Research Article
BibTex RIS Cite
Year 2022, Volume: 5 Issue: 2, 194 - 204, 30.11.2022
https://doi.org/10.34088/kojose.1104351

Abstract

References

  • [1] Serrano A., Mateos V.L., Garcia J.A., 1999. Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921–1995. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 24(1-2), pp. 85-90. https://doi.org/10.1016/S1464-1909(98)00016-1
  • [2] Duhan D., Pandey A., 2013. Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmospheric Research, 122, pp. 136-149. https://doi.org/10.1016/j.atmosres.2012.10.010
  • [3] Limsakul A., Singhruck P., 2016. Long-term trends and variability of total and extreme precipitation in Thailand. Atmospheric Research, 169, pp. 301-317. https://doi.org/10.1016/j.atmosres.2015.10.015
  • [4] Pingale S., Adamowski J., Jat M., Khare D., 2015. Implications of spatial scale on climate change assessments. Journal of Water and Land Development, 26, pp. 37-55. https://doi.org 10.1515/jwld-2015-0015
  • [5] Partal T., Kahya E., 2006. Trend analysis in Turkish precipitation data. Hydrological Processes: An International Journal, 20(9), pp. 2011-2026. https://doi.org/10.1002/hyp.5993
  • [6] Zhang X., Vincent L.A., Hogg W.D., Niitsoo A., 2000. Temperature and precipitation trends in Canada during the 20th century. Atmosphere-ocean, 38(3), pp. 395-429. https://doi.org/10.1080/07055900.2000.9649654
  • [7] Liu X., Xu Z., Yu R., 2011. Trend of climate variability in China during the past decades. Climatic change, 109(3), pp. 503-516. https://doi.org/10.1007/s10584-011-0097-6
  • [8] Karaca M., Anteplioĝlu Ü., Karsan, H., 1995. Detection of urban heat island in Istanbul, Turkey. Il Nuovo Cimento C, 18(1), pp. 49-55. https://doi.org/10.1007/BF02561458
  • [9] Kadioğlu M., 1997. Trends in surface air temperature data over Turkey. International Journal of Climatology: A Journal of the Royal Meteorological Society, 17(5), pp. 511-520. https://doi.org/10.1002/(SICI)1097-0088(199704)17:5<511:: AID-JOC130>3.0.CO;2-0
  • [10] Alobaidi A.H., 2015. Analysis of Relative Humidity in Iraq for the Period. International Journal of Scientific and Research Publications, 5(5), pp. 515-524.
  • [11] Van Wijngaarden W.A., Vincent L.A., 2004. Trends in relative humidity in Canada from 1953–2003. Bull. Am. Meteorol. Soc, pp. 4633-4636.
  • [12] Dyer J. L., Mote T. L., 2006. Spatial variability and trends in observed snow depth over North America. Geophysical Research Letters, 33(16). https://doi.org/10.1029/2006GL027258
  • [13] Kunkel K.E., Robinson D.A., Champion S., Yin X., Estilow T., Frankson R.M., 2016. Trends and extremes in Northern Hemisphere snow characteristics. Current Climate Change Reports, 2(2), pp. 65-73. https://doi.org/10.1007/s40641-016-0036-8
  • [14] Chattopadhyay N., Hulme M., 1997. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology, 87(1), pp. 55-73. https://doi.org/10.1016/S0168-1923(97)00006-3
  • [15] Liu B., Xu M., Henderson M., Gong W., 2004. A spatial analysis of pan evaporation trends in China, 1955–2000. Journal of Geophysical Research: Atmospheres, 109(D15). https://doi.org/10.1029/2004JD004511
  • [16] Aksoy B., 1999. Analysis of changes in sunshine duration data for Ankara, Turkey. Theoretical and Applied Climatology, 64(3), pp. 229-237. https://doi.org/10.1007/s007040050125
  • [17] Rahimzadeh F., Pedram M., Kruk M.C., 2014. An examination of the trends in sunshine hours over Iran. Meteorological Applications, 21(2), pp. 309-315. https://doi.org/10.1002/met.1334
  • [18] Presidency of Strategy and Budget, 2019. Eleven Development Plan 2019-2023. https://www.sbb.gov.tr/wp-content/uploads/2021/12/Eleventh_Development_Plan_2019-2023.pdf
  • [19] Ministry of Interior, 2021. Response to Floods Continues with 2,218 Personnel https://www.icisleri.gov.tr/yasanan-sel-ve-su-baskinlarina-mudahale-calismalari-2218-personel-ile-devam-ediyor
  • [20] Ministry of Agriculture and Forestry, 2018. Van Lake Basin Drought Management Plan, https://www.tarimorman.gov.tr/SYGM/Belgeler/Kurakl%C4%B1k%20Y%C3%B6netim%20Planlar%C4%B1/Van%20G%C3%B6l%C3%BC%20Havzas%C4%B1%20Kurakl%C4%B1k%20Y%C3%B6netim%20Plan%C4%B1%20Cilt%201.pdf
  • [21] Haktanir T., Citakoglu H. 2014. Trend, independence, stationarity, and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey. Journal of Hydrologic Engineering, 19(9), pp. 05014009.
  • [22] Dönmez S., 2018. Investigation of the recession of Akşehir Lake water level with meteorological and satellite data. Journal of the Faculty of Engineering and Architecture of Gazi University 33(1), pp. 177-188.
  • [23] Yagbasan O., Yazicigil, H., Demir, V. 2017. Impacts of climatic variables on water-level variations in two shallow Eastern Mediterranean lakes. Environmental Earth Sciences, 76(16), pp.1-11.
  • [24] Yagbasan O., Demir V., Yazicigil H. 2020. Trend analyses of meteorological variables and lake levels for two shallow lakes in central Turkey. Water, 12(2), pp. 414.
  • [25] Citakoglu H., Minarecioglu N. 2021. Trend analysis and change point determination for hydro-meteorological and groundwater data of Kizilirmak basin. Theoretical and Applied Climatology, 145(3), pp. 1275-1292.
  • [26] Hu M., Sayama T., Try S., Takara K., Tanaka K. 2019. Trend analysis of hydroclimatic variables in the Kamo River Basin, Japan. Water, 11(9), pp. 1782.
  • [27] Van Belle G., Hughes J.P., 1984. Nonparametric tests for trend in water quality. Water resources research, 20(1), pp. 127-136. https://doi.org/10.1029/WR020i001p00127
  • [28] Lettenmaier D.P., 1976. Detection of trends in water quality data from records with dependent observations. Water Resources Research, 12(5), pp. 1037-1046. https://doi.org/10.1029/WR012i005p01037
  • [29] İçağa Y., 1994. Analysis of trends in water quality using nonparametric methods. Dokuz Eylul Üniversity, Institute of Sciences, (Dissertation), İzmir.
  • [30] Hirsch R.M., Slack J. R., 1984. A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20(6), pp. 727-732. https://doi.org/10.1029/WR020i006p00727
  • [31] Douglas E.M., Vogel R.M., Kroll, C.N., 2000. Trends in floods and low flows in the United States: impact of spatial correlation. Journal of hydrology, 240(1-2), pp. 90-105. https://doi.org/10.1016/S0022-1694(00)00336-X
  • [32] Sen P.K., 1968. Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), pp. 1379-1389. https://doi.org 10.1080/01621459.1968.10480934
  • [33] Sneyers R., 1990. On the Statistical Analysis of Series of Observations. World Meteorol. Organ.
  • [34] Türkeş M., Süme, U M., Kiliç G., 1995. Variations and trends in annual mean air temperatures in Turkey with respect to climatic variability. International Journal of Climatology, 15(5), pp. 557-569. https://doi.org/10.1002/joc.3370150507

Trend Analysis of Meteorological Variables in the Lake Van Basin, Turkey

Year 2022, Volume: 5 Issue: 2, 194 - 204, 30.11.2022
https://doi.org/10.34088/kojose.1104351

Abstract

Climate change is one of the most important issues of our century and its effects are manifested in different ways around the world. In this study, both the aligned and the intra-block methods were used to detect trends to see climate change's impact. 6 meteorological parameters were selected in the Lake Van basin, which contains Turkey's largest lake. The 47-year time series of mean monthly temperature (℃), total monthly rainfall (mm), mean monthly relative humidity (%), total monthly surface evaporation (mm), mean monthly snow depth (cm), and total monthly insolation intensity (cal/cm2) parameters of 15 stations in the basin were evaluated for each month using non-parametric tests. In the series in which a statistically significant trend was detected, the beginning year and slope of the change were also determined. For the temperature parameter, the increasing trends were detected at all seasons. In the total monthly rainfall series, the upward trends were determined in March and September in the northeastern part of the basin. Upward trends were detected in the average monthly relative humidity series in winter. From the total monthly insolation intensity time series, autumn and spring were determined to have increasing trends. The trend analysis of mean monthly snow depth showed that there were downward trends in November and February. For the evaporation parameter, a decreasing trend was detected only in October.

References

  • [1] Serrano A., Mateos V.L., Garcia J.A., 1999. Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921–1995. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 24(1-2), pp. 85-90. https://doi.org/10.1016/S1464-1909(98)00016-1
  • [2] Duhan D., Pandey A., 2013. Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmospheric Research, 122, pp. 136-149. https://doi.org/10.1016/j.atmosres.2012.10.010
  • [3] Limsakul A., Singhruck P., 2016. Long-term trends and variability of total and extreme precipitation in Thailand. Atmospheric Research, 169, pp. 301-317. https://doi.org/10.1016/j.atmosres.2015.10.015
  • [4] Pingale S., Adamowski J., Jat M., Khare D., 2015. Implications of spatial scale on climate change assessments. Journal of Water and Land Development, 26, pp. 37-55. https://doi.org 10.1515/jwld-2015-0015
  • [5] Partal T., Kahya E., 2006. Trend analysis in Turkish precipitation data. Hydrological Processes: An International Journal, 20(9), pp. 2011-2026. https://doi.org/10.1002/hyp.5993
  • [6] Zhang X., Vincent L.A., Hogg W.D., Niitsoo A., 2000. Temperature and precipitation trends in Canada during the 20th century. Atmosphere-ocean, 38(3), pp. 395-429. https://doi.org/10.1080/07055900.2000.9649654
  • [7] Liu X., Xu Z., Yu R., 2011. Trend of climate variability in China during the past decades. Climatic change, 109(3), pp. 503-516. https://doi.org/10.1007/s10584-011-0097-6
  • [8] Karaca M., Anteplioĝlu Ü., Karsan, H., 1995. Detection of urban heat island in Istanbul, Turkey. Il Nuovo Cimento C, 18(1), pp. 49-55. https://doi.org/10.1007/BF02561458
  • [9] Kadioğlu M., 1997. Trends in surface air temperature data over Turkey. International Journal of Climatology: A Journal of the Royal Meteorological Society, 17(5), pp. 511-520. https://doi.org/10.1002/(SICI)1097-0088(199704)17:5<511:: AID-JOC130>3.0.CO;2-0
  • [10] Alobaidi A.H., 2015. Analysis of Relative Humidity in Iraq for the Period. International Journal of Scientific and Research Publications, 5(5), pp. 515-524.
  • [11] Van Wijngaarden W.A., Vincent L.A., 2004. Trends in relative humidity in Canada from 1953–2003. Bull. Am. Meteorol. Soc, pp. 4633-4636.
  • [12] Dyer J. L., Mote T. L., 2006. Spatial variability and trends in observed snow depth over North America. Geophysical Research Letters, 33(16). https://doi.org/10.1029/2006GL027258
  • [13] Kunkel K.E., Robinson D.A., Champion S., Yin X., Estilow T., Frankson R.M., 2016. Trends and extremes in Northern Hemisphere snow characteristics. Current Climate Change Reports, 2(2), pp. 65-73. https://doi.org/10.1007/s40641-016-0036-8
  • [14] Chattopadhyay N., Hulme M., 1997. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology, 87(1), pp. 55-73. https://doi.org/10.1016/S0168-1923(97)00006-3
  • [15] Liu B., Xu M., Henderson M., Gong W., 2004. A spatial analysis of pan evaporation trends in China, 1955–2000. Journal of Geophysical Research: Atmospheres, 109(D15). https://doi.org/10.1029/2004JD004511
  • [16] Aksoy B., 1999. Analysis of changes in sunshine duration data for Ankara, Turkey. Theoretical and Applied Climatology, 64(3), pp. 229-237. https://doi.org/10.1007/s007040050125
  • [17] Rahimzadeh F., Pedram M., Kruk M.C., 2014. An examination of the trends in sunshine hours over Iran. Meteorological Applications, 21(2), pp. 309-315. https://doi.org/10.1002/met.1334
  • [18] Presidency of Strategy and Budget, 2019. Eleven Development Plan 2019-2023. https://www.sbb.gov.tr/wp-content/uploads/2021/12/Eleventh_Development_Plan_2019-2023.pdf
  • [19] Ministry of Interior, 2021. Response to Floods Continues with 2,218 Personnel https://www.icisleri.gov.tr/yasanan-sel-ve-su-baskinlarina-mudahale-calismalari-2218-personel-ile-devam-ediyor
  • [20] Ministry of Agriculture and Forestry, 2018. Van Lake Basin Drought Management Plan, https://www.tarimorman.gov.tr/SYGM/Belgeler/Kurakl%C4%B1k%20Y%C3%B6netim%20Planlar%C4%B1/Van%20G%C3%B6l%C3%BC%20Havzas%C4%B1%20Kurakl%C4%B1k%20Y%C3%B6netim%20Plan%C4%B1%20Cilt%201.pdf
  • [21] Haktanir T., Citakoglu H. 2014. Trend, independence, stationarity, and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey. Journal of Hydrologic Engineering, 19(9), pp. 05014009.
  • [22] Dönmez S., 2018. Investigation of the recession of Akşehir Lake water level with meteorological and satellite data. Journal of the Faculty of Engineering and Architecture of Gazi University 33(1), pp. 177-188.
  • [23] Yagbasan O., Yazicigil, H., Demir, V. 2017. Impacts of climatic variables on water-level variations in two shallow Eastern Mediterranean lakes. Environmental Earth Sciences, 76(16), pp.1-11.
  • [24] Yagbasan O., Demir V., Yazicigil H. 2020. Trend analyses of meteorological variables and lake levels for two shallow lakes in central Turkey. Water, 12(2), pp. 414.
  • [25] Citakoglu H., Minarecioglu N. 2021. Trend analysis and change point determination for hydro-meteorological and groundwater data of Kizilirmak basin. Theoretical and Applied Climatology, 145(3), pp. 1275-1292.
  • [26] Hu M., Sayama T., Try S., Takara K., Tanaka K. 2019. Trend analysis of hydroclimatic variables in the Kamo River Basin, Japan. Water, 11(9), pp. 1782.
  • [27] Van Belle G., Hughes J.P., 1984. Nonparametric tests for trend in water quality. Water resources research, 20(1), pp. 127-136. https://doi.org/10.1029/WR020i001p00127
  • [28] Lettenmaier D.P., 1976. Detection of trends in water quality data from records with dependent observations. Water Resources Research, 12(5), pp. 1037-1046. https://doi.org/10.1029/WR012i005p01037
  • [29] İçağa Y., 1994. Analysis of trends in water quality using nonparametric methods. Dokuz Eylul Üniversity, Institute of Sciences, (Dissertation), İzmir.
  • [30] Hirsch R.M., Slack J. R., 1984. A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20(6), pp. 727-732. https://doi.org/10.1029/WR020i006p00727
  • [31] Douglas E.M., Vogel R.M., Kroll, C.N., 2000. Trends in floods and low flows in the United States: impact of spatial correlation. Journal of hydrology, 240(1-2), pp. 90-105. https://doi.org/10.1016/S0022-1694(00)00336-X
  • [32] Sen P.K., 1968. Estimates of the regression coefficient based on Kendall's tau. Journal of the American statistical association, 63(324), pp. 1379-1389. https://doi.org 10.1080/01621459.1968.10480934
  • [33] Sneyers R., 1990. On the Statistical Analysis of Series of Observations. World Meteorol. Organ.
  • [34] Türkeş M., Süme, U M., Kiliç G., 1995. Variations and trends in annual mean air temperatures in Turkey with respect to climatic variability. International Journal of Climatology, 15(5), pp. 557-569. https://doi.org/10.1002/joc.3370150507
There are 34 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Articles
Authors

Nadire Üçler 0000-0001-6407-121X

Early Pub Date October 17, 2022
Publication Date November 30, 2022
Acceptance Date May 23, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Üçler, N. (2022). Trend Analysis of Meteorological Variables in the Lake Van Basin, Turkey. Kocaeli Journal of Science and Engineering, 5(2), 194-204. https://doi.org/10.34088/kojose.1104351