Review
BibTex RIS Cite

AZ31 Magnesium Alloy in the Aerospace Industry: A Review on the Effect of Composition, Microstructure, and Mechanical Properties on Alloy Performance

Year 2024, , 109 - 130, 30.11.2024
https://doi.org/10.34088/kojose.1334496

Abstract

This comprehensive review article overviews AZ31, a highly researched magnesium alloy known for its exceptional mechanical properties, lightweight nature, and corrosion resistance. It covers the alloy's composition, microstructure, mechanical properties, applications, and prospects. AZ31's microstructure is influenced by its aluminum (Al) and zinc (Zn) composition, resulting in significant magnesium-aluminum intermetallic phase formation, critical for tailoring the alloy's properties to meet specific application needs. AZ31 exhibits impressive specific strength, excellent castability, and favorable ductility influenced by alloying elements, microstructure, and processing methods. The article discusses manufacturing processes like casting, rolling, and extrusion, which impact the alloy's microstructure and mechanical properties. It also explores the corrosion behavior of AZ31, emphasizing factors affecting corrosion resistance and strategies for improvement. Due to its lightweight properties, high strength-to-weight ratio, and electromagnetic shielding capabilities, AZ31 is widely used in various industries, including automotive, aerospace, electronics, and biomedical. Ongoing research focuses on alloy modifications, surface treatments, and additive manufacturing to enhance AZ31's properties and address challenges like limited formability and corrosion resistance. This review article is a valuable resource for researchers, engineers, and professionals exploring AZ31's potential for lightweight materials and diverse applications in different industries.

References

  • [1] Ambekar, Rushikesh S., Brijesh Kushwaha, Pradeep Sharma, Federico Bosia, Massimiliano Fraldi, Nicola M. Pugno, and Chandra S. Tiwary., 2021, "Topologically engineered 3D printed architectures with superior mechanical strength." Materials Today 48: 72-94.
  • [2] Zhang, Zhiyan, Zhengzhi Mu, Yufei Wang, Wenda Song, Hexuan Yu, Shuang Zhang, Yujiao Li, Shichao Niu, Zhiwu Han, and Luquan Ren., 2023, "Lightweight Structural Biomaterials with Excellent Mechanical Performance: A Review." Biomimetics 8, no. 2: 153.
  • [3] Baral, Subrat Kumar, Manjusha M. Thawre, B. Ratna Sunil, and Ravikumar Dumpala., 2023, "A review on developing high-performance ZE41 magnesium alloy by using bulk deformation and surface modification methods." Journal of Magnesium and Alloys.
  • [4] Ding, Qingli., 2023, "MICROSTRUCTURAL, CORROSION AND MECHANICAL CHARACTERIZATION OF FRICTION-STIR WELDED JOINTS BETWEEN ALUMINUM AND MAGNESIUM ALLOYS." PhD diss., WORCESTER POLYTECHNIC INSTITUTE.
  • [5] Ezhilmaran, V., P. Suya Prem Anand, Suresh Kannan, N. Sivashanmugam, K. Jayakrishna, and G. Kalusuraman., 2023 "Review of bioresorbable AZ91, AZ31 and Mg–Zn–Ca implants and their manufacturing methods." Materials Science and Technology 39, no. 8,: 901-925.
  • [6] Pan, Shi-Qi, Fen Zhang, Cuie Wen, and Rong-Chang Zeng., 2023, "Advances in Mg–Al-layered double hydroxide steam coatings on Mg alloys: A review." Journal of Magnesium and Alloys.
  • [7] Kwon, Duyoung, Hien Van Pham, Pungkeun Song, and Sungmo Moon., 2023, "Corrosion Behavior of the AZ31 Mg Alloy in Neutral Aqueous Solutions Containing Various Anions." Metals13, no. 5: 962.
  • [8] Singh, Virendra Pratap, Deepak Kumar, and Basil Kuriachen., 2023 "Effect of Low Welding and Rotational Speed on Microstructure and Mechanical Behaviour of Friction Stir Welded AZ31-AA6061-T6." Transactions of the Indian Institute of Metals: 1-9.
  • [9] Fang, Xiaoyan, Chen Zhou, Jinbao Lin, and Wenwen Li., 2023, "Research on deformation mechanism of AZ31 magnesium alloy during uniaxial compression." Materials Science and Technology: 1-11.
  • [10] Drunka, R., P. Iesalniece, I. Steins, L. Grase, T. V. Eiduks, K. Savkovs, and I. Blumbergs. , 2023, "Complex coating system for improving corrosion resistance of AZ31 magnesium alloy." In Journal of Physics: Conference Series, vol. 2423, no. 1, p. 012020. IOP Publishing.
  • [11] Zakaria, Muhammad Syamil, Mazli Mustapha, Azwan Iskandar Azmi, and Chu Yee Khor., 2023, "Chip Morphology and Surface Integrity in Turning AZ31 Magnesium Alloy under Dry Machining and Submerged Convective Cooling." Metals 13, no. 3: 619.
  • [12] Liu, Bo, Jian Yang, Xiaoyu Zhang, Qin Yang, Jinsheng Zhang, and Xiaoqing Li., 2023, "Development and application of magnesium alloy parts for automotive OEMs: A review." Journal of Magnesium and Alloys.
  • [13] Siengchin, Suchart., 2023, "A review on lightweight materials for defence applications: A present and future developments." Defence Technology.
  • [14] Shen, Tianyuan, Huan Liu, Jialong Zhang, Min Ma, Zhiqiang Wu, Longfei Liu, and Liwei Lu., 2023, "The improvement on mechanical anisotropy of AZ31 magnesium alloy sheets by multi cross-rolling process." Journal of Alloys and Compounds: 171252.
  • [15] Zhang, Meng, Kun Yang, Guobing Wei, Weidong Xie, Yan Yang, Bin Li, Hao Chen, and Qingshan Yang., 2023, "AZ31/GNP magnesium composites with excellent comprehensive mechanical properties prepared by friction stir processing and rolling." Journal of Materials Research and Technology.
  • [16] Wang, Senwei, Kunming Zhang, Sihui Ouyang, Chengao Du, Xiong Wu, Aitao Tang, Jia She, and Fusheng Pan., 2023, "Grain Refinement and Mechanical Properties of AZ31 Alloy Processed by Pre-die Forging Extrusion at Different Temperatures." Journal of Materials Engineering and Performance: 1-8.
  • [17] Sai Divya, Putta Venkata, Pavan Kumar Penumakala, Krishnavajhala Guru Venkat Kalyan, and Ashok Kumar Nallathambi., 2023, "Analysis of hot tensile behaviour and prediction of thermal stresses during processing of AZ31 magnesium alloy." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 237, no. 6: 1445-1462.
  • [18] Ezhilmaran, V., P. Suya Prem Anand, Suresh Kannan, N. Sivashanmugam, K. Jayakrishna, and G. Kalusuraman., 2023, "Review of bioresorbable AZ91, AZ31 and Mg–Zn–Ca implants and their manufacturing methods." Materials Science and Technology 39, no. 8: 901-925.
  • [19] Yusuke, Katanaga, Ajith Bandara, Natsuto Soga, Koichi Kan, Akifumi Koike, and Toru Aoki., 2023, "Investigation of industrial die-cast Al-alloys using X-ray micro-computed tomography and machine learning approach for CT segmentation." Production Engineering 17, no. 2: 291-305.
  • [20] Mégret, Alexandre, Loïc Prince, Marie-Georges Olivier, and Véronique Vitry., 2023, "Tribo-and Tribocorrosion Properties of Magnesium AZ31 Alloy." Coatings 13, no. 2: 448.
  • [21] ABOSHBA, FADELL SAID AHMED., 2022, "ANALYSIS OF THE PUNCHING PROCESS OF AZ31 MG ALLOY SHEET WITH EXPERIMENTAL AND SIMULATION STUDIES." PhD diss.,.
  • [22] Lokesh Kumar, R., B. G. Yashwanth Kumar, R. Vaira Vignesh, J. Kaasi Viswanath, M. Muralimanokar, Shabbir Memon, and M. Govindaraju., 2022, "Microstructure, Tribology, and Corrosion Characteristics of Hot-Rolled AZ31 Magnesium Alloy." In Advances in Processing of Lightweight Metal Alloys and Composites: Microstructural Characterization and Property Correlation, pp. 299-326. Singapore: Springer Nature Singapore.
  • [23] Huang, Song-Jeng, Sathiyalingam Kannaiyan, Manas Sarkar, and Matoke Peter Mose., 2023, "Enhancement of Mechanical Behaviors and Microstructure Evolution of Nano-Nb2O5/AZ31 Composite Processed via Equal-Channel Angular Pressing (ECAP)." Journal of Composites Science 7, no. 6: 230.
  • [24] Lokesh Kumar, R., B. G. Yashwanth Kumar, R. Vaira Vignesh, J. Kaasi Viswanath, M. Muralimanokar, Shabbir Memon, and M. Govindaraju., 2022 "Microstructure, Tribology, and Corrosion Characteristics of Hot-Rolled AZ31 Magnesium Alloy." In Advances in Processing of Lightweight Metal Alloys and Composites: Microstructural Characterization and Property Correlation, pp. 299-326. Singapore: Springer Nature Singapore.
  • [25] Gołąbczak, M., Święcik, R., Gołąbczak, A., Nouveau, C., Jacquet, P., & Blanc, C., 2018,. Investigations of surface layer temperature and morphology of hard machinable materials used in aircraft industry during abrasive electrodischarge grinding process: Untersuchungen zur Oberflächentemperatur und Morphologie beim elektrolytischen Erosionsschleifen von schwer zerspanbaren Werkstoffen aus der Luftfahrtindustrie. Materialwissenschaft und Werkstofftechnik, 49(5), 568-576.
  • [26] Li, Dezhi, Carl Slater, Huisheng Cai, Xiaonan Hou, Yongbing Li, and Qudong Wang., 2023, "Joining Technologies for Aluminium Castings—A Review." Coatings 13, no. 5: 958.
  • [27] Chen, Zhihao, Zihao Zhang, Yuanyong Ouyang, Yun Chen, Xiaoshuang Yin, Ying Liu, Hanjie Ying, and Wenzhong Yang., 2023 "Electrospinning polycaprolactone/collagen fiber coatings for enhancing the corrosion resistance and biocompatibility of AZ31 Mg alloys." Colloids and Surfaces A: Physicochemical and Engineering Aspects 662: 131041.
  • [28] Zhang, Zihao, Xiaoyu Wang, Hengtong Xia, Hongyuan Li, Zhihao Chen, and Wenzhong Yang., 2023, "Electrical-responsive biocompatible coatings for highly corrosion-resistance and self-healing performance on AZ31 Mg alloy." Journal of Industrial and Engineering Chemistry 121: 179-189.
  • [29] Vahedi, Shaghayegh, Rouhollah Mehdinavaz Aghdam, Mahmoud Heydarzadeh Sohi, and Ali Hossein Rezayan., 2023, "Characteristics of electrospun chitosan/carbon nanotube coatings deposited on AZ31 magnesium alloy." Journal of Materials Science: Materials in Medicine 34, no. 1: 8.
  • [30] Chen, Zhihao, Zihao Zhang, Yuanyong Ouyang, Yun Chen, Xiaoshuang Yin, Ying Liu, Hanjie Ying, and Wenzhong Yang., 2023, "Electrospinning polycaprolactone/collagen fiber coatings for enhancing the corrosion resistance and biocompatibility of AZ31 Mg alloys." Colloids and Surfaces A: Physicochemical and Engineering Aspects 662: 131041.
  • [31] Kumar, Vasantha, C. M. Ramesha, and V. Sharanraj., 2023, "In-Vitro Biocompatibility Study and Comparison of Magnesium AZ31 and PEEK 450G Biomaterials used as Cardiovascular Stent Implants." Journal of Mines, Metals & Fuels 71, no. 1.
  • [32] Pang, Shuoshuo, Wenxiang Zhao, Tianyang Qiu, Weiliang Liu, Li Jiao, and Xibin Wang., 2023, "Study on surface quality and mechanical properties of micro-milling WE43 magnesium alloy cardiovascular stent." Journal of Manufacturing Processes 101: 1080-1090.
  • [33] Song-Jeng, Huang, Sathiyalingam Kannaiyan, Manas Sarkar, and Matoke Peter Mose., 2023, "Enhancement of Mechanical Behaviors and Microstructure Evolution of Nano-Nb 2 O 5/AZ31 Composite Processed via Equal-Channel Angular Pressing (ECAP)." Journal of Composites Science 7, no. 6: 230.
  • [34] Zakaria, Muhammad Syamil, Mazli Mustapha, Azwan Iskandar Azmi, Azlan Ahmad, Mohd Danish, and Saeed Rubaiee., 2022, "Machinability investigations of AZ31 magnesium alloy via submerged convective cooling in turning process." Journal of Materials Research and Technology 19: 3685-3698.
  • [35] Dhanaji, Todkar Utkarsh, Sejal Dassani, M. Somasundaram, A. Muthuchamy, and A. Raja Annamalai., 2023 "Microstructural, Mechanical, and Corrosion Properties of AZXX Magnesium Alloy: A Review of Processing Methods." Crystals 13, no. 2: 344.
  • [36] Cao, Qianhui, Bojin Qi, Caiyou Zeng, Ruize Zhang, Bochang He, Zewu Qi, Fude Wang, Haibo Wang, and Baoqiang Cong., 2022, "Achieving equiaxed microstructure and isotropic mechanical properties of additively manufactured AZ31 magnesium alloy via ultrasonic frequency pulsed arc." Journal of Alloys and Compounds 909: 164742.
  • [37] Chen, Zhihao, Zihao Zhang, Yuanyong Ouyang, Yun Chen, Xiaoshuang Yin, Ying Liu, Hanjie Ying, and Wenzhong Yang., 2023, "Electrospinning polycaprolactone/collagen fiber coatings for enhancing the corrosion resistance and biocompatibility of AZ31 Mg alloys." Colloids and Surfaces A: Physicochemical and Engineering Aspects 662: 131041.
  • [38] Beura, V., D. Zhang, N. Overman, J. Darsell, D. R. Herling, K. Solanki, and V. V. Joshi., 2022, "Enhanced mechanical behavior and corrosion resistance of AZ31 magnesium alloy through a novel solid-phase processing." Corrosion Science 197: 110074.
  • [39] Zhang, Ai-meng, Chengbao Liu, Pu-sheng Sui, Cong Sun, Lan-yue Cui, M. Bobby Kannan, and Rong-Chang Zeng., 2023, "Corrosion resistance and mechanisms of smart micro-arc oxidation/epoxy resin coatings on AZ31 Mg alloy: Strategic positioning of nanocontainers." Journal of Magnesium and Alloys.
  • [40] Fajardo, S., L. Miguélez, M. A. Arenas, J. de Damborenea, Irene Llorente, and S. Feliu., 2022, "Corrosion resistance of pulsed laser modified AZ31 Mg alloy surfaces." Journal of Magnesium and Alloys 10, no. 3: 756-768.
  • [41] Qiu, Wei, Wen Xie, Qi-Feng Li, Wei-Ying Huang, Li-Bo Zhou, Wei Chen, Jian Chen et al., 2023, "Effect of vanadium nitride (VN) particles on microstructure and mechanical properties of extruded AZ31 Mg alloy." Acta Metallurgica Sinica (English Letters) 36, no. 2: 237-250.
  • [42] Zhang, Xuanchang, Hailong Shi, Xiaojun Wang, Shuai Zhang, Peng Luan, Xiaoshi Hu, and Chao Xu., 2023, "Processing, microstructure, and mechanical behavior of AZ31 magnesium alloy fabricated by electron beam additive manufacturing." Journal of Alloys and Compounds 938: 168567.
  • [43] Kwon, Duyoung, Hien Van Pham, Pungkeun Song, and Sungmo Moon., 2023, "Corrosion and Formation of Surface Films on AZ31 Mg Alloy in Aqueous Solution Containing Sulfate Ions with Different pHs." Metals 13, no. 7: 1150.
  • [44] Selvan, A. Thamarai, and S. Palani., 2023, "Prediction of mechanical strength of magnesium alloy AZ31 with calcium addition using a neural network based model." In Journal of Physics: Conference Series, vol. 2484, no. 1, p. 012015. IOP Publishing.
  • [45] Chowdhury, S. H., D. L. Chen, S. D. Bhole, X. Cao, and P. Wanjara., 2013, "Friction stir welded AZ31 magnesium alloy: microstructure, texture, and tensile properties." Metallurgical and materials transactions A 44, no. 1: 323-336.
  • [46] Chatterton, Mark., 2015, "Thermo-Mechanical Deformation Processing of Advanced Magnesium Alloys." PhD diss., The University of Manchester (United Kingdom).
  • [47] Schneider, K., B. J. McKay, and B. Nadendla., 2018, "Influence of zinc on intermetallic phase selection in Al-Mg compound castings." In Proceedings of the 16th International Aluminium Alloys Conference (ICAA16), pp. 1-8.
  • [48] Wang, Z-L., Z-J. Wei, H-W. Wang, and L. Cao., 2006, "Effects of high pressure on microstructure and phase of Al–Mg–Zn alloy." International Journal of Cast Metals Research 19, no. 5: 269-273.
  • [49] Elthalabawy, Waled, and Tahir Khan., 2011, "Liquid phase bonding of 316L stainless steel to AZ31 magnesium alloy." Journal of Materials Science & Technology 27, no. 1: 22-28.
  • [50] Shang, L., I. H. Jung, S. Yue, R. Verma, and E. Essadiqi., 2010, "An investigation of formation of second phases in microalloyed, AZ31 Mg alloys with Ca, Sr and Ce." Journal of Alloys and Compounds 492, no. 1-2: 173-183.
  • [51] Anbuchezhiyan, Gnanasambandam, Nabisab Mujawar Mubarak, Rama Rao Karri, and Mohammad Khalid., 2022, "A synergistic effect on enriching the Mg–Al–Zn alloy-based hybrid composite properties." Scientific reports 12, no. 1: 20053.
  • [52] Gao, Lei, Feng Li, Ye Wang, Xing Mao Xiao, and Peng Da Huo., 2022, "Fabrication and Interface Structural Behavior of Mg/Al Thickness-Oriented Bonding Sheet via Direct Extrusion." Metals and Materials International: 1-11.
  • [53] Sun, An, Xiaoming Sui, Haitao Li, and Qiang Wang., 2015, "Interface microstructure and mechanical properties of zinc–aluminum thermal diffusion coating on AZ31 magnesium alloy." Materials & Design 67: 280-284.
  • [54] Sahu, Prakash Kumar, Jayashree Das, Gaoqiang Chen, Qu Liu, Sukhomay Pal, Shenbo Zeng, and Qingyu Shi., 2020, "Friction stir selective alloying of different Al% particulate reinforced to AZ31 Mg for enhanced mechanical and metallurgical properties." Materials Science and Engineering: A 774: 138889.
  • [55] Liu, Fei, Zhaodong Zhang, and Liming Liu., 2012, "Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal." Materials Characterization 69: 84-89.
  • [56] Dewangan, Satya Kumar, Pragya Nandan Banjare, Manwendra Kumar Tripathi, and Manoranjan Kumar Manoj., 2023, "Effect of vertical and horizontal zinc interlayer on material flow, microstructure, and mechanical properties of dissimilar FSW of Al 7075 and Mg AZ31 alloys." The International Journal of Advanced Manufacturing Technology 126, no. 9: 4453-4474.
  • [57] Zeng, Zihao, Pingli Jiang, Ruiqing Hou, Liguo Wang, Shijie Zhu, and Shaokang Guan., 2023, "Enhanced Corrosion Resistance and Mechanical Properties of Mg-Zn Alloy via Micro-alloying of Ge." JOM: 1-12.
  • [58] Qiu, Wei, Wen Xie, Qi-Feng Li, Wei-Ying Huang, Li-Bo Zhou, Wei Chen, Jian Chen et al., 2023, "Effect of vanadium nitride (VN) particles on microstructure and mechanical properties of extruded AZ31 Mg alloy." Acta Metallurgica Sinica (English Letters) 36, no. 2: 237-250.
  • [59] Zhang, Hang, Haipeng Li, Rongguang Li, Boshu Liu, Ruizhi Wu, Dongyue Zhao, and Shanshan Li., 2023, "Effect of Initial Microstructure Prior to Extrusion on the Microstructure and Mechanical Properties of Extruded AZ80 Alloy with a Low Temperature and a Low Ratio." Chinese Journal of Mechanical Engineering 36, no. 1: 72.
  • [60] Dewangan, Satya Kumar, Pragya Nandan Banjare, Manwendra Kumar Tripathi, and Manoranjan Kumar Manoj., 2023, "Effect of vertical and horizontal zinc interlayer on material flow, microstructure, and mechanical properties of dissimilar FSW of Al 7075 and Mg AZ31 alloys." The International Journal of Advanced Manufacturing Technology 126, no. 9: 4453-4474.
  • [61] Yang, Qiang, Xiaohan Wu, and Xin Qiu., 2023, "Microstructural Characteristics of High-Pressure Die Casting with High Strength–Ductility Synergy Properties: A Review." Materials 16, no. 5: 1954.
  • [62] Kocaman, Engin., 2023 "Effect of Al5Ti1B and Al8B on the Microstructure, Wear and Corrosion Behavior of CuZn19Al6 Bronze Alloy." Materials Today Communications: 106551.
  • [63] Ghiasvand, Ahmad, Eslam Ranjbarnodeh, and Seyed Ehsan Mirsalehi., 2023, "The microstructure and mechanical properties of single-pass and double-pass lap joint of Al 5754H-11 and Mg AZ31-O alloys by friction stir welding." Journal of Materials Research and Technology 23: 6023-6038.
  • [64] Yang, Yang, Yangchao Deng, Ruifeng Zhang, Yuqing Su, Siyue Liu, Christopher M. Gourlay, and Guang Zeng., 2023 "Influence of β-Mg17Al12 and Al-Mn intermetallic compounds on the corrosion behaviour of cast and solution treated Mg-Al-Zn-Mn alloys." Corrosion Science: 111363.
  • [65] Majidabad, Milad Aali, Mohammad Eftekhari, and Ghader Faraji., 2023, "Characterization of Mg–9Al–1Zn-0.2 Mn alloy tubes processed by a new modified tube cyclic expansion extrusion (M-TCEE) process." Journal of Materials Research and Technology 24: 7989-8001.
  • [66] Li, Limin, Zhiquan Huang, Liwen Chen, Jianhui Jing, Hua Hou, and Yuhong Zhao., 2023, "Changing the second phase distribution shape and improving the corrosion resistance of Mg-6.7 Y-2.5 Zn alloy by addition of trace Ta." Corrosion Science: 111341.
  • [67] Hermann, F., F. Sommer, H. Jones, and R. G. J. Edyvean., 1989, "Corrosion inhibition in magnesium-aluminium-based alloys induced by rapid solidification processing." Journal of materials science 24: 2369-2379.
  • [68] Pardo, A., Merino, M.C., Coy, A.E., Arrabal, R., Viejo, F. and Matykina, E., 2008. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corrosion Science, 50(3), pp.823-834.
  • [69] Sharahi, H.J., Pouranvari, M. and Movahedi, M., 2020. Strengthening and ductilization mechanisms of friction stir processed cast Mg–Al–Zn alloy. Materials Science and Engineering: A, 781, p.139249.
  • [70] Pardo, A., Merino, M.C., Coy, A.E., Arrabal, R., Viejo, F. and Matykina, E., 2008. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corrosion Science, 50(3), pp.823-834.
  • [71] Desai, A., Khatri, B., Rana, H., Patel, V. and Badheka, V., 2023. Numerical and experimental investigation on AZ91 friction stir welding joints: mechanics, properties. Materials Science and Technology, pp.1-15.
  • [72] Chen, Y., Liu, G.H., Wang, Y. and Wang, Z.D., 2023. Solidification microstructure of Ti-43Al alloy by twin-roll strip casting. China Foundry, 20(2), pp.99-107.
  • [73] Zhou, J., Yang, H., Jiang, B., He, C., Dong, Z., Liu, L., Luo, X., Liu, Y., Huang, D., Xu, J. and Huang, G., 2023. Clarifying the deformation modes and strengthening mechanisms of Mg-11Gd-5Y-2Zn-0.7 Zr with outstanding high-temperature mechanical properties. Materials Science and Engineering: A, 866, p.144638.
  • [74] Song, X., Fu, X. and Wang, M., 2023. First–principles study of β′ phase in Mg–RE alloys. International Journal of Mechanical Sciences, 243, p.108045.
  • [75] Lv, X. and Liu, L., 2023. Microstructure and mechanical performance of AZ31/6061 lap joints welded by laser-TIG hybrid welding with Zn-Al alloy filler metal. Journal of Magnesium and Alloys.
  • [76] Xu, B., Sun, J., Yang, Z., Han, J., Fu, Y., Jiang, J. and Ma, A., 2020. A near-isotropic ultrafine-grained Mg-Gd-Ag alloy with high strength-ductility synergy. Journal of Materials Research and Technology, 9(6), pp.13616-13624.
  • [77] Sunil, B.R., Ganesh, K.V., Pavan, P., Vadapalli, G., Swarnalatha, C., Swapna, P., Bindukumar, P. and Reddy, G.P.K., 2016. Effect of aluminum content on machining characteristics of AZ31 and AZ91 magnesium alloys during drilling. Journal of Magnesium and alloys, 4(1), pp.15-21.
  • [78] Liu, Q., Ma, Q.X., Chen, G.Q., Cao, X., Zhang, S., Pan, J.L., Zhang, G. and Shi, Q.Y., 2018. Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing. Corrosion science, 138, pp.284-296.
  • [79] Liu, X., Jia, H.L., Wang, C., Wu, X., Zha, M. and Wang, H.Y., 2022. Enhancing mechanical properties of twin-roll cast Al–Mg–Si–Fe alloys by regulating Fe-bearing phases and macro-segregation. Materials Science and Engineering: A, 831, p.142256.
  • [80] Ma, D., Xu, C., Qi, Y., Sui, S., Tian, J., Tu, T., Guo, C., Wu, X., Zhang, Z., Remennik, S. and Shechtman, D., 2023. Achieving fully equiaxed grain microstructure and isotropic mechanical properties in wire arc additive-manufactured Mg-Y-Nd-Zr alloys. Journal of Alloys and Compounds, p.171041.
  • [81] Wang, W., Zhang, J., Li, J., Chen, X., Liu, S., Huang, G., Chen, X., Zheng, K., Jiang, B. and Pan, F., 2023. Influence of different extrusion methods on the microstructure, texture evolution and mechanical property of Tip/AZ31 composite. Materials Science and Engineering: A, 862, p.144377.
  • [82] Wang, Zihong, Jingfeng Wang, Xin Lin, Tianchi Zhang, Cong Dang, Yanfang Wang, Weidong Huang, and Fushen Pan., 2023, "Solidification texture dependence of the anisotropy of mechanical properties and damping capacities of an AZ31 Mg-based alloy fabricated via wire-arc additive manufacturing." Journal of Materials Research and Technology.
  • [83] Sahu, P.K., Das, J. and Shi, Q., 2023. Effect of Alloying Foil on the Friction Stir Weld Quality of Mg Alloy Joints. Metallography, Microstructure, and Analysis, pp.1-11.
  • [84] Ghiasvand, A., Ranjbarnodeh, E. and Mirsalehi, S.E., 2023. The microstructure and mechanical properties of single-pass and double-pass lap joint of Al 5754H-11 and Mg AZ31-O alloys by friction stir welding. Journal of Materials Research and Technology, 23, pp.6023-6038.
  • [85] Baral, S.K., Thawre, M.M., Sunil, B.R. and Dumpala, R., 2023. A review on developing high-performance ZE41 magnesium alloy by using bulk deformation and surface modification methods. Journal of Magnesium and Alloys.
  • [86] Huang, S.J. and Abbas, A., 2020. Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting. Journal of Alloys and Compounds, 817, p.153321.
  • [87] Xiao, B.L., Yang, Q., Yang, J., Wang, W.G., Xie, G.M. and Ma, Z.Y., 2011. Enhanced mechanical properties of Mg–Gd–Y–Zr casting via friction stir processing. Journal of Alloys and Compounds, 509(6), pp.2879-2884.
  • [88] Hamu, G.B., Eliezer, D. and Wagner, L., 2009. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. Journal of alloys and compounds, 468(1-2), pp.222-229.
  • [89] Yu, Z., Xu, C., Meng, J., Zhang, X. and Kamado, S., 2018. Microstructure evolution and mechanical properties of as-extruded Mg-Gd-Y-Zr alloy with Zn and Nd additions. Materials Science and Engineering: A, 713, pp.234-243.
  • [90] Elsayed, F.R., Sasaki, T.T., Ohkubo, T., Takahashi, H., Xu, S.W., Kamado, S. and Hono, K., 2013. Effect of extrusion conditions on microstructure and mechanical properties of microalloyed Mg–Sn–Al–Zn alloys. Materials Science and Engineering: A, 588, pp.318-328.
  • [91] Tong, W.E.N., Liu, S.Y., Shi, C.H.E.N., Liu, L.T. and Chen, Y.A.N.G., 2015. Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 25(2), pp.397-404.
  • [92] Chen, Y., Wang, Q., Peng, J., Zhai, C. and Ding, W., 2007. Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy. Journal of materials processing technology, 182(1-3), pp.281-285.
  • [93] Zhi, C., Lei, J., Xing, H., Huang, Z., Xu, H., Jia, W. and Ma, L., 2023. Tensile fracture prediction of AZ31 cast-rolled sheet based on hot working map. Journal of Materials Research and Technology, 23, pp.3272-3283.
  • [94] Ye, P., Yang, C., Li, Z., Bao, S., Sun, Y., Ding, W. and Chen, Y., 2023. Texture and High Yield Strength of Rapidly Solidified AZ31 Magnesium Alloy Extruded at 250° C. Materials, 16(8), p.2946.
  • [95] Zulkfli, Z., Hamedon, Z. and Fatchurrohman, N., 2023. Surface Modification on Magnesium Alloys' Hardness and Microstructure Using Friction Stir Processing–A Review. Jurnal Teknologi, 13(1), pp.39-45.
  • [96] Song, G.L. and Xu, Z., 2010. The surface, microstructure and corrosion of magnesium alloy AZ31 sheet. Electrochimica Acta, 55(13), pp.4148-4161.
  • [97] Li, M., Chen, J., Sun, J., Hao, L., Wu, D., Wang, J. and Ke, W., 2023. Varied corrosion evolution behavior of pure Mg, AZ31 and AZ91 magnesium alloys in phosphate buffer solution. Anti-Corrosion Methods and Materials.
  • [98] Cheng, Y.L., Qin, T.W., Wang, H.M. and Zhang, Z., 2009. Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys. Transactions of Nonferrous Metals Society of China, 19(3), pp.517-524.
  • [99] Kaliyaperumal, G., Elango, S., Ramalingam, P.S., Devi, G.R., Thangamani, P., Venkatesh, R., Kishan, S.A., Kumar, R.K. and De Poures, M.V., 2023. Experimental study and TiC interfacial action on microstructural and mechanical properties of AZ31 alloy composite made by stir casting route. Materials Today: Proceedings.
  • [100] Osipenko, Maria A., Aliaksandr A. Kasach, Janusz Adamiec, Małgorzata Zimowska, Irina I. Kurilo, and Dzmitry S. Kharytonau., 2023, "Corrosion inhibition of magnesium alloy AZ31 in chloride-containing solutions by aqueous permanganate." Journal of Solid State Electrochemistry: 1-14.
  • [101] Ma, Z.Y., Pilchak, A.L., Juhas, M.C. and Williams, J.C., 2008. Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Scripta Materialia, 58(5), pp.361-366.
  • [102] Minárik, P., Zimina, M., Čížek, J., Stráska, J., Krajňák, T., Cieslar, M., Vlasák, T., Bohlen, J., Kurz, G. and Letzig, D., 2019. Increased structural stability in twin-roll cast AZ31 magnesium alloy processed by equal channel angular pressing. Materials Characterization, 153, pp.199-207.
  • [103] Kim, H.S. and Kim, W.J., 2013. Enhanced corrosion resistance of ultrafine-grained AZ61 alloy containing very fine particles of Mg17Al12 phase. Corrosion Science, 75, pp.228-238.
  • [104] Zang, Q., Chen, H., Zhang, J., Wang, L., Chen, S. and Jin, Y., 2021. Microstructure, mechanical properties and corrosion resistance of AZ31/GNPs composites prepared by friction stir processing. Journal of Materials Research and Technology, 14, pp.195-201.
  • [105] Lei, X., Liu, T., Chen, J., Miao, B. and Zeng, W., 2011. Microstructure and mechanical properties of magnesium alloy AZ31 processed by compound channel extrusion. Materials transactions, 52(6), pp.1082-1087.
  • [106] Śliwa, R.E., Balawender, T., Hadasik, E., Kuc, D., Gontarz, A., Korbel, A. and Bochniak, W., 2017. Metal forming of lightweight magnesium alloys for aviation applications. Archives of Metallurgy and Materials, 62(3), pp.1559-1566.
  • [107] Zhang, H., Huang, G., Roven, H.J., Wang, L. and Pan, F., 2013. Influence of different rolling routes on the microstructure evolution and properties of AZ31 magnesium alloy sheets. Materials & Design, 50, pp.667-673.
  • [108] Chino, Y., Kimura, K. and Mabuchi, M., 2009. Deformation characteristics at room temperature under biaxial tensile stress in textured AZ31 Mg alloy sheets. Acta Materialia, 57(5), pp.1476-1485.
  • [109] Zúberová, Z., Kunz, L., Lamark, T.T., Estrin, Y. and Janeček, M., 2007. Fatigue and tensile behavior of cast, hot-rolled, and severely plastically deformed AZ31 magnesium alloy. Metallurgical and Materials Transactions A, 38, pp.1934-1940.
  • [110] Su, C.W., Lu, L. and Lai, M.O., 2007. Mechanical behaviour and texture of annealed AZ31 Mg alloy deformed by ECAP. Materials science and technology, 23(3), pp.290-296.
  • [111] Mekonen, M.N., Steglich, D., Bohlen, J., Letzig, D. and Mosler, J., 2012. Mechanical characterization and constitutive modeling of Mg alloy sheets. Materials Science and Engineering: A, 540, pp.174-186.
  • [112] Rakshith, M. and Seenuvasaperumal, P., 2021. Review on the effect of different processing techniques on the microstructure and mechanical behaviour of AZ31 Magnesium alloy. Journal of Magnesium and Alloys, 9(5), pp.1692-1714.
  • [113] Marya, M., Hector, L.G., Verma, R. and Tong, W., 2006. Microstructural effects of AZ31 magnesium alloy on its tensile deformation and failure behaviors. Materials science and engineering: A, 418(1-2), pp.341-356.
  • [114] Nguyen, Q.B., Tun, K.S., Lim, C.Y.H., Wong, W.L.E. and Gupta, M., 2013. Influence of nano-alumina and sub-micron copper on mechanical properties of magnesium alloy AZ31. Composites Part B: Engineering, 55, pp.486-491.
  • [115] An, Z.G., Yan, D., Qie, J.J., Lu, Z.L. and Gao, Z.Y., 2020. Effect of process parameters on formability of a AZ31 magnesium alloy thin-walled cylindrical part formed by multistage warm single-point incremental forming. Frontiers in Materials, 7, p.151.
  • [116] Guo, W., Wang, Q., Ye, B. and Zhou, H., 2013. Microstructure and mechanical properties of AZ31 magnesium alloy processed by cyclic closed-die forging. Journal of Alloys and Compounds, 558, pp.164-171.
  • [117] Hamad, K. and Ko, Y.G., 2016. A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys. Scientific Reports, 6(1), p.29954.
  • [118] Zhan, M., Li, C., Zhang, W. and Zhang, D. , 2012, 'Processing of AZ31 magnesium alloy by accumulative roll-bonding at gradient temperature', Acta Metallurgica Sinica (English Letters), 25(1), pp. 65–75. doi: 10.3724/SP.J.1037.2012.00365.
  • [119] Masoudpanah, S.M. and Mahmudi, R., 2009. Effects of rare-earth elements and Ca additions on the microstructure and mechanical properties of AZ31 magnesium alloy processed by ECAP. Materials Science and Engineering: A, 526(1-2), pp.22-30.
  • [120] Zhang, H., Yan, Q. and Li, L., 2008. Microstructures and tensile properties of AZ31 magnesium alloy by continuous extrusion forming process. Materials Science and Engineering: A, 486(1-2), pp.295-299.
  • [121] Huang, S.J., Kannaiyan, S., Sarkar, M. and Mose, M.P., 2023. Enhancement of Mechanical Behaviors and Microstructure Evolution of Nano-Nb2O5/AZ31 Composite Processed via Equal-Channel Angular Pressing (ECAP). Journal of Composites Science, 7(6), p.230.
  • [122] Li, X., Zhang, M., Fang, X., Li, Z., Jiao, G. and Huang, K., 2023. Improved strength-ductility synergy of directed energy deposited AZ31 magnesium alloy with cryogenic cooling mode. Virtual and Physical Prototyping, 18(1), p.e2170252.
  • [123] Yuan, M., He, C., Song, Y., Lei, B., Qian, X., Dong, Z., Zhao, J., Yang, H., Chai, Y., Jiang, B. and Pan, F., 2022. Effects of Zn addition on the microstructure and mechanical properties of as-extruded Mg-2Al-0.5 Ca alloy. Metals, 12(2), p.221.
  • [124] Pan, Y., Wang, J., Cui, H., Feng, R., Gong, B., Zhao, X., Hou, N., Cui, B., Song, Y. and Yang, T., 2020. Effect of deep cryogenic treatment on the microstructure and corrosion behavior of the microarc oxidized Mg-2.0 Zn-0.5 Ca alloy. Journal of Materials Research and Technology, 9(3), pp.3943-3949.
  • [125] Dong, N., Sun, L., Ma, H. and Jin, P., 2021. Effects of cryogenic treatment on microstructures and mechanical properties of Mg-2Nd-4Zn alloy. Materials Letters, 305, p.130699.
  • [126] Chai, F., Ma, Z., Han, X., Hu, X., Chang, Z. and Zhou, J., 2023, Effect of Strain Rates on Mechanical Behavior, Microstructure Evolution and Failure Mechanism of Extruded-Annealed Az91 Magnesium Alloy Under Room-Temperature Tension. Microstructure Evolution and Failure Mechanism of Extruded-Annealed AZ91 Magnesium Alloy Under Room-Temperature Tension.
  • [127] Savaedi, Z., Motallebi, R., Mirzadeh, H., Aghdam, R.M. and Mahmudi, R., 2023. Superplasticity of fine-grained magnesium alloys for biomedical applications: A comprehensive review. Current Opinion in Solid State and Materials Science, 27(2), p.101058.
  • [128] Wang, C., Ding, H., Wang, B.S., Wang, K., Shi, J.J. and Chen, J.F., 2017. Effects of deformation texture and twins on the corrosion resistance of rolled AZ31 Mg alloy under 5% uniaxial compression. Acta Metallurgica Sinica (English Letters), 30, pp.921-930.
  • [129] Mukai, T., Yamanoi, M., Watanabe, H. and Higashi, K., 2001. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta materialia, 45(1), pp.89-94.
  • [130] Li, Y., Yang, B., Han, T., Chu, Z., Tuo, L., Xue, C., Yang, Q., Zhao, X. and Gao, H., 2022. Effect of pre-deformation on microstructure characteristics, texture evolution and deformation mechanism of AZ31 magnesium alloy. Materials Science and Engineering: A, 845, p.143234.
  • [131] Dessolier, T., Lhuissier, P., Roussel-Dherbey, F., Charlot, F., Josserond, C., Blandin, J.J. and Martin, G., 2020. Effect of temperature on deformation mechanisms of AZ31 Mg-alloy under tensile loading. Materials Science and Engineering: A, 775, p.138957.
  • [132] Zhao, X., Zeng, X., Yuan, L., Gandra, J., Hayat, Q., Bai, M., Rainforth, W.M. and Guan, D., 2023. A novel approach for producing Mg-3Al-1Zn-0.2 Mn alloy wire with a promising combination of strength and ductility using CoreFlowTM. Scripta Materialia, 227, p.115301.
  • [133] Sun, J., Liu, J., Chen, Q., Lu, L. and Zhao, Y., 2022. Study of the Effect of Grain-Boundary Misorientation on Slip Transfer in Magnesium Alloy Using a Misorientation Distribution Map. Crystals, 12(3), p.388.
  • [134] Sun, S., Deng, N., Zhang, H., He, L., Zhou, H., Han, B., Gao, K. and Wang, X., 2021. Microstructure and mechanical properties of AZ31 magnesium alloy reinforced with novel sub-micron vanadium particles by powder metallurgy. Journal of Materials Research and Technology, 15, pp.1789-1800.
  • [135] Liu, Y., Zhao, Y., Wang, L., Jin, X., Sun, C., Wang, X., Wang, G., Dai, S. and Wang, Y., 2021. Microstructure and Mechanical Properties of AZ31 Alloys Processed by Residual Heat Rolling. Journal of Wuhan University of Technology-Mater. Sci. Ed., 36(4), pp.588-594.
  • [136] Wan, Y.J., Zeng, Y., Dou, Y.C., Hu, D.C., Qian, X.Y., Zeng, Q., Sun, K.X. and Quan, G.F., 2022. Improved mechanical properties and strengthening mechanism with the altered precipitate orientation in magnesium alloys. Journal of Magnesium and Alloys, 10(5), pp.1256-1267.
  • [137] Kazemi, A., Heidari, A., Amini, K., Aghadavoudi, F. and Loh-Mousavi, M., 2023. The Effect of Surface Mechanical Attrition Treatment Time on Microstructure and Mechanical Properties of AZ31 Mg Alloy. Protection of Metals and Physical Chemistry of Surfaces, pp.1-8.
  • [138] Huang, X., Suzuki, K., Chino, Y. and Mabuchi, M., 2015. Influence of aluminum content on the texture and sheet formability of AM series magnesium alloys. Materials Science and Engineering: A, 633, pp.144-153.
  • [139] Clinch, M.R., Harris, S.J., Hepples, W., Holroyd, N.J.H., Lawday, M.J. and Noble, B., 2006, July. Influence of zinc to magnesium ratio and total solute content on the strength and toughness of 7xxx series alloys. In Materials science forum (Vol. 519, pp. 339-344). Trans Tech Publications Ltd.
  • [140] Hu, Y., Guo, X., Qiao, Y., Wang, X. and Lin, Q., 2022. Preparation of medical Mg–Zn alloys and the effect of different zinc contents on the alloy. Journal of Materials Science: Materials in Medicine, 33(1), p.9.
  • [141] Parthiban, G.T., Palaniswamy, N. and Sivan, V., 2009. Effect of manganese addition on anode characteristics of electrolytic magnesium. Anti-Corrosion Methods and Materials, 56(2), pp.79-83.
  • [142] Razzaghi, M., Mirzadeh, H. and Emamy, M., 2019. Mechanical properties of Mg-Al-Mn magnesium alloys with low Al content in the as-cast and extruded conditions. Materials Research Express, 6(10), p.106521.
  • [143] Yang, J., Wang, D., Xiao, B.L., Ni, D.R. and Ma, Z.Y., 2013. Effects of rotation rates on microstructure, mechanical properties, and fracture behavior of friction stir-welded (FSW) AZ31 magnesium alloy. Metallurgical and Materials Transactions A, 44, pp.517-530.
  • [144] Yu, K., Li, W., Wang, R., Wang, B. and Li, C., 2008. Effect of T5 and T6 tempers on a hot-rolled WE43 magnesium alloy. Materials transactions, 49(8), pp.1818-1821.
  • [145] Wei, X., Li, Z., Liu, P., Li, S., Peng, X., Deng, R. and Zhao, Q., 2020. Improvement in corrosion resistance and biocompatibility of AZ31 magnesium alloy by NH2+ ions. Journal of Alloys and Compounds, 824, p.153832.

AZ31 Magnesium Alloy in the Aerospace Industry: A Review on the Effect of Composition, Microstructure, and Mechanical Properties on Alloy Performance

Year 2024, , 109 - 130, 30.11.2024
https://doi.org/10.34088/kojose.1334496

Abstract

This comprehensive review article overviews AZ31, a highly researched magnesium alloy known for its exceptional mechanical properties, lightweight nature, and corrosion resistance. It covers the alloy's composition, microstructure, mechanical properties, applications, and prospects. AZ31's microstructure is influenced by its aluminum (Al) and zinc (Zn) composition, resulting in significant magnesium-aluminum intermetallic phase formation, critical for tailoring the alloy's properties to meet specific application needs. AZ31 exhibits impressive specific strength, excellent castability, and favorable ductility influenced by alloying elements, microstructure, and processing methods. The article discusses manufacturing processes like casting, rolling, and extrusion, which impact the alloy's microstructure and mechanical properties. It also explores the corrosion behavior of AZ31, emphasizing factors affecting corrosion resistance and strategies for improvement. Due to its lightweight properties, high strength-to-weight ratio, and electromagnetic shielding capabilities, AZ31 is widely used in various industries, including automotive, aerospace, electronics, and biomedical. Ongoing research focuses on alloy modifications, surface treatments, and additive manufacturing to enhance AZ31's properties and address challenges like limited formability and corrosion resistance. This review article is a valuable resource for researchers, engineers, and professionals exploring AZ31's potential for lightweight materials and diverse applications in different industries.

References

  • [1] Ambekar, Rushikesh S., Brijesh Kushwaha, Pradeep Sharma, Federico Bosia, Massimiliano Fraldi, Nicola M. Pugno, and Chandra S. Tiwary., 2021, "Topologically engineered 3D printed architectures with superior mechanical strength." Materials Today 48: 72-94.
  • [2] Zhang, Zhiyan, Zhengzhi Mu, Yufei Wang, Wenda Song, Hexuan Yu, Shuang Zhang, Yujiao Li, Shichao Niu, Zhiwu Han, and Luquan Ren., 2023, "Lightweight Structural Biomaterials with Excellent Mechanical Performance: A Review." Biomimetics 8, no. 2: 153.
  • [3] Baral, Subrat Kumar, Manjusha M. Thawre, B. Ratna Sunil, and Ravikumar Dumpala., 2023, "A review on developing high-performance ZE41 magnesium alloy by using bulk deformation and surface modification methods." Journal of Magnesium and Alloys.
  • [4] Ding, Qingli., 2023, "MICROSTRUCTURAL, CORROSION AND MECHANICAL CHARACTERIZATION OF FRICTION-STIR WELDED JOINTS BETWEEN ALUMINUM AND MAGNESIUM ALLOYS." PhD diss., WORCESTER POLYTECHNIC INSTITUTE.
  • [5] Ezhilmaran, V., P. Suya Prem Anand, Suresh Kannan, N. Sivashanmugam, K. Jayakrishna, and G. Kalusuraman., 2023 "Review of bioresorbable AZ91, AZ31 and Mg–Zn–Ca implants and their manufacturing methods." Materials Science and Technology 39, no. 8,: 901-925.
  • [6] Pan, Shi-Qi, Fen Zhang, Cuie Wen, and Rong-Chang Zeng., 2023, "Advances in Mg–Al-layered double hydroxide steam coatings on Mg alloys: A review." Journal of Magnesium and Alloys.
  • [7] Kwon, Duyoung, Hien Van Pham, Pungkeun Song, and Sungmo Moon., 2023, "Corrosion Behavior of the AZ31 Mg Alloy in Neutral Aqueous Solutions Containing Various Anions." Metals13, no. 5: 962.
  • [8] Singh, Virendra Pratap, Deepak Kumar, and Basil Kuriachen., 2023 "Effect of Low Welding and Rotational Speed on Microstructure and Mechanical Behaviour of Friction Stir Welded AZ31-AA6061-T6." Transactions of the Indian Institute of Metals: 1-9.
  • [9] Fang, Xiaoyan, Chen Zhou, Jinbao Lin, and Wenwen Li., 2023, "Research on deformation mechanism of AZ31 magnesium alloy during uniaxial compression." Materials Science and Technology: 1-11.
  • [10] Drunka, R., P. Iesalniece, I. Steins, L. Grase, T. V. Eiduks, K. Savkovs, and I. Blumbergs. , 2023, "Complex coating system for improving corrosion resistance of AZ31 magnesium alloy." In Journal of Physics: Conference Series, vol. 2423, no. 1, p. 012020. IOP Publishing.
  • [11] Zakaria, Muhammad Syamil, Mazli Mustapha, Azwan Iskandar Azmi, and Chu Yee Khor., 2023, "Chip Morphology and Surface Integrity in Turning AZ31 Magnesium Alloy under Dry Machining and Submerged Convective Cooling." Metals 13, no. 3: 619.
  • [12] Liu, Bo, Jian Yang, Xiaoyu Zhang, Qin Yang, Jinsheng Zhang, and Xiaoqing Li., 2023, "Development and application of magnesium alloy parts for automotive OEMs: A review." Journal of Magnesium and Alloys.
  • [13] Siengchin, Suchart., 2023, "A review on lightweight materials for defence applications: A present and future developments." Defence Technology.
  • [14] Shen, Tianyuan, Huan Liu, Jialong Zhang, Min Ma, Zhiqiang Wu, Longfei Liu, and Liwei Lu., 2023, "The improvement on mechanical anisotropy of AZ31 magnesium alloy sheets by multi cross-rolling process." Journal of Alloys and Compounds: 171252.
  • [15] Zhang, Meng, Kun Yang, Guobing Wei, Weidong Xie, Yan Yang, Bin Li, Hao Chen, and Qingshan Yang., 2023, "AZ31/GNP magnesium composites with excellent comprehensive mechanical properties prepared by friction stir processing and rolling." Journal of Materials Research and Technology.
  • [16] Wang, Senwei, Kunming Zhang, Sihui Ouyang, Chengao Du, Xiong Wu, Aitao Tang, Jia She, and Fusheng Pan., 2023, "Grain Refinement and Mechanical Properties of AZ31 Alloy Processed by Pre-die Forging Extrusion at Different Temperatures." Journal of Materials Engineering and Performance: 1-8.
  • [17] Sai Divya, Putta Venkata, Pavan Kumar Penumakala, Krishnavajhala Guru Venkat Kalyan, and Ashok Kumar Nallathambi., 2023, "Analysis of hot tensile behaviour and prediction of thermal stresses during processing of AZ31 magnesium alloy." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 237, no. 6: 1445-1462.
  • [18] Ezhilmaran, V., P. Suya Prem Anand, Suresh Kannan, N. Sivashanmugam, K. Jayakrishna, and G. Kalusuraman., 2023, "Review of bioresorbable AZ91, AZ31 and Mg–Zn–Ca implants and their manufacturing methods." Materials Science and Technology 39, no. 8: 901-925.
  • [19] Yusuke, Katanaga, Ajith Bandara, Natsuto Soga, Koichi Kan, Akifumi Koike, and Toru Aoki., 2023, "Investigation of industrial die-cast Al-alloys using X-ray micro-computed tomography and machine learning approach for CT segmentation." Production Engineering 17, no. 2: 291-305.
  • [20] Mégret, Alexandre, Loïc Prince, Marie-Georges Olivier, and Véronique Vitry., 2023, "Tribo-and Tribocorrosion Properties of Magnesium AZ31 Alloy." Coatings 13, no. 2: 448.
  • [21] ABOSHBA, FADELL SAID AHMED., 2022, "ANALYSIS OF THE PUNCHING PROCESS OF AZ31 MG ALLOY SHEET WITH EXPERIMENTAL AND SIMULATION STUDIES." PhD diss.,.
  • [22] Lokesh Kumar, R., B. G. Yashwanth Kumar, R. Vaira Vignesh, J. Kaasi Viswanath, M. Muralimanokar, Shabbir Memon, and M. Govindaraju., 2022, "Microstructure, Tribology, and Corrosion Characteristics of Hot-Rolled AZ31 Magnesium Alloy." In Advances in Processing of Lightweight Metal Alloys and Composites: Microstructural Characterization and Property Correlation, pp. 299-326. Singapore: Springer Nature Singapore.
  • [23] Huang, Song-Jeng, Sathiyalingam Kannaiyan, Manas Sarkar, and Matoke Peter Mose., 2023, "Enhancement of Mechanical Behaviors and Microstructure Evolution of Nano-Nb2O5/AZ31 Composite Processed via Equal-Channel Angular Pressing (ECAP)." Journal of Composites Science 7, no. 6: 230.
  • [24] Lokesh Kumar, R., B. G. Yashwanth Kumar, R. Vaira Vignesh, J. Kaasi Viswanath, M. Muralimanokar, Shabbir Memon, and M. Govindaraju., 2022 "Microstructure, Tribology, and Corrosion Characteristics of Hot-Rolled AZ31 Magnesium Alloy." In Advances in Processing of Lightweight Metal Alloys and Composites: Microstructural Characterization and Property Correlation, pp. 299-326. Singapore: Springer Nature Singapore.
  • [25] Gołąbczak, M., Święcik, R., Gołąbczak, A., Nouveau, C., Jacquet, P., & Blanc, C., 2018,. Investigations of surface layer temperature and morphology of hard machinable materials used in aircraft industry during abrasive electrodischarge grinding process: Untersuchungen zur Oberflächentemperatur und Morphologie beim elektrolytischen Erosionsschleifen von schwer zerspanbaren Werkstoffen aus der Luftfahrtindustrie. Materialwissenschaft und Werkstofftechnik, 49(5), 568-576.
  • [26] Li, Dezhi, Carl Slater, Huisheng Cai, Xiaonan Hou, Yongbing Li, and Qudong Wang., 2023, "Joining Technologies for Aluminium Castings—A Review." Coatings 13, no. 5: 958.
  • [27] Chen, Zhihao, Zihao Zhang, Yuanyong Ouyang, Yun Chen, Xiaoshuang Yin, Ying Liu, Hanjie Ying, and Wenzhong Yang., 2023 "Electrospinning polycaprolactone/collagen fiber coatings for enhancing the corrosion resistance and biocompatibility of AZ31 Mg alloys." Colloids and Surfaces A: Physicochemical and Engineering Aspects 662: 131041.
  • [28] Zhang, Zihao, Xiaoyu Wang, Hengtong Xia, Hongyuan Li, Zhihao Chen, and Wenzhong Yang., 2023, "Electrical-responsive biocompatible coatings for highly corrosion-resistance and self-healing performance on AZ31 Mg alloy." Journal of Industrial and Engineering Chemistry 121: 179-189.
  • [29] Vahedi, Shaghayegh, Rouhollah Mehdinavaz Aghdam, Mahmoud Heydarzadeh Sohi, and Ali Hossein Rezayan., 2023, "Characteristics of electrospun chitosan/carbon nanotube coatings deposited on AZ31 magnesium alloy." Journal of Materials Science: Materials in Medicine 34, no. 1: 8.
  • [30] Chen, Zhihao, Zihao Zhang, Yuanyong Ouyang, Yun Chen, Xiaoshuang Yin, Ying Liu, Hanjie Ying, and Wenzhong Yang., 2023, "Electrospinning polycaprolactone/collagen fiber coatings for enhancing the corrosion resistance and biocompatibility of AZ31 Mg alloys." Colloids and Surfaces A: Physicochemical and Engineering Aspects 662: 131041.
  • [31] Kumar, Vasantha, C. M. Ramesha, and V. Sharanraj., 2023, "In-Vitro Biocompatibility Study and Comparison of Magnesium AZ31 and PEEK 450G Biomaterials used as Cardiovascular Stent Implants." Journal of Mines, Metals & Fuels 71, no. 1.
  • [32] Pang, Shuoshuo, Wenxiang Zhao, Tianyang Qiu, Weiliang Liu, Li Jiao, and Xibin Wang., 2023, "Study on surface quality and mechanical properties of micro-milling WE43 magnesium alloy cardiovascular stent." Journal of Manufacturing Processes 101: 1080-1090.
  • [33] Song-Jeng, Huang, Sathiyalingam Kannaiyan, Manas Sarkar, and Matoke Peter Mose., 2023, "Enhancement of Mechanical Behaviors and Microstructure Evolution of Nano-Nb 2 O 5/AZ31 Composite Processed via Equal-Channel Angular Pressing (ECAP)." Journal of Composites Science 7, no. 6: 230.
  • [34] Zakaria, Muhammad Syamil, Mazli Mustapha, Azwan Iskandar Azmi, Azlan Ahmad, Mohd Danish, and Saeed Rubaiee., 2022, "Machinability investigations of AZ31 magnesium alloy via submerged convective cooling in turning process." Journal of Materials Research and Technology 19: 3685-3698.
  • [35] Dhanaji, Todkar Utkarsh, Sejal Dassani, M. Somasundaram, A. Muthuchamy, and A. Raja Annamalai., 2023 "Microstructural, Mechanical, and Corrosion Properties of AZXX Magnesium Alloy: A Review of Processing Methods." Crystals 13, no. 2: 344.
  • [36] Cao, Qianhui, Bojin Qi, Caiyou Zeng, Ruize Zhang, Bochang He, Zewu Qi, Fude Wang, Haibo Wang, and Baoqiang Cong., 2022, "Achieving equiaxed microstructure and isotropic mechanical properties of additively manufactured AZ31 magnesium alloy via ultrasonic frequency pulsed arc." Journal of Alloys and Compounds 909: 164742.
  • [37] Chen, Zhihao, Zihao Zhang, Yuanyong Ouyang, Yun Chen, Xiaoshuang Yin, Ying Liu, Hanjie Ying, and Wenzhong Yang., 2023, "Electrospinning polycaprolactone/collagen fiber coatings for enhancing the corrosion resistance and biocompatibility of AZ31 Mg alloys." Colloids and Surfaces A: Physicochemical and Engineering Aspects 662: 131041.
  • [38] Beura, V., D. Zhang, N. Overman, J. Darsell, D. R. Herling, K. Solanki, and V. V. Joshi., 2022, "Enhanced mechanical behavior and corrosion resistance of AZ31 magnesium alloy through a novel solid-phase processing." Corrosion Science 197: 110074.
  • [39] Zhang, Ai-meng, Chengbao Liu, Pu-sheng Sui, Cong Sun, Lan-yue Cui, M. Bobby Kannan, and Rong-Chang Zeng., 2023, "Corrosion resistance and mechanisms of smart micro-arc oxidation/epoxy resin coatings on AZ31 Mg alloy: Strategic positioning of nanocontainers." Journal of Magnesium and Alloys.
  • [40] Fajardo, S., L. Miguélez, M. A. Arenas, J. de Damborenea, Irene Llorente, and S. Feliu., 2022, "Corrosion resistance of pulsed laser modified AZ31 Mg alloy surfaces." Journal of Magnesium and Alloys 10, no. 3: 756-768.
  • [41] Qiu, Wei, Wen Xie, Qi-Feng Li, Wei-Ying Huang, Li-Bo Zhou, Wei Chen, Jian Chen et al., 2023, "Effect of vanadium nitride (VN) particles on microstructure and mechanical properties of extruded AZ31 Mg alloy." Acta Metallurgica Sinica (English Letters) 36, no. 2: 237-250.
  • [42] Zhang, Xuanchang, Hailong Shi, Xiaojun Wang, Shuai Zhang, Peng Luan, Xiaoshi Hu, and Chao Xu., 2023, "Processing, microstructure, and mechanical behavior of AZ31 magnesium alloy fabricated by electron beam additive manufacturing." Journal of Alloys and Compounds 938: 168567.
  • [43] Kwon, Duyoung, Hien Van Pham, Pungkeun Song, and Sungmo Moon., 2023, "Corrosion and Formation of Surface Films on AZ31 Mg Alloy in Aqueous Solution Containing Sulfate Ions with Different pHs." Metals 13, no. 7: 1150.
  • [44] Selvan, A. Thamarai, and S. Palani., 2023, "Prediction of mechanical strength of magnesium alloy AZ31 with calcium addition using a neural network based model." In Journal of Physics: Conference Series, vol. 2484, no. 1, p. 012015. IOP Publishing.
  • [45] Chowdhury, S. H., D. L. Chen, S. D. Bhole, X. Cao, and P. Wanjara., 2013, "Friction stir welded AZ31 magnesium alloy: microstructure, texture, and tensile properties." Metallurgical and materials transactions A 44, no. 1: 323-336.
  • [46] Chatterton, Mark., 2015, "Thermo-Mechanical Deformation Processing of Advanced Magnesium Alloys." PhD diss., The University of Manchester (United Kingdom).
  • [47] Schneider, K., B. J. McKay, and B. Nadendla., 2018, "Influence of zinc on intermetallic phase selection in Al-Mg compound castings." In Proceedings of the 16th International Aluminium Alloys Conference (ICAA16), pp. 1-8.
  • [48] Wang, Z-L., Z-J. Wei, H-W. Wang, and L. Cao., 2006, "Effects of high pressure on microstructure and phase of Al–Mg–Zn alloy." International Journal of Cast Metals Research 19, no. 5: 269-273.
  • [49] Elthalabawy, Waled, and Tahir Khan., 2011, "Liquid phase bonding of 316L stainless steel to AZ31 magnesium alloy." Journal of Materials Science & Technology 27, no. 1: 22-28.
  • [50] Shang, L., I. H. Jung, S. Yue, R. Verma, and E. Essadiqi., 2010, "An investigation of formation of second phases in microalloyed, AZ31 Mg alloys with Ca, Sr and Ce." Journal of Alloys and Compounds 492, no. 1-2: 173-183.
  • [51] Anbuchezhiyan, Gnanasambandam, Nabisab Mujawar Mubarak, Rama Rao Karri, and Mohammad Khalid., 2022, "A synergistic effect on enriching the Mg–Al–Zn alloy-based hybrid composite properties." Scientific reports 12, no. 1: 20053.
  • [52] Gao, Lei, Feng Li, Ye Wang, Xing Mao Xiao, and Peng Da Huo., 2022, "Fabrication and Interface Structural Behavior of Mg/Al Thickness-Oriented Bonding Sheet via Direct Extrusion." Metals and Materials International: 1-11.
  • [53] Sun, An, Xiaoming Sui, Haitao Li, and Qiang Wang., 2015, "Interface microstructure and mechanical properties of zinc–aluminum thermal diffusion coating on AZ31 magnesium alloy." Materials & Design 67: 280-284.
  • [54] Sahu, Prakash Kumar, Jayashree Das, Gaoqiang Chen, Qu Liu, Sukhomay Pal, Shenbo Zeng, and Qingyu Shi., 2020, "Friction stir selective alloying of different Al% particulate reinforced to AZ31 Mg for enhanced mechanical and metallurgical properties." Materials Science and Engineering: A 774: 138889.
  • [55] Liu, Fei, Zhaodong Zhang, and Liming Liu., 2012, "Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal." Materials Characterization 69: 84-89.
  • [56] Dewangan, Satya Kumar, Pragya Nandan Banjare, Manwendra Kumar Tripathi, and Manoranjan Kumar Manoj., 2023, "Effect of vertical and horizontal zinc interlayer on material flow, microstructure, and mechanical properties of dissimilar FSW of Al 7075 and Mg AZ31 alloys." The International Journal of Advanced Manufacturing Technology 126, no. 9: 4453-4474.
  • [57] Zeng, Zihao, Pingli Jiang, Ruiqing Hou, Liguo Wang, Shijie Zhu, and Shaokang Guan., 2023, "Enhanced Corrosion Resistance and Mechanical Properties of Mg-Zn Alloy via Micro-alloying of Ge." JOM: 1-12.
  • [58] Qiu, Wei, Wen Xie, Qi-Feng Li, Wei-Ying Huang, Li-Bo Zhou, Wei Chen, Jian Chen et al., 2023, "Effect of vanadium nitride (VN) particles on microstructure and mechanical properties of extruded AZ31 Mg alloy." Acta Metallurgica Sinica (English Letters) 36, no. 2: 237-250.
  • [59] Zhang, Hang, Haipeng Li, Rongguang Li, Boshu Liu, Ruizhi Wu, Dongyue Zhao, and Shanshan Li., 2023, "Effect of Initial Microstructure Prior to Extrusion on the Microstructure and Mechanical Properties of Extruded AZ80 Alloy with a Low Temperature and a Low Ratio." Chinese Journal of Mechanical Engineering 36, no. 1: 72.
  • [60] Dewangan, Satya Kumar, Pragya Nandan Banjare, Manwendra Kumar Tripathi, and Manoranjan Kumar Manoj., 2023, "Effect of vertical and horizontal zinc interlayer on material flow, microstructure, and mechanical properties of dissimilar FSW of Al 7075 and Mg AZ31 alloys." The International Journal of Advanced Manufacturing Technology 126, no. 9: 4453-4474.
  • [61] Yang, Qiang, Xiaohan Wu, and Xin Qiu., 2023, "Microstructural Characteristics of High-Pressure Die Casting with High Strength–Ductility Synergy Properties: A Review." Materials 16, no. 5: 1954.
  • [62] Kocaman, Engin., 2023 "Effect of Al5Ti1B and Al8B on the Microstructure, Wear and Corrosion Behavior of CuZn19Al6 Bronze Alloy." Materials Today Communications: 106551.
  • [63] Ghiasvand, Ahmad, Eslam Ranjbarnodeh, and Seyed Ehsan Mirsalehi., 2023, "The microstructure and mechanical properties of single-pass and double-pass lap joint of Al 5754H-11 and Mg AZ31-O alloys by friction stir welding." Journal of Materials Research and Technology 23: 6023-6038.
  • [64] Yang, Yang, Yangchao Deng, Ruifeng Zhang, Yuqing Su, Siyue Liu, Christopher M. Gourlay, and Guang Zeng., 2023 "Influence of β-Mg17Al12 and Al-Mn intermetallic compounds on the corrosion behaviour of cast and solution treated Mg-Al-Zn-Mn alloys." Corrosion Science: 111363.
  • [65] Majidabad, Milad Aali, Mohammad Eftekhari, and Ghader Faraji., 2023, "Characterization of Mg–9Al–1Zn-0.2 Mn alloy tubes processed by a new modified tube cyclic expansion extrusion (M-TCEE) process." Journal of Materials Research and Technology 24: 7989-8001.
  • [66] Li, Limin, Zhiquan Huang, Liwen Chen, Jianhui Jing, Hua Hou, and Yuhong Zhao., 2023, "Changing the second phase distribution shape and improving the corrosion resistance of Mg-6.7 Y-2.5 Zn alloy by addition of trace Ta." Corrosion Science: 111341.
  • [67] Hermann, F., F. Sommer, H. Jones, and R. G. J. Edyvean., 1989, "Corrosion inhibition in magnesium-aluminium-based alloys induced by rapid solidification processing." Journal of materials science 24: 2369-2379.
  • [68] Pardo, A., Merino, M.C., Coy, A.E., Arrabal, R., Viejo, F. and Matykina, E., 2008. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corrosion Science, 50(3), pp.823-834.
  • [69] Sharahi, H.J., Pouranvari, M. and Movahedi, M., 2020. Strengthening and ductilization mechanisms of friction stir processed cast Mg–Al–Zn alloy. Materials Science and Engineering: A, 781, p.139249.
  • [70] Pardo, A., Merino, M.C., Coy, A.E., Arrabal, R., Viejo, F. and Matykina, E., 2008. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corrosion Science, 50(3), pp.823-834.
  • [71] Desai, A., Khatri, B., Rana, H., Patel, V. and Badheka, V., 2023. Numerical and experimental investigation on AZ91 friction stir welding joints: mechanics, properties. Materials Science and Technology, pp.1-15.
  • [72] Chen, Y., Liu, G.H., Wang, Y. and Wang, Z.D., 2023. Solidification microstructure of Ti-43Al alloy by twin-roll strip casting. China Foundry, 20(2), pp.99-107.
  • [73] Zhou, J., Yang, H., Jiang, B., He, C., Dong, Z., Liu, L., Luo, X., Liu, Y., Huang, D., Xu, J. and Huang, G., 2023. Clarifying the deformation modes and strengthening mechanisms of Mg-11Gd-5Y-2Zn-0.7 Zr with outstanding high-temperature mechanical properties. Materials Science and Engineering: A, 866, p.144638.
  • [74] Song, X., Fu, X. and Wang, M., 2023. First–principles study of β′ phase in Mg–RE alloys. International Journal of Mechanical Sciences, 243, p.108045.
  • [75] Lv, X. and Liu, L., 2023. Microstructure and mechanical performance of AZ31/6061 lap joints welded by laser-TIG hybrid welding with Zn-Al alloy filler metal. Journal of Magnesium and Alloys.
  • [76] Xu, B., Sun, J., Yang, Z., Han, J., Fu, Y., Jiang, J. and Ma, A., 2020. A near-isotropic ultrafine-grained Mg-Gd-Ag alloy with high strength-ductility synergy. Journal of Materials Research and Technology, 9(6), pp.13616-13624.
  • [77] Sunil, B.R., Ganesh, K.V., Pavan, P., Vadapalli, G., Swarnalatha, C., Swapna, P., Bindukumar, P. and Reddy, G.P.K., 2016. Effect of aluminum content on machining characteristics of AZ31 and AZ91 magnesium alloys during drilling. Journal of Magnesium and alloys, 4(1), pp.15-21.
  • [78] Liu, Q., Ma, Q.X., Chen, G.Q., Cao, X., Zhang, S., Pan, J.L., Zhang, G. and Shi, Q.Y., 2018. Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing. Corrosion science, 138, pp.284-296.
  • [79] Liu, X., Jia, H.L., Wang, C., Wu, X., Zha, M. and Wang, H.Y., 2022. Enhancing mechanical properties of twin-roll cast Al–Mg–Si–Fe alloys by regulating Fe-bearing phases and macro-segregation. Materials Science and Engineering: A, 831, p.142256.
  • [80] Ma, D., Xu, C., Qi, Y., Sui, S., Tian, J., Tu, T., Guo, C., Wu, X., Zhang, Z., Remennik, S. and Shechtman, D., 2023. Achieving fully equiaxed grain microstructure and isotropic mechanical properties in wire arc additive-manufactured Mg-Y-Nd-Zr alloys. Journal of Alloys and Compounds, p.171041.
  • [81] Wang, W., Zhang, J., Li, J., Chen, X., Liu, S., Huang, G., Chen, X., Zheng, K., Jiang, B. and Pan, F., 2023. Influence of different extrusion methods on the microstructure, texture evolution and mechanical property of Tip/AZ31 composite. Materials Science and Engineering: A, 862, p.144377.
  • [82] Wang, Zihong, Jingfeng Wang, Xin Lin, Tianchi Zhang, Cong Dang, Yanfang Wang, Weidong Huang, and Fushen Pan., 2023, "Solidification texture dependence of the anisotropy of mechanical properties and damping capacities of an AZ31 Mg-based alloy fabricated via wire-arc additive manufacturing." Journal of Materials Research and Technology.
  • [83] Sahu, P.K., Das, J. and Shi, Q., 2023. Effect of Alloying Foil on the Friction Stir Weld Quality of Mg Alloy Joints. Metallography, Microstructure, and Analysis, pp.1-11.
  • [84] Ghiasvand, A., Ranjbarnodeh, E. and Mirsalehi, S.E., 2023. The microstructure and mechanical properties of single-pass and double-pass lap joint of Al 5754H-11 and Mg AZ31-O alloys by friction stir welding. Journal of Materials Research and Technology, 23, pp.6023-6038.
  • [85] Baral, S.K., Thawre, M.M., Sunil, B.R. and Dumpala, R., 2023. A review on developing high-performance ZE41 magnesium alloy by using bulk deformation and surface modification methods. Journal of Magnesium and Alloys.
  • [86] Huang, S.J. and Abbas, A., 2020. Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting. Journal of Alloys and Compounds, 817, p.153321.
  • [87] Xiao, B.L., Yang, Q., Yang, J., Wang, W.G., Xie, G.M. and Ma, Z.Y., 2011. Enhanced mechanical properties of Mg–Gd–Y–Zr casting via friction stir processing. Journal of Alloys and Compounds, 509(6), pp.2879-2884.
  • [88] Hamu, G.B., Eliezer, D. and Wagner, L., 2009. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. Journal of alloys and compounds, 468(1-2), pp.222-229.
  • [89] Yu, Z., Xu, C., Meng, J., Zhang, X. and Kamado, S., 2018. Microstructure evolution and mechanical properties of as-extruded Mg-Gd-Y-Zr alloy with Zn and Nd additions. Materials Science and Engineering: A, 713, pp.234-243.
  • [90] Elsayed, F.R., Sasaki, T.T., Ohkubo, T., Takahashi, H., Xu, S.W., Kamado, S. and Hono, K., 2013. Effect of extrusion conditions on microstructure and mechanical properties of microalloyed Mg–Sn–Al–Zn alloys. Materials Science and Engineering: A, 588, pp.318-328.
  • [91] Tong, W.E.N., Liu, S.Y., Shi, C.H.E.N., Liu, L.T. and Chen, Y.A.N.G., 2015. Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 25(2), pp.397-404.
  • [92] Chen, Y., Wang, Q., Peng, J., Zhai, C. and Ding, W., 2007. Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy. Journal of materials processing technology, 182(1-3), pp.281-285.
  • [93] Zhi, C., Lei, J., Xing, H., Huang, Z., Xu, H., Jia, W. and Ma, L., 2023. Tensile fracture prediction of AZ31 cast-rolled sheet based on hot working map. Journal of Materials Research and Technology, 23, pp.3272-3283.
  • [94] Ye, P., Yang, C., Li, Z., Bao, S., Sun, Y., Ding, W. and Chen, Y., 2023. Texture and High Yield Strength of Rapidly Solidified AZ31 Magnesium Alloy Extruded at 250° C. Materials, 16(8), p.2946.
  • [95] Zulkfli, Z., Hamedon, Z. and Fatchurrohman, N., 2023. Surface Modification on Magnesium Alloys' Hardness and Microstructure Using Friction Stir Processing–A Review. Jurnal Teknologi, 13(1), pp.39-45.
  • [96] Song, G.L. and Xu, Z., 2010. The surface, microstructure and corrosion of magnesium alloy AZ31 sheet. Electrochimica Acta, 55(13), pp.4148-4161.
  • [97] Li, M., Chen, J., Sun, J., Hao, L., Wu, D., Wang, J. and Ke, W., 2023. Varied corrosion evolution behavior of pure Mg, AZ31 and AZ91 magnesium alloys in phosphate buffer solution. Anti-Corrosion Methods and Materials.
  • [98] Cheng, Y.L., Qin, T.W., Wang, H.M. and Zhang, Z., 2009. Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys. Transactions of Nonferrous Metals Society of China, 19(3), pp.517-524.
  • [99] Kaliyaperumal, G., Elango, S., Ramalingam, P.S., Devi, G.R., Thangamani, P., Venkatesh, R., Kishan, S.A., Kumar, R.K. and De Poures, M.V., 2023. Experimental study and TiC interfacial action on microstructural and mechanical properties of AZ31 alloy composite made by stir casting route. Materials Today: Proceedings.
  • [100] Osipenko, Maria A., Aliaksandr A. Kasach, Janusz Adamiec, Małgorzata Zimowska, Irina I. Kurilo, and Dzmitry S. Kharytonau., 2023, "Corrosion inhibition of magnesium alloy AZ31 in chloride-containing solutions by aqueous permanganate." Journal of Solid State Electrochemistry: 1-14.
  • [101] Ma, Z.Y., Pilchak, A.L., Juhas, M.C. and Williams, J.C., 2008. Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Scripta Materialia, 58(5), pp.361-366.
  • [102] Minárik, P., Zimina, M., Čížek, J., Stráska, J., Krajňák, T., Cieslar, M., Vlasák, T., Bohlen, J., Kurz, G. and Letzig, D., 2019. Increased structural stability in twin-roll cast AZ31 magnesium alloy processed by equal channel angular pressing. Materials Characterization, 153, pp.199-207.
  • [103] Kim, H.S. and Kim, W.J., 2013. Enhanced corrosion resistance of ultrafine-grained AZ61 alloy containing very fine particles of Mg17Al12 phase. Corrosion Science, 75, pp.228-238.
  • [104] Zang, Q., Chen, H., Zhang, J., Wang, L., Chen, S. and Jin, Y., 2021. Microstructure, mechanical properties and corrosion resistance of AZ31/GNPs composites prepared by friction stir processing. Journal of Materials Research and Technology, 14, pp.195-201.
  • [105] Lei, X., Liu, T., Chen, J., Miao, B. and Zeng, W., 2011. Microstructure and mechanical properties of magnesium alloy AZ31 processed by compound channel extrusion. Materials transactions, 52(6), pp.1082-1087.
  • [106] Śliwa, R.E., Balawender, T., Hadasik, E., Kuc, D., Gontarz, A., Korbel, A. and Bochniak, W., 2017. Metal forming of lightweight magnesium alloys for aviation applications. Archives of Metallurgy and Materials, 62(3), pp.1559-1566.
  • [107] Zhang, H., Huang, G., Roven, H.J., Wang, L. and Pan, F., 2013. Influence of different rolling routes on the microstructure evolution and properties of AZ31 magnesium alloy sheets. Materials & Design, 50, pp.667-673.
  • [108] Chino, Y., Kimura, K. and Mabuchi, M., 2009. Deformation characteristics at room temperature under biaxial tensile stress in textured AZ31 Mg alloy sheets. Acta Materialia, 57(5), pp.1476-1485.
  • [109] Zúberová, Z., Kunz, L., Lamark, T.T., Estrin, Y. and Janeček, M., 2007. Fatigue and tensile behavior of cast, hot-rolled, and severely plastically deformed AZ31 magnesium alloy. Metallurgical and Materials Transactions A, 38, pp.1934-1940.
  • [110] Su, C.W., Lu, L. and Lai, M.O., 2007. Mechanical behaviour and texture of annealed AZ31 Mg alloy deformed by ECAP. Materials science and technology, 23(3), pp.290-296.
  • [111] Mekonen, M.N., Steglich, D., Bohlen, J., Letzig, D. and Mosler, J., 2012. Mechanical characterization and constitutive modeling of Mg alloy sheets. Materials Science and Engineering: A, 540, pp.174-186.
  • [112] Rakshith, M. and Seenuvasaperumal, P., 2021. Review on the effect of different processing techniques on the microstructure and mechanical behaviour of AZ31 Magnesium alloy. Journal of Magnesium and Alloys, 9(5), pp.1692-1714.
  • [113] Marya, M., Hector, L.G., Verma, R. and Tong, W., 2006. Microstructural effects of AZ31 magnesium alloy on its tensile deformation and failure behaviors. Materials science and engineering: A, 418(1-2), pp.341-356.
  • [114] Nguyen, Q.B., Tun, K.S., Lim, C.Y.H., Wong, W.L.E. and Gupta, M., 2013. Influence of nano-alumina and sub-micron copper on mechanical properties of magnesium alloy AZ31. Composites Part B: Engineering, 55, pp.486-491.
  • [115] An, Z.G., Yan, D., Qie, J.J., Lu, Z.L. and Gao, Z.Y., 2020. Effect of process parameters on formability of a AZ31 magnesium alloy thin-walled cylindrical part formed by multistage warm single-point incremental forming. Frontiers in Materials, 7, p.151.
  • [116] Guo, W., Wang, Q., Ye, B. and Zhou, H., 2013. Microstructure and mechanical properties of AZ31 magnesium alloy processed by cyclic closed-die forging. Journal of Alloys and Compounds, 558, pp.164-171.
  • [117] Hamad, K. and Ko, Y.G., 2016. A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys. Scientific Reports, 6(1), p.29954.
  • [118] Zhan, M., Li, C., Zhang, W. and Zhang, D. , 2012, 'Processing of AZ31 magnesium alloy by accumulative roll-bonding at gradient temperature', Acta Metallurgica Sinica (English Letters), 25(1), pp. 65–75. doi: 10.3724/SP.J.1037.2012.00365.
  • [119] Masoudpanah, S.M. and Mahmudi, R., 2009. Effects of rare-earth elements and Ca additions on the microstructure and mechanical properties of AZ31 magnesium alloy processed by ECAP. Materials Science and Engineering: A, 526(1-2), pp.22-30.
  • [120] Zhang, H., Yan, Q. and Li, L., 2008. Microstructures and tensile properties of AZ31 magnesium alloy by continuous extrusion forming process. Materials Science and Engineering: A, 486(1-2), pp.295-299.
  • [121] Huang, S.J., Kannaiyan, S., Sarkar, M. and Mose, M.P., 2023. Enhancement of Mechanical Behaviors and Microstructure Evolution of Nano-Nb2O5/AZ31 Composite Processed via Equal-Channel Angular Pressing (ECAP). Journal of Composites Science, 7(6), p.230.
  • [122] Li, X., Zhang, M., Fang, X., Li, Z., Jiao, G. and Huang, K., 2023. Improved strength-ductility synergy of directed energy deposited AZ31 magnesium alloy with cryogenic cooling mode. Virtual and Physical Prototyping, 18(1), p.e2170252.
  • [123] Yuan, M., He, C., Song, Y., Lei, B., Qian, X., Dong, Z., Zhao, J., Yang, H., Chai, Y., Jiang, B. and Pan, F., 2022. Effects of Zn addition on the microstructure and mechanical properties of as-extruded Mg-2Al-0.5 Ca alloy. Metals, 12(2), p.221.
  • [124] Pan, Y., Wang, J., Cui, H., Feng, R., Gong, B., Zhao, X., Hou, N., Cui, B., Song, Y. and Yang, T., 2020. Effect of deep cryogenic treatment on the microstructure and corrosion behavior of the microarc oxidized Mg-2.0 Zn-0.5 Ca alloy. Journal of Materials Research and Technology, 9(3), pp.3943-3949.
  • [125] Dong, N., Sun, L., Ma, H. and Jin, P., 2021. Effects of cryogenic treatment on microstructures and mechanical properties of Mg-2Nd-4Zn alloy. Materials Letters, 305, p.130699.
  • [126] Chai, F., Ma, Z., Han, X., Hu, X., Chang, Z. and Zhou, J., 2023, Effect of Strain Rates on Mechanical Behavior, Microstructure Evolution and Failure Mechanism of Extruded-Annealed Az91 Magnesium Alloy Under Room-Temperature Tension. Microstructure Evolution and Failure Mechanism of Extruded-Annealed AZ91 Magnesium Alloy Under Room-Temperature Tension.
  • [127] Savaedi, Z., Motallebi, R., Mirzadeh, H., Aghdam, R.M. and Mahmudi, R., 2023. Superplasticity of fine-grained magnesium alloys for biomedical applications: A comprehensive review. Current Opinion in Solid State and Materials Science, 27(2), p.101058.
  • [128] Wang, C., Ding, H., Wang, B.S., Wang, K., Shi, J.J. and Chen, J.F., 2017. Effects of deformation texture and twins on the corrosion resistance of rolled AZ31 Mg alloy under 5% uniaxial compression. Acta Metallurgica Sinica (English Letters), 30, pp.921-930.
  • [129] Mukai, T., Yamanoi, M., Watanabe, H. and Higashi, K., 2001. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scripta materialia, 45(1), pp.89-94.
  • [130] Li, Y., Yang, B., Han, T., Chu, Z., Tuo, L., Xue, C., Yang, Q., Zhao, X. and Gao, H., 2022. Effect of pre-deformation on microstructure characteristics, texture evolution and deformation mechanism of AZ31 magnesium alloy. Materials Science and Engineering: A, 845, p.143234.
  • [131] Dessolier, T., Lhuissier, P., Roussel-Dherbey, F., Charlot, F., Josserond, C., Blandin, J.J. and Martin, G., 2020. Effect of temperature on deformation mechanisms of AZ31 Mg-alloy under tensile loading. Materials Science and Engineering: A, 775, p.138957.
  • [132] Zhao, X., Zeng, X., Yuan, L., Gandra, J., Hayat, Q., Bai, M., Rainforth, W.M. and Guan, D., 2023. A novel approach for producing Mg-3Al-1Zn-0.2 Mn alloy wire with a promising combination of strength and ductility using CoreFlowTM. Scripta Materialia, 227, p.115301.
  • [133] Sun, J., Liu, J., Chen, Q., Lu, L. and Zhao, Y., 2022. Study of the Effect of Grain-Boundary Misorientation on Slip Transfer in Magnesium Alloy Using a Misorientation Distribution Map. Crystals, 12(3), p.388.
  • [134] Sun, S., Deng, N., Zhang, H., He, L., Zhou, H., Han, B., Gao, K. and Wang, X., 2021. Microstructure and mechanical properties of AZ31 magnesium alloy reinforced with novel sub-micron vanadium particles by powder metallurgy. Journal of Materials Research and Technology, 15, pp.1789-1800.
  • [135] Liu, Y., Zhao, Y., Wang, L., Jin, X., Sun, C., Wang, X., Wang, G., Dai, S. and Wang, Y., 2021. Microstructure and Mechanical Properties of AZ31 Alloys Processed by Residual Heat Rolling. Journal of Wuhan University of Technology-Mater. Sci. Ed., 36(4), pp.588-594.
  • [136] Wan, Y.J., Zeng, Y., Dou, Y.C., Hu, D.C., Qian, X.Y., Zeng, Q., Sun, K.X. and Quan, G.F., 2022. Improved mechanical properties and strengthening mechanism with the altered precipitate orientation in magnesium alloys. Journal of Magnesium and Alloys, 10(5), pp.1256-1267.
  • [137] Kazemi, A., Heidari, A., Amini, K., Aghadavoudi, F. and Loh-Mousavi, M., 2023. The Effect of Surface Mechanical Attrition Treatment Time on Microstructure and Mechanical Properties of AZ31 Mg Alloy. Protection of Metals and Physical Chemistry of Surfaces, pp.1-8.
  • [138] Huang, X., Suzuki, K., Chino, Y. and Mabuchi, M., 2015. Influence of aluminum content on the texture and sheet formability of AM series magnesium alloys. Materials Science and Engineering: A, 633, pp.144-153.
  • [139] Clinch, M.R., Harris, S.J., Hepples, W., Holroyd, N.J.H., Lawday, M.J. and Noble, B., 2006, July. Influence of zinc to magnesium ratio and total solute content on the strength and toughness of 7xxx series alloys. In Materials science forum (Vol. 519, pp. 339-344). Trans Tech Publications Ltd.
  • [140] Hu, Y., Guo, X., Qiao, Y., Wang, X. and Lin, Q., 2022. Preparation of medical Mg–Zn alloys and the effect of different zinc contents on the alloy. Journal of Materials Science: Materials in Medicine, 33(1), p.9.
  • [141] Parthiban, G.T., Palaniswamy, N. and Sivan, V., 2009. Effect of manganese addition on anode characteristics of electrolytic magnesium. Anti-Corrosion Methods and Materials, 56(2), pp.79-83.
  • [142] Razzaghi, M., Mirzadeh, H. and Emamy, M., 2019. Mechanical properties of Mg-Al-Mn magnesium alloys with low Al content in the as-cast and extruded conditions. Materials Research Express, 6(10), p.106521.
  • [143] Yang, J., Wang, D., Xiao, B.L., Ni, D.R. and Ma, Z.Y., 2013. Effects of rotation rates on microstructure, mechanical properties, and fracture behavior of friction stir-welded (FSW) AZ31 magnesium alloy. Metallurgical and Materials Transactions A, 44, pp.517-530.
  • [144] Yu, K., Li, W., Wang, R., Wang, B. and Li, C., 2008. Effect of T5 and T6 tempers on a hot-rolled WE43 magnesium alloy. Materials transactions, 49(8), pp.1818-1821.
  • [145] Wei, X., Li, Z., Liu, P., Li, S., Peng, X., Deng, R. and Zhao, Q., 2020. Improvement in corrosion resistance and biocompatibility of AZ31 magnesium alloy by NH2+ ions. Journal of Alloys and Compounds, 824, p.153832.
There are 145 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other), Materials Engineering (Other)
Journal Section Articles
Authors

Erkan Tur 0000-0002-3764-2184

Fahrettin Öztürk 0000-0001-9517-7957

Early Pub Date November 30, 2024
Publication Date November 30, 2024
Acceptance Date March 26, 2024
Published in Issue Year 2024

Cite

APA Tur, E., & Öztürk, F. (2024). AZ31 Magnesium Alloy in the Aerospace Industry: A Review on the Effect of Composition, Microstructure, and Mechanical Properties on Alloy Performance. Kocaeli Journal of Science and Engineering, 7(2), 109-130. https://doi.org/10.34088/kojose.1334496