Review
BibTex RIS Cite
Year 2022, Volume: 5 Issue: 1, 63 - 72, 31.05.2022
https://doi.org/10.34088/kojose.796854

Abstract

References

  • [1] Kondratenko V., Peppel T., Seeburg D., Kondratenko V. A., Kalevaru N., Martin A., Wohlrab S. 2017. Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation. Catalysis Science & Technology, 7(2), pp. 366–381. https://doi.org/10.1039/C6CY01879C
  • [2] Onoja O.P., Wang X., Kechagiopoulos P.N. 2019. Influencing selectivity in the oxidative coupling of methane by modulating oxygen permeation in a variable thickness membrane reactor. Chemical Engineering & Processing: Process Intensification, 135, pp. 156–167.https://doi.org/10.1016/j.cep.2018.11.016
  • [3] Fleischer V., Steuer R., Parishan S., Schomäcker R. 2016. Investigation of the surface reaction network of the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst by temperature programmed and dynamic experiments. Journal of Catalysis, 341, pp. 91–103.https://doi.org/10.1016/j.jcat.2016.06.014
  • [4] Alexiadis V.I., Chaar M., Van Veen A., Muhler M., Thybaut J.W., Marin G.B. 2016. Quantitative screening of an extended oxidative coupling of methane catalyst library. Applied Catalysis B: Environmental, 199, pp. 252–259. https://doi.org/10.1016/j.apcatb.2016.06.019
  • [5] Sahebdelfar S., Ravanchi M.T., Gharibi M., Hamidzadeh M.. 2012. Rule of 100: An inherent limitation or performance measure in oxidative coupling of methane?. Journal of Natural Gas Chemistry, 21, pp. 308–313. https://doi.org/10.1016/S1003-9953(11)60369-1
  • [6] Zhang H., Wu J., Xu B., Hu C. 2006. Simultaneous production of syngas and ethylene from methane by combining its catalytic oxidative coupling over Mn/Na2WO4/SiO2 with gas phase partial oxidation. Catalysis Letters., 106, pp. 161-165. https://doi.org/10.1007/s10562-005-9624-2
  • [7] Wang P., Zhao G., Liu Y., Lu Y. 2017. TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst for oxidative coupling of methane: Solution combustion synthesis and MnTiO3-dependent low-temperature activity improvement. Applied Catalysis A, General, 544, pp. 77–83. https://doi.org/10.1016/j.apcata.2017.07.012
  • [8] Penteado A., Esche E., Salerno D., Godini H. R., Wozny G. 2016. Design and Assessment of a Membrane and Absorption Based Carbon Dioxide Removal Process for Oxidative Coupling of Methane. Ind. Eng. Chem. Res., 55, pp. 7473−7483. https://doi.org/10.1021/acs.iecr.5b04910
  • [9] Gambo Y., Jalila A.A., Triwahyono S., Abdulrasheed A.A. 2018. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review. Journal of Industrial and Engineering Chemistry, 59, pp.218–229. https://doi.org/10.1016/j.jiec.2017.10.027
  • [10] Daneshpayeh M., Mostoufi N., Khodadadi A., Sotudeh-Gharebagh R., Mortazavi Y. 2009. Modeling of Stagewise Feeding in Fluidized Bed Reactor of Oxidative Coupling of Methane. Energy & Fuels, 23, pp. 3745–3752. https://doi.org/10.1021/ef801060h
  • [11] U.S. Department of Energy, Ethylene via Low Temperature Oxidative Coupling of Methane. https://www.energy.gov/sites/prod/files/2016/08/f33/Ethylene%20via%20Low%20Temperature%20Oxidative%20Coupling%20of%20Methane.pdf
  • [12] Baser D.S, Cheng Z.,Fan Jonathan A., Fan L.-S. 2021. Codoping Mg-Mn Based Oxygen Carrier with Lithium and Tungsten for Enhanced C2 Yield in a Chemical Looping Oxidative Coupling of Methane System. ACS Sustainable Chem. Eng., 9, pp. 2651−2660.https://doi.org/10.1021/acssuschemeng.0c07241
  • [13] Xu J.,Zhang Y., Xu X., Fang X, Xi R., Liu Y., Zhang R., Wang X. 2019. Constructing La2B2O7 (B = Ti, Zr, Ce) Compounds with Three Typical Crystalline Phases for the Oxidative Coupling of Methane: The Effect of Phase Structures, Superoxide Anions, and Alkalinity on the Reactivity. ACS Catal., 9, pp. 4030−4045. https://doi.org/10.1021/acscatal.9b00022
  • [14] Otsuka K., Jinno K. 1986. Kinetic studies on partial oxidation of methane over samarium oxides. Inorganica Chimica Acta, 121, pp. 237-241. https://doi.org/10.1016/S0020-1693(00)84528-4
  • [15] Yoon S., Lim S., Choi J.W., Suh D.J., Song K.H., Ha J.M. 2020. Study on the unsteady state oxidative coupling of methane: effects of oxygen species from O2, surface lattice oxygen, and CO2 on the C2+ selectivity. RSC Adv., 10, pp. 35889-35897. https://doi.org/10.1039/D0RA06065H.
  • [16] Noon D., Zohour B., Senkan S. 2014. Oxidative coupling of methane with La2O3–CeO2 nanofiber fabrics: A reaction engineering study. Journal of Natural Gas Science and Engineering, 18, pp. 406-411. https://doi.org/10.1016/j.jngse.2014.04.004
  • [17] Ferreria V.J., Tavares P., Figueriedo J.L., Faria J.L. 2013. Ce-Doped La2O3 based catalyst for the oxidative coupling of methane. Catalysis Communications, 42, pp. 50–53. https://doi.org/10.1016/j.catcom.2013.07.035
  • [18] Bosch C. E., Copley M.P., Eralp T., Bilbé E., Thybaut J.W., Marin G.B., Collier P. 2017. Tailoring the physical and catalytic properties of lanthanum oxycarbonate nanoparticles. Applied Catalysis A: General, 536, pp. 104–112. https://doi.org/10.1016/j.apcata.2017.01.019
  • [19] Arndt S., Laugel G., Levchenko S., Harn R., Baerns M., Scheffler M., Schlögl R., Schomacker R. 2011. A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. Catalysis Reviews: Science and Engineering, 53, pp.424–514. https://doi.org/10.1080/01614940.2011.613330
  • [20] Huang P., Zhao Y., Zhang J., Zhu Y., Sun Y. 2013. Exploiting shape effects of La2O3 nanocatalysts for oxidative coupling of methane reaction. Nanoscale, 5, pp. 10844. https://doi.org/10.1039/C3NR03617K
  • [21] Ma Y.H., Moser W.R., Dixon A.G., Ramachandra A.M., Lu Y., Binkerd C., Oxidative coupling of methane using inorganic membrane reactors. U.S. Department of Energy Office of Scientific and Technical Information, DOI: 10.2172/766717.
  • [22] Galadima A., Muraza O. 2016. Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review. Journal of Industrial and Engineering Chemistry, 37, pp. 1–13. https://doi.org/10.1016/j.jiec.2016.03.027
  • [23] Kus´ S., Otremba M., Taniewski M. 2003. The catalytic performance in oxidative coupling of methane and the surface basicity of La2O3, Nd2O3, ZrO2 and Nb2O5. Fuel, 82, pp. 1331–1338. https://doi.org/10.1016/S0016-2361(03)00030-9
  • [24] Chu C., ZhaO Y., Li S., Sun Y. 2016. Correlation between the acid–base properties of the La2O3 catalyst and its methane reactivity. Physical Chemistry Chemical Physic, 18, pp. 16509-16517. https://doi.org/10.1039/C6CP02459A
  • [25] Zavyalova U., Holena M., Schlögl R., Baerns M. 2011. Statistical Analysis of Past Catalytic Data on Oxidative Methane Coupling for New Insights into the Composition of High-Performance Catalysts. ChemCatChem, 3(12), pp. 1935-1947. https://doi.org/10.1002/cctc.201100186
  • [26] Fakhroueian Z., Farzaneh F., Afrookhteh N. 2008. Oxidative coupling of methane catalyzed by Li, Na and Mg doped BaSrTiO3. Fuel, 87(12), pp. 2512–2516. https://doi.org/10.1016/j.fuel.2008.02.010
  • [27] Cruellas A., Melchiori T., Gallucci F., van Sint Annaland M. 2017. Advanced reactor concepts for oxidative coupling of methane. Catalysıs Reviews, 59, pp. 234–294. https://doi.org/10.1080/01614940.2017.1348085
  • [28] Tiemersma T.P., Tuinier M.J., Gallucci F., Kuipers J.A.M., van Sint Annaland M. 2012. A kinetics study for the oxidative coupling of methane on a Mn/Na2WO4/SiO2 catalyst. Applied Catalysis A: General, 433–434, pp. 96–108. https://doi.org/10.1016/j.apcata.2012.05.002
  • [29] An B., Ryu KH., Kim YR., Lee SH. 2007. Activation of Methane to C2 Hydrocarbons over Unpromoted Calcium Oxide Catalysts. Bulletin of the Korean Chemical Society, 28(6), pp. 1049-1052. https://doi.org/10.5012/bkcs.2007.28.6.1049
  • [30] Traykova M., Davidova N., Tsaih J.-S., Weiss A. H. 1998. Oxidative coupling of methane – the transition from reaction to transport control over La2O3/MgO catalyst. Applied Catalysis A: General, 169, pp. 237-247. https://doi.org/10.1016/S0926-860X(98)00009-X
  • [31] Osorio-Vargas P., Campos C.H., Navarro R.M., Fierro J.L.G., Reyes P. 2015. Improved ethanol steam reforming on Rh/Al2O3 catalysts doped with CeO2 or/and La2O3: Influence in reaction pathways including coke Formation. Applied Catalysis A: General, 505, pp. 159–172. https://doi.org/10.1016/j.apcata.2015.07.037
  • [32] Kumar A., Singh R., Sinha A.S.K. 2019. Catalyst modification strategies to enhance the catalyst activity and stability during steam reforming of acetic acid for hydrogen production. International Journal of Hydrogen Energy, 44(26), pp. 12983-13010. https://doi.org/10.1016/j.ijhydene.2019.03.136
  • [33] Holmen A. 2009. Direct conversion of methane to fuels and chemicals. Catalysis Today, 142, pp.2–8. https://doi.org/10.1016/j.cattod.2009.01.004
  • [34] Ghose R., Hwang H. T., Varma A. 2013. Oxidative coupling of methane using catalysts synthesized by solution combustion method. Applied Catalysis A: General, 452, pp. 147– 154. https://doi.org/10.1016/j.apcata.2012.11.029
  • [35] Hou Y.H., Han W.-C., Xia W.-S., Wan H.-L. 2015. Structure Sensitivity of La2O2CO3 Catalysts in the Oxidative Coupling of Methane. ACS Catal., 5(3), pp. 1663−1674. https://doi.org/10.1021/cs501733r
  • [36] Jiang T., Song J., Huo M., Yang N.T., Liu J., Zhang J., Sun Y., Zhu Y. 2016. La2O3 catalysts with diverse spatial dimensionality for oxidative coupling of methane to produce ethylene and ethane. RSC Adv., 6, pp. 34872-34876. https://doi.org/10.1039/C6RA01805J
  • [37] Song J., Sun Y., Ba R., Huang S., Zhao Y., Zhang J., Sun Y. and Zhu Y.2015. Monodisperse Sr–La2O3 hybrid nanofibers for oxidative coupling of methane to synthesize C2 hydrocarbons. Nanoscale, 7, pp. 2260-2264. https://doi.org/10.1039/C4NR06660J
  • [38] Noon D., Seubsai A., Senkan S. 2013. Oxidative Coupling of Methane by Nanofiber Catalysts. ChemCatChem, 5, pp. 146 – 149. https://doi.org/10.1002/cctc.201200408
  • [39] Yunarti R.T., Lee M., Hwang Y. J., Choi J.-W. , Suh D. J., Lee J., Kim I.W., Ha J.-M. 2014. Transition metal-doped TiO2 nanowire catalysts for the oxidative coupling of methane. Catalysis Communications, 50, pp.54–58. https://doi.org/10.1016/j.catcom.2014.02.026

Promising La2O3 Nanocatalysts for Low-Temperature Oxidative Coupling of Methane Reaction: A Short Review

Year 2022, Volume: 5 Issue: 1, 63 - 72, 31.05.2022
https://doi.org/10.34088/kojose.796854

Abstract

This paper reviews the recent literature on La2O3 catalysts for the oxidative coupling of methane (OCM), which aims at ethylene production. The following subjects are discussed: (a) the main properties affecting the reaction mechanism such as oxygen vacancy, acid-base property, temperature, and morphology (b) prospects of nano-scale catalysts to improve the performance of the OCM process (c) the contribution of La2O3 nanocatalysts to the formation of ethane and ethylene (C2 hydrocarbon) during the oxidative coupling of methane.

References

  • [1] Kondratenko V., Peppel T., Seeburg D., Kondratenko V. A., Kalevaru N., Martin A., Wohlrab S. 2017. Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation. Catalysis Science & Technology, 7(2), pp. 366–381. https://doi.org/10.1039/C6CY01879C
  • [2] Onoja O.P., Wang X., Kechagiopoulos P.N. 2019. Influencing selectivity in the oxidative coupling of methane by modulating oxygen permeation in a variable thickness membrane reactor. Chemical Engineering & Processing: Process Intensification, 135, pp. 156–167.https://doi.org/10.1016/j.cep.2018.11.016
  • [3] Fleischer V., Steuer R., Parishan S., Schomäcker R. 2016. Investigation of the surface reaction network of the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst by temperature programmed and dynamic experiments. Journal of Catalysis, 341, pp. 91–103.https://doi.org/10.1016/j.jcat.2016.06.014
  • [4] Alexiadis V.I., Chaar M., Van Veen A., Muhler M., Thybaut J.W., Marin G.B. 2016. Quantitative screening of an extended oxidative coupling of methane catalyst library. Applied Catalysis B: Environmental, 199, pp. 252–259. https://doi.org/10.1016/j.apcatb.2016.06.019
  • [5] Sahebdelfar S., Ravanchi M.T., Gharibi M., Hamidzadeh M.. 2012. Rule of 100: An inherent limitation or performance measure in oxidative coupling of methane?. Journal of Natural Gas Chemistry, 21, pp. 308–313. https://doi.org/10.1016/S1003-9953(11)60369-1
  • [6] Zhang H., Wu J., Xu B., Hu C. 2006. Simultaneous production of syngas and ethylene from methane by combining its catalytic oxidative coupling over Mn/Na2WO4/SiO2 with gas phase partial oxidation. Catalysis Letters., 106, pp. 161-165. https://doi.org/10.1007/s10562-005-9624-2
  • [7] Wang P., Zhao G., Liu Y., Lu Y. 2017. TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst for oxidative coupling of methane: Solution combustion synthesis and MnTiO3-dependent low-temperature activity improvement. Applied Catalysis A, General, 544, pp. 77–83. https://doi.org/10.1016/j.apcata.2017.07.012
  • [8] Penteado A., Esche E., Salerno D., Godini H. R., Wozny G. 2016. Design and Assessment of a Membrane and Absorption Based Carbon Dioxide Removal Process for Oxidative Coupling of Methane. Ind. Eng. Chem. Res., 55, pp. 7473−7483. https://doi.org/10.1021/acs.iecr.5b04910
  • [9] Gambo Y., Jalila A.A., Triwahyono S., Abdulrasheed A.A. 2018. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review. Journal of Industrial and Engineering Chemistry, 59, pp.218–229. https://doi.org/10.1016/j.jiec.2017.10.027
  • [10] Daneshpayeh M., Mostoufi N., Khodadadi A., Sotudeh-Gharebagh R., Mortazavi Y. 2009. Modeling of Stagewise Feeding in Fluidized Bed Reactor of Oxidative Coupling of Methane. Energy & Fuels, 23, pp. 3745–3752. https://doi.org/10.1021/ef801060h
  • [11] U.S. Department of Energy, Ethylene via Low Temperature Oxidative Coupling of Methane. https://www.energy.gov/sites/prod/files/2016/08/f33/Ethylene%20via%20Low%20Temperature%20Oxidative%20Coupling%20of%20Methane.pdf
  • [12] Baser D.S, Cheng Z.,Fan Jonathan A., Fan L.-S. 2021. Codoping Mg-Mn Based Oxygen Carrier with Lithium and Tungsten for Enhanced C2 Yield in a Chemical Looping Oxidative Coupling of Methane System. ACS Sustainable Chem. Eng., 9, pp. 2651−2660.https://doi.org/10.1021/acssuschemeng.0c07241
  • [13] Xu J.,Zhang Y., Xu X., Fang X, Xi R., Liu Y., Zhang R., Wang X. 2019. Constructing La2B2O7 (B = Ti, Zr, Ce) Compounds with Three Typical Crystalline Phases for the Oxidative Coupling of Methane: The Effect of Phase Structures, Superoxide Anions, and Alkalinity on the Reactivity. ACS Catal., 9, pp. 4030−4045. https://doi.org/10.1021/acscatal.9b00022
  • [14] Otsuka K., Jinno K. 1986. Kinetic studies on partial oxidation of methane over samarium oxides. Inorganica Chimica Acta, 121, pp. 237-241. https://doi.org/10.1016/S0020-1693(00)84528-4
  • [15] Yoon S., Lim S., Choi J.W., Suh D.J., Song K.H., Ha J.M. 2020. Study on the unsteady state oxidative coupling of methane: effects of oxygen species from O2, surface lattice oxygen, and CO2 on the C2+ selectivity. RSC Adv., 10, pp. 35889-35897. https://doi.org/10.1039/D0RA06065H.
  • [16] Noon D., Zohour B., Senkan S. 2014. Oxidative coupling of methane with La2O3–CeO2 nanofiber fabrics: A reaction engineering study. Journal of Natural Gas Science and Engineering, 18, pp. 406-411. https://doi.org/10.1016/j.jngse.2014.04.004
  • [17] Ferreria V.J., Tavares P., Figueriedo J.L., Faria J.L. 2013. Ce-Doped La2O3 based catalyst for the oxidative coupling of methane. Catalysis Communications, 42, pp. 50–53. https://doi.org/10.1016/j.catcom.2013.07.035
  • [18] Bosch C. E., Copley M.P., Eralp T., Bilbé E., Thybaut J.W., Marin G.B., Collier P. 2017. Tailoring the physical and catalytic properties of lanthanum oxycarbonate nanoparticles. Applied Catalysis A: General, 536, pp. 104–112. https://doi.org/10.1016/j.apcata.2017.01.019
  • [19] Arndt S., Laugel G., Levchenko S., Harn R., Baerns M., Scheffler M., Schlögl R., Schomacker R. 2011. A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. Catalysis Reviews: Science and Engineering, 53, pp.424–514. https://doi.org/10.1080/01614940.2011.613330
  • [20] Huang P., Zhao Y., Zhang J., Zhu Y., Sun Y. 2013. Exploiting shape effects of La2O3 nanocatalysts for oxidative coupling of methane reaction. Nanoscale, 5, pp. 10844. https://doi.org/10.1039/C3NR03617K
  • [21] Ma Y.H., Moser W.R., Dixon A.G., Ramachandra A.M., Lu Y., Binkerd C., Oxidative coupling of methane using inorganic membrane reactors. U.S. Department of Energy Office of Scientific and Technical Information, DOI: 10.2172/766717.
  • [22] Galadima A., Muraza O. 2016. Revisiting the oxidative coupling of methane to ethylene in the golden period of shale gas: A review. Journal of Industrial and Engineering Chemistry, 37, pp. 1–13. https://doi.org/10.1016/j.jiec.2016.03.027
  • [23] Kus´ S., Otremba M., Taniewski M. 2003. The catalytic performance in oxidative coupling of methane and the surface basicity of La2O3, Nd2O3, ZrO2 and Nb2O5. Fuel, 82, pp. 1331–1338. https://doi.org/10.1016/S0016-2361(03)00030-9
  • [24] Chu C., ZhaO Y., Li S., Sun Y. 2016. Correlation between the acid–base properties of the La2O3 catalyst and its methane reactivity. Physical Chemistry Chemical Physic, 18, pp. 16509-16517. https://doi.org/10.1039/C6CP02459A
  • [25] Zavyalova U., Holena M., Schlögl R., Baerns M. 2011. Statistical Analysis of Past Catalytic Data on Oxidative Methane Coupling for New Insights into the Composition of High-Performance Catalysts. ChemCatChem, 3(12), pp. 1935-1947. https://doi.org/10.1002/cctc.201100186
  • [26] Fakhroueian Z., Farzaneh F., Afrookhteh N. 2008. Oxidative coupling of methane catalyzed by Li, Na and Mg doped BaSrTiO3. Fuel, 87(12), pp. 2512–2516. https://doi.org/10.1016/j.fuel.2008.02.010
  • [27] Cruellas A., Melchiori T., Gallucci F., van Sint Annaland M. 2017. Advanced reactor concepts for oxidative coupling of methane. Catalysıs Reviews, 59, pp. 234–294. https://doi.org/10.1080/01614940.2017.1348085
  • [28] Tiemersma T.P., Tuinier M.J., Gallucci F., Kuipers J.A.M., van Sint Annaland M. 2012. A kinetics study for the oxidative coupling of methane on a Mn/Na2WO4/SiO2 catalyst. Applied Catalysis A: General, 433–434, pp. 96–108. https://doi.org/10.1016/j.apcata.2012.05.002
  • [29] An B., Ryu KH., Kim YR., Lee SH. 2007. Activation of Methane to C2 Hydrocarbons over Unpromoted Calcium Oxide Catalysts. Bulletin of the Korean Chemical Society, 28(6), pp. 1049-1052. https://doi.org/10.5012/bkcs.2007.28.6.1049
  • [30] Traykova M., Davidova N., Tsaih J.-S., Weiss A. H. 1998. Oxidative coupling of methane – the transition from reaction to transport control over La2O3/MgO catalyst. Applied Catalysis A: General, 169, pp. 237-247. https://doi.org/10.1016/S0926-860X(98)00009-X
  • [31] Osorio-Vargas P., Campos C.H., Navarro R.M., Fierro J.L.G., Reyes P. 2015. Improved ethanol steam reforming on Rh/Al2O3 catalysts doped with CeO2 or/and La2O3: Influence in reaction pathways including coke Formation. Applied Catalysis A: General, 505, pp. 159–172. https://doi.org/10.1016/j.apcata.2015.07.037
  • [32] Kumar A., Singh R., Sinha A.S.K. 2019. Catalyst modification strategies to enhance the catalyst activity and stability during steam reforming of acetic acid for hydrogen production. International Journal of Hydrogen Energy, 44(26), pp. 12983-13010. https://doi.org/10.1016/j.ijhydene.2019.03.136
  • [33] Holmen A. 2009. Direct conversion of methane to fuels and chemicals. Catalysis Today, 142, pp.2–8. https://doi.org/10.1016/j.cattod.2009.01.004
  • [34] Ghose R., Hwang H. T., Varma A. 2013. Oxidative coupling of methane using catalysts synthesized by solution combustion method. Applied Catalysis A: General, 452, pp. 147– 154. https://doi.org/10.1016/j.apcata.2012.11.029
  • [35] Hou Y.H., Han W.-C., Xia W.-S., Wan H.-L. 2015. Structure Sensitivity of La2O2CO3 Catalysts in the Oxidative Coupling of Methane. ACS Catal., 5(3), pp. 1663−1674. https://doi.org/10.1021/cs501733r
  • [36] Jiang T., Song J., Huo M., Yang N.T., Liu J., Zhang J., Sun Y., Zhu Y. 2016. La2O3 catalysts with diverse spatial dimensionality for oxidative coupling of methane to produce ethylene and ethane. RSC Adv., 6, pp. 34872-34876. https://doi.org/10.1039/C6RA01805J
  • [37] Song J., Sun Y., Ba R., Huang S., Zhao Y., Zhang J., Sun Y. and Zhu Y.2015. Monodisperse Sr–La2O3 hybrid nanofibers for oxidative coupling of methane to synthesize C2 hydrocarbons. Nanoscale, 7, pp. 2260-2264. https://doi.org/10.1039/C4NR06660J
  • [38] Noon D., Seubsai A., Senkan S. 2013. Oxidative Coupling of Methane by Nanofiber Catalysts. ChemCatChem, 5, pp. 146 – 149. https://doi.org/10.1002/cctc.201200408
  • [39] Yunarti R.T., Lee M., Hwang Y. J., Choi J.-W. , Suh D. J., Lee J., Kim I.W., Ha J.-M. 2014. Transition metal-doped TiO2 nanowire catalysts for the oxidative coupling of methane. Catalysis Communications, 50, pp.54–58. https://doi.org/10.1016/j.catcom.2014.02.026
There are 39 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Emel Engintepe 0000-0001-6214-2117

Ayşe Nilgün Akın 0000-0001-9392-5149

Publication Date May 31, 2022
Acceptance Date January 31, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Engintepe, E., & Akın, A. N. (2022). Promising La2O3 Nanocatalysts for Low-Temperature Oxidative Coupling of Methane Reaction: A Short Review. Kocaeli Journal of Science and Engineering, 5(1), 63-72. https://doi.org/10.34088/kojose.796854