Research Article
BibTex RIS Cite

First-Principles Study of Titanium and Lithium Adsorption on Perfect and Defective Hexagonal Boron Nitride Monolayer Under Effects of Charging

Year 2023, , 172 - 180, 30.11.2023
https://doi.org/10.34088/kojose.1252944

Abstract

Single Titanium (Ti) and Lithium (Li) atoms adsorption on Pristine and defective hexagonal boron nitride (P-h-BN and BV-h-BN) monolayer were employed using Density Functional Theory (DFT) under effect of charging. Obtained data reveal that Li adsorption on P-h-BN is weak, while Ti adsorption on P-h-BN is strong. When Ti and Li atoms interact with P-h-BN surface, Ti and Li generate 4 µB/cell and 1 µB/cell magnetic moments, respectively. The extraction of an electron from the systems leads to a considerable rise in the adsorption energy, notably in the case of Li-P-h-BN. There is a notable decrease in the band gap of Ti-P-h-BN in both the charged states, especially in the electron-added state. Removing an electron from the Li-P-h-BN system results in a non-magnetic state and a significant increase of the band gap to 4.07 eV. Ti-BV-h-BN system shows significantly stronger adsorption energy due to the d-orbitals of the Ti atom. When an electron is added to the systems, the interaction energy between Ti and BV-h-BN decreases, while the interaction energy between Li and BV-h-BN increases. Moreover, removing an electron from Ti-BN-h-BN increases the band gap to 2.29 eV and the disappearance of the magnetic moment.

References

  • [1] Knobloch T., Illarionov Y. Y., Ducry F., Schleich C., Wachter S., Watanabe K., Grasser T., 2021. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nature Electronics, 4(2), pp. 98-108.
  • [2] Gupta S., 2022. Chip demand pushes automotive and lubricant industry changes. Tribology & Lubrication Technology, 78(3), pp. 22-24.
  • [3] Geim A. K., Novoselov K. S., 2007. The rise of graphene. Nature materials, 6(3), pp. 183-191.
  • [4] Gürel H. H., Salmankurt B., 2021. Quantum Simulation of the Silicene and Germanene for Sensing and Sequencing of DNA/RNA Nucleobases. Biosensors, 11(3), pp. 59-62.
  • [5] Salmankurt B., Gürel, H. H., 2022. Two-Dimensional Nanomaterials Based Biosensors. In Progress in Nanoscale and Low-Dimensional Materials and Devices: Properties, Synthesis, Characterization, Modelling and Applications. 1st ed., Springer, Berlin, Germany, pp. 767-778.
  • [6] Elias C., Valvin P., Pelini T., Summerfield A., Mellor C. J., Cheng T. S., Cassabois, G., 2019. Direct bandgap crossover in epitaxial monolayer boron nitride. Nature Communications, 10(1), pp. 2639-2646.
  • [7] Wang B., Sun Y., Ding H., Zhao X., Zhang L., Bai J., Liu K., 2020. Bioelectronics‐related 2D materials beyond graphene: fundamentals, properties, and applications. Advanced Functional Materials, 30(46), pp. 2003732-2003761.
  • [8] Corso M., Auwarter W., Muntwiler M., Tamai A., Greber T., Osterwalder J., 2004. Boron nitride nanomesh. Science, 303(5655), pp. 217-220.
  • [9] Laskowski R., Blaha P., Gallauner T., Schwarz K., 2007. Single-layer model of the hexagonal boron nitride nanomesh on the Rh (111) surface. Physical Review Letters, 98(10), pp. 106802-106806.
  • [10] Li S., Zhou M., Li M., Lu G., Wang X., Zheng F., Zhang P., (2018). Adsorption of 3d, 4d, and 5d transition-metal atoms on single-layer boron nitride. Journal of Applied Physics, 123(9), pp. 095110-095116.
  • [11] Hwang Y., Chung Y. C., 2013. Lithium adsorption on hexagonal boron nitride nanosheet using dispersion-corrected density functional theory calculations. Japanese Journal of Applied Physics, 52(6S), pp. 06GG08-06GG12.
  • [12] Sarikurt S., 2019. A first-principles investigation of Lithium Adsorption and Diffusion on BN, AlN and GaN monolayers. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 20(4), pp. 436-445.
  • [13] Wang M., Li H., Ren J., Gao L., Feng T., Hao Z., Hou D., 2021. Ab initio study on electronic structure and magnetic properties of AlN and BP monolayers with Ti doping. Superlattices and Microstructures, 158, pp. 107010-107021.
  • [14] Zhou Y. G., Yang P., Wang Z. G., Zu X. T., Xiao H. Y., Sun X., Gao F., 2011. Electronic and magnetic properties of substituted BN sheets: A density functional theory study. Physical Chemistry Chemical Physics, 13(16), pp. 7378-7383.
  • [15] Wang L. C., Zhang Z. C., Ma L. C., Ma L., Zhang, J. M., 2022. First-principles study of hydrogen storage on Li, Na and K-decorated defective boron nitride nanosheets. The European Physical Journal B, 95(3), pp. 50-64.
  • [16] Ramirez-de-Arellano J. M., Jiménez G A. F., Magaña L. F., 2021. Catalytic Effect of Ti or Pt in a Hexagonal Boron Nitride Surface for Capturing CO2. Crystals, 11(6), pp. 662-675.
  • [17] Sun P. F., Wang W. L., Zhao X., Dang J. S., 2020. Defective h-BN sheet embedded atomic metals as highly active and selective electrocatalysts for NH3 fabrication via NO reduction. Physical Chemistry Chemical Physics, 22(39), pp. 22627-22634.
  • [18] Liu Y., Yang L. M., Ganz E., 2019. First-principles investigations of single metal atoms (Sc, Ti, V, Cr, Mn, and Ni) embedded in hexagonal boron nitride nanosheets for the catalysis of CO oxidation. Condensed Matter, 4(3), pp. 65-78.
  • [19] Deng C., He R., Wen D., Shen W., Li M., 2018. Theoretical study on the origin of activity for the oxygen reduction reaction of metal-doped two-dimensional boron nitride materials. Physical Chemistry Chemical Physics, 20(15), pp. 10240-10246.
  • [20] Kalwar B. A., Fangzong W., Soomro A. M., Naich M. R., Saeed M. H., Ahmed I., 2022. Highly sensitive work function type room temperature gas sensor based on Ti doped hBN monolayer for sensing CO2, CO, H2S, HF and NO. A DFT study. RSC Advances, 12(53), pp. 34185-34199.
  • [21] Zhong S. Y., Wu S. Y., Yu X. Y., Shen G. Q., Yan L., Xu K. L., 2022. First-principles studies of the adsorption and catalytic properties for gas molecules on h-BN monolayer doped with various transition metal atoms. Catalysis Surveys from Asia, 26(2), pp. 69-79.
  • [22] Wang M., Meng F., Hou D., Han Y., Ren J., Bai C., Zhou T., 2020. Electronic structure and spin properties study on 2D h-BN nanosheet with Ti or Fe doping. Solid State Communications, 307, pp. 113803-113809.
  • [23] Gürel H. H., Salmankurt B., 2017. Binding mechanisms of DNA/RNA nucleobases adsorbed on graphene under charging: first-principles van der Waals study. Materials Research Express, 4(6), pp. 065401-065409.
  • [24] Soler J. M., Artacho E., Gale J. D., García A., Junquera J., Ordejón P., Sánchez-Portal D. 2002. The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), pp. 2745–2779.
  • [25] Hohenberg P., Kohn W., 1964. Inhomogeneous electron gas. Physical Review, 136(3B), pp. B864- B872.
  • [26] Kohn W., Sham L. J., 1965. Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), pp. A1133- A1139.
  • [27] Perdew J. P., Burke K., Ernzerhof M., 1996. Generalized gradient approximation made simple. Physical Review Letters, 77(18), pp. 3865-3868.
  • [28] Grimme S., 2006. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of Computational Chemistry, 27(15), pp. 1787-1799.
  • [29] Monkhorst H. J., Pack J. D., 1976. Special points for Brillouin-zone integrations. Physical Review B, 13(12), pp. 5188-5192.
  • [30] Gürel H. H., Özçelik V. O., Ciraci S., 2013. Effects of charging and perpendicular electric field on the properties of silicene and germanene. Journal of Physics: Condensed Matter, 25(30), pp. 305007-305013.
  • [31] Momma K., Izumi F., 2011. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), pp. 1272-1276.
  • [32] Karki R., Khatri K., Adhikari K., Adhikari N. P., Pantha N., 2021. First Principles Study of Structural, Electronic and Magnetic Properties of Defected (Monovacant) Hexagonal Boron Nitride Sheet. Journal of Nepal Physical Society, 7(4), pp. 19-27.
  • [33] Anisimov, V. I., Zaanen, J., Andersen, O. K. 1991. Band theory and Mott insulators: Hubbard U instead of Stoner I. Physical Review B, 44(3), pp. 943-954.
  • [34] Cococcioni, M., De Gironcoli, S. 2005. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Physical Review B, 71(3), pp. 035105-035121.
  • [35] Anisimov, V. I., Aryasetiawan, F., Lichtenstein, A. I. 1997. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. Journal of Physics: Condensed Matter, 9(4), pp. 767-808.
Year 2023, , 172 - 180, 30.11.2023
https://doi.org/10.34088/kojose.1252944

Abstract

References

  • [1] Knobloch T., Illarionov Y. Y., Ducry F., Schleich C., Wachter S., Watanabe K., Grasser T., 2021. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nature Electronics, 4(2), pp. 98-108.
  • [2] Gupta S., 2022. Chip demand pushes automotive and lubricant industry changes. Tribology & Lubrication Technology, 78(3), pp. 22-24.
  • [3] Geim A. K., Novoselov K. S., 2007. The rise of graphene. Nature materials, 6(3), pp. 183-191.
  • [4] Gürel H. H., Salmankurt B., 2021. Quantum Simulation of the Silicene and Germanene for Sensing and Sequencing of DNA/RNA Nucleobases. Biosensors, 11(3), pp. 59-62.
  • [5] Salmankurt B., Gürel, H. H., 2022. Two-Dimensional Nanomaterials Based Biosensors. In Progress in Nanoscale and Low-Dimensional Materials and Devices: Properties, Synthesis, Characterization, Modelling and Applications. 1st ed., Springer, Berlin, Germany, pp. 767-778.
  • [6] Elias C., Valvin P., Pelini T., Summerfield A., Mellor C. J., Cheng T. S., Cassabois, G., 2019. Direct bandgap crossover in epitaxial monolayer boron nitride. Nature Communications, 10(1), pp. 2639-2646.
  • [7] Wang B., Sun Y., Ding H., Zhao X., Zhang L., Bai J., Liu K., 2020. Bioelectronics‐related 2D materials beyond graphene: fundamentals, properties, and applications. Advanced Functional Materials, 30(46), pp. 2003732-2003761.
  • [8] Corso M., Auwarter W., Muntwiler M., Tamai A., Greber T., Osterwalder J., 2004. Boron nitride nanomesh. Science, 303(5655), pp. 217-220.
  • [9] Laskowski R., Blaha P., Gallauner T., Schwarz K., 2007. Single-layer model of the hexagonal boron nitride nanomesh on the Rh (111) surface. Physical Review Letters, 98(10), pp. 106802-106806.
  • [10] Li S., Zhou M., Li M., Lu G., Wang X., Zheng F., Zhang P., (2018). Adsorption of 3d, 4d, and 5d transition-metal atoms on single-layer boron nitride. Journal of Applied Physics, 123(9), pp. 095110-095116.
  • [11] Hwang Y., Chung Y. C., 2013. Lithium adsorption on hexagonal boron nitride nanosheet using dispersion-corrected density functional theory calculations. Japanese Journal of Applied Physics, 52(6S), pp. 06GG08-06GG12.
  • [12] Sarikurt S., 2019. A first-principles investigation of Lithium Adsorption and Diffusion on BN, AlN and GaN monolayers. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 20(4), pp. 436-445.
  • [13] Wang M., Li H., Ren J., Gao L., Feng T., Hao Z., Hou D., 2021. Ab initio study on electronic structure and magnetic properties of AlN and BP monolayers with Ti doping. Superlattices and Microstructures, 158, pp. 107010-107021.
  • [14] Zhou Y. G., Yang P., Wang Z. G., Zu X. T., Xiao H. Y., Sun X., Gao F., 2011. Electronic and magnetic properties of substituted BN sheets: A density functional theory study. Physical Chemistry Chemical Physics, 13(16), pp. 7378-7383.
  • [15] Wang L. C., Zhang Z. C., Ma L. C., Ma L., Zhang, J. M., 2022. First-principles study of hydrogen storage on Li, Na and K-decorated defective boron nitride nanosheets. The European Physical Journal B, 95(3), pp. 50-64.
  • [16] Ramirez-de-Arellano J. M., Jiménez G A. F., Magaña L. F., 2021. Catalytic Effect of Ti or Pt in a Hexagonal Boron Nitride Surface for Capturing CO2. Crystals, 11(6), pp. 662-675.
  • [17] Sun P. F., Wang W. L., Zhao X., Dang J. S., 2020. Defective h-BN sheet embedded atomic metals as highly active and selective electrocatalysts for NH3 fabrication via NO reduction. Physical Chemistry Chemical Physics, 22(39), pp. 22627-22634.
  • [18] Liu Y., Yang L. M., Ganz E., 2019. First-principles investigations of single metal atoms (Sc, Ti, V, Cr, Mn, and Ni) embedded in hexagonal boron nitride nanosheets for the catalysis of CO oxidation. Condensed Matter, 4(3), pp. 65-78.
  • [19] Deng C., He R., Wen D., Shen W., Li M., 2018. Theoretical study on the origin of activity for the oxygen reduction reaction of metal-doped two-dimensional boron nitride materials. Physical Chemistry Chemical Physics, 20(15), pp. 10240-10246.
  • [20] Kalwar B. A., Fangzong W., Soomro A. M., Naich M. R., Saeed M. H., Ahmed I., 2022. Highly sensitive work function type room temperature gas sensor based on Ti doped hBN monolayer for sensing CO2, CO, H2S, HF and NO. A DFT study. RSC Advances, 12(53), pp. 34185-34199.
  • [21] Zhong S. Y., Wu S. Y., Yu X. Y., Shen G. Q., Yan L., Xu K. L., 2022. First-principles studies of the adsorption and catalytic properties for gas molecules on h-BN monolayer doped with various transition metal atoms. Catalysis Surveys from Asia, 26(2), pp. 69-79.
  • [22] Wang M., Meng F., Hou D., Han Y., Ren J., Bai C., Zhou T., 2020. Electronic structure and spin properties study on 2D h-BN nanosheet with Ti or Fe doping. Solid State Communications, 307, pp. 113803-113809.
  • [23] Gürel H. H., Salmankurt B., 2017. Binding mechanisms of DNA/RNA nucleobases adsorbed on graphene under charging: first-principles van der Waals study. Materials Research Express, 4(6), pp. 065401-065409.
  • [24] Soler J. M., Artacho E., Gale J. D., García A., Junquera J., Ordejón P., Sánchez-Portal D. 2002. The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), pp. 2745–2779.
  • [25] Hohenberg P., Kohn W., 1964. Inhomogeneous electron gas. Physical Review, 136(3B), pp. B864- B872.
  • [26] Kohn W., Sham L. J., 1965. Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), pp. A1133- A1139.
  • [27] Perdew J. P., Burke K., Ernzerhof M., 1996. Generalized gradient approximation made simple. Physical Review Letters, 77(18), pp. 3865-3868.
  • [28] Grimme S., 2006. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of Computational Chemistry, 27(15), pp. 1787-1799.
  • [29] Monkhorst H. J., Pack J. D., 1976. Special points for Brillouin-zone integrations. Physical Review B, 13(12), pp. 5188-5192.
  • [30] Gürel H. H., Özçelik V. O., Ciraci S., 2013. Effects of charging and perpendicular electric field on the properties of silicene and germanene. Journal of Physics: Condensed Matter, 25(30), pp. 305007-305013.
  • [31] Momma K., Izumi F., 2011. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), pp. 1272-1276.
  • [32] Karki R., Khatri K., Adhikari K., Adhikari N. P., Pantha N., 2021. First Principles Study of Structural, Electronic and Magnetic Properties of Defected (Monovacant) Hexagonal Boron Nitride Sheet. Journal of Nepal Physical Society, 7(4), pp. 19-27.
  • [33] Anisimov, V. I., Zaanen, J., Andersen, O. K. 1991. Band theory and Mott insulators: Hubbard U instead of Stoner I. Physical Review B, 44(3), pp. 943-954.
  • [34] Cococcioni, M., De Gironcoli, S. 2005. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Physical Review B, 71(3), pp. 035105-035121.
  • [35] Anisimov, V. I., Aryasetiawan, F., Lichtenstein, A. I. 1997. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. Journal of Physics: Condensed Matter, 9(4), pp. 767-808.
There are 35 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Bahadır Salmankurt 0000-0001-7611-9647

Early Pub Date October 24, 2023
Publication Date November 30, 2023
Acceptance Date April 25, 2023
Published in Issue Year 2023

Cite

APA Salmankurt, B. (2023). First-Principles Study of Titanium and Lithium Adsorption on Perfect and Defective Hexagonal Boron Nitride Monolayer Under Effects of Charging. Kocaeli Journal of Science and Engineering, 6(2), 172-180. https://doi.org/10.34088/kojose.1252944