJENS. 2025;7:1–6.
MLA Eryıldız, Kevser and Murat Ihlamur. “Böbrek Doku Mühendisliğinde Hücresizleştirilmiş Hücre Dışı Matriks”. Karamanoğlu Mehmetbey Üniversitesi Mühendislik Ve Doğa Bilimleri Dergisi, vol. 7, no. 1, 2025, pp. 1-6, doi:10.55213/kmujens.1520796.
Vancouver Eryıldız K, Ihlamur M. Böbrek Doku Mühendisliğinde Hücresizleştirilmiş Hücre Dışı Matriks. KMUJENS. 2025;7(1):1-6.

The articles in KMUJENS are licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. Commercial use of the content is prohibited. Articles in the journal can be used as long as the author and original source are cited.