Research Article
BibTex RIS Cite
Year 2022, Volume: 5 Issue: 2, 117 - 125, 30.11.2022
https://doi.org/10.34088/kojose.966342

Abstract

References

  • [1] Diethelm K., 2010. The Analysis of Fractional Differential Equations: An Application-oriented Exposition Using Differential Operators of Caputo Type, 1st ed., Springer Science & Business Media, Berlin, Germany.
  • [2] Hilfer R., 2000. Applications of Fractional Calculus in Physics, 1st ed., World scientific, Singapore.
  • [3] Babiarz A., Czornik A., Klamka J., and Niezabitowski M., 2017. Theory and applications of non-integer order systems. Lecture Notes Electrical Engineering, vol. 407.
  • [4] Ross B., 1977. The development of fractional calculus 1695–1900. Historia Mathematica, 4(1), pp. 75-89.
  • [5] Azar A. T., Radwan A. G., and Vaidyanathan S., 2018. Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications, 1st ed., Elsevier Science & Technology, New York, USA.
  • [6] T. J. Freeborn, 2013. A survey of fractional-order circuit models for biology and biomedicine. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), pp. 416-424.
  • [7] Kartci A., Agambayev A., Herencsar N., and Salama K. N., 2018. Series-, parallel-, and inter-connection of solid-state arbitrary fractional-order capacitors: theoretical study and experimental verification. IEEE Access, 6, pp. 10933-10943.
  • [8] Tsirimokou G., Psychalinos C., and Elwakil A., 2017. Design of CMOS Analog Integrated Fractional-Order Circuits: Applications in Medicine and Biology, 1st ed., Springer, Cham, Switzerland: Springer.
  • [9] Oldham K. B., Spanier J., 1974. Fractional Calculus: Theory and Applications, Differentiation and Integration to Arbitrary Order, 1st ed., Academic Press, New York, USA.
  • [10] Bošković M. Č., Šekara T. B., Lutovac B., Daković M., Mandić P. D., and Lazarević M. P., 2017. Analysis of electrical circuits including fractional order elements. Paper presented at Proceedings of the 6th Mediterranean Conference on Embedded Computing (MECO), Bar, Montenegro, 11-15 June, pp. 1-6.
  • [11] Kilbas A. A., Srivastava H. M., and Trujillo J. J., 2006. Theory and Applications of Fractional Differential Equations, 1st ed., Elsevier, Amsterdam, Holland: Elsevier.
  • [12] Sotner R., Jerabek J., Kartci A., Domansky O., Herencsar N., Kledrowetz V., and Yeroglu C., 2019. Electronically reconfigurable two-path fractional-order PI/D controller employing constant phase blocks based on bilinear segments using CMOS modified current differencing unit. Microelectronics Journal, 86, pp. 114-129.
  • [13] Podlubny I., 1994. Fractional-order systems and fractional-order controllers. Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, vol. 12(3), pp. 1-18.
  • [14] Mainardi F., 1996. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons & Fractals, 7(9), pp. 1461-1477.
  • [15] Alagöz B. B., Alisoy H., 2018. “Estimation of reduced order equivalent circuit model parameters of batteries from noisy current and voltage measurements. Balkan Journal of Electrical and Computer Engineering, 6(4), pp. 224-231.
  • [16] Khalil R., al Horani M., Yousef A., and Sababheh M., 2014. A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, pp. 65–70.
  • [17] Abdeljawad T., 2015. On conformable fractional calculus. Journal of computational and Applied Mathematics, 279, pp. 57-66.
  • [18] Zhao D., and Luo M., 2017. General conformable fractional derivative and its physical interpretation. Calcolo, 54(3), pp. 903-917.
  • [19] Francisco G. A. J, Juan R. G., Manuel G. C., and Roberto R. H. J., 2014. Fractional RC and LC electrical circuits. Ingeniería Investigación y Tecnología, 15(2), pp. 311-319.
  • [20] Freeborn T. J., Maundy B., and Elwakil A. S., 2013. Measurement of supercapacitor fractional-order model parameters from voltage-excited step response. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), pp. 367-376.
  • [21] Freeborn T. J., Maundy B., and Elwakil A. S., 2015. Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Materials for Renewable and Sustainable Energy, 4(3), pp. 1-7.
  • [22] Kopka R., 2017. Estimation of supercapacitor energy storage based on fractional differential equations. Nanoscale research letters, 12(1), pp. 636.
  • [23] Piotrowska E., Rogowski K., 2017. Analysis of fractional electrical circuit using Caputo and conformable derivative definitions. Paper presented at Conference on Non-integer Order Calculus and Its Applications, Łódź, Poland, 2017, 11-13 October, pp. 183-194.
  • [24] Piotrowska E., 2019. Analysis of fractional electrical circuit with sinusoidal input signal using Caputo and conformable derivative definitions. Poznan University of Technology Academic Journals. Electrical Engineering, 97, pp. 155-167.
  • [25] Martínez L., Rosales J. J., Carreño C. A., and Lozano J. M., 2018. Electrical circuits described by fractional conformable derivative. International Journal of Circuit Theory and Applications, 46(5), pp. 1091-1100.
  • [26] Piotrowska E., 2018. Analysis the conformable fractional derivative and Caputo definitions in the action of an electric circuit containing a supercapacitor. Paper presented at Proc. of SPIE, Wilga, Poland, 3-10 June, pp. 108081T.
  • [27] Sumper A., Baggini A., 2012. Electrical energy efficiency: technologies and applications, 1st ed., John Wiley & Sons, West Sussex, United Kingdom.
  • [28] Cheung C. K., Tan S. C., Chi K. T., and Ioinovici A., 2012. On energy efficiency of switched-capacitor converters. IEEE Transactions on Power Electronics, 28(2), pp. 862-876.
  • [29] Fouda M. E., Elwakil A. S., Radwan A. G., and Allagui A., 2016. Power and energy analysis of fractional-order electrical energy storage devices. Energy, 111, pp. 785-792.
  • [30] Hartley T. T., Veillette R. J., Adams J. L., and Lorenzo C. F., 2015. Energy storage and loss in fractional-order circuit elements. IET Circuits, Devices & Systems, 9(3), pp. 227-235.
  • [31] Martynyuk V., Ortigueira M., 2015. Fractional model of an electrochemical capacitor. Signal Processing, 107, pp. 355-360.
  • [32] Quintana J. J., Ramos A., and Nuez I., 2006. Identification of the fractional impedance of ultracapacitors. IFAC Proceedings, 39(11), pp. 432-436.
  • [33] Bertrand N., Sabatier J., Briat O., and Vinassa J. M., 2010. Embedded fractional nonlinear supercapacitor model and its parametric estimation method. IEEE Transactions on Industrial Electronics, 57(12), pp. 3991-4000.
  • [34] Halliday D., Resnick R., and Walker J., 2014. Fundamentals of Physics, 10th ed., John Wiley & Sons, New York, USA.
  • [35] Voldman S. H., 2015. ESD: Circuits and Devices, 2nd ed., John Wiley & Sons, New York, USA.
  • [36] Irwin J. D., Nelms R. M., 2015. Basic Engineering Circuit Analysis, 11th ed., John Wiley & Sons, New York, USA.
  • [37] Abu-Labdeh A. M., and Al-Jaber S. M., 2008. Energy consideration from non-equilibrium to equilibrium state in the process of charging a capacitor. Journal of Electrostatics, 66(3-4), pp. 190-192.
  • [38] Morse P. M., Feshbach H., 1954. Methods of theoretical physics. American Journal of Physics, 22(6), pp. 410-413.
  • [39] Thompson I., 2011. NIST Handbook of Mathematical Functions, 1st ed., Cambridge University Press, New York, USA.

Energy Consideration of a Capacitor Modelled Using Conformal Fractional-Order Derivative

Year 2022, Volume: 5 Issue: 2, 117 - 125, 30.11.2022
https://doi.org/10.34088/kojose.966342

Abstract

Fractional order circuit elements have become important parts of electronic circuits to model systems including supercapacitors, filters, and many more. The conformal fractional derivative (CFD), which is a new basic fractional derivative, has been recently used to model supercapacitors successfully. It is essential to know how electronic components behave under excitation with different types of voltage and current sources. A CFD capacitor is not a well-known element and its usage in circuits is barely examined in the literature. In this research, it is examined how to calculate the stored energy of a CFD capacitor with a series resistor supplied from a DC voltage source. The solutions given in this study may be used in circuits where supercapacitors are used.

References

  • [1] Diethelm K., 2010. The Analysis of Fractional Differential Equations: An Application-oriented Exposition Using Differential Operators of Caputo Type, 1st ed., Springer Science & Business Media, Berlin, Germany.
  • [2] Hilfer R., 2000. Applications of Fractional Calculus in Physics, 1st ed., World scientific, Singapore.
  • [3] Babiarz A., Czornik A., Klamka J., and Niezabitowski M., 2017. Theory and applications of non-integer order systems. Lecture Notes Electrical Engineering, vol. 407.
  • [4] Ross B., 1977. The development of fractional calculus 1695–1900. Historia Mathematica, 4(1), pp. 75-89.
  • [5] Azar A. T., Radwan A. G., and Vaidyanathan S., 2018. Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications, 1st ed., Elsevier Science & Technology, New York, USA.
  • [6] T. J. Freeborn, 2013. A survey of fractional-order circuit models for biology and biomedicine. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), pp. 416-424.
  • [7] Kartci A., Agambayev A., Herencsar N., and Salama K. N., 2018. Series-, parallel-, and inter-connection of solid-state arbitrary fractional-order capacitors: theoretical study and experimental verification. IEEE Access, 6, pp. 10933-10943.
  • [8] Tsirimokou G., Psychalinos C., and Elwakil A., 2017. Design of CMOS Analog Integrated Fractional-Order Circuits: Applications in Medicine and Biology, 1st ed., Springer, Cham, Switzerland: Springer.
  • [9] Oldham K. B., Spanier J., 1974. Fractional Calculus: Theory and Applications, Differentiation and Integration to Arbitrary Order, 1st ed., Academic Press, New York, USA.
  • [10] Bošković M. Č., Šekara T. B., Lutovac B., Daković M., Mandić P. D., and Lazarević M. P., 2017. Analysis of electrical circuits including fractional order elements. Paper presented at Proceedings of the 6th Mediterranean Conference on Embedded Computing (MECO), Bar, Montenegro, 11-15 June, pp. 1-6.
  • [11] Kilbas A. A., Srivastava H. M., and Trujillo J. J., 2006. Theory and Applications of Fractional Differential Equations, 1st ed., Elsevier, Amsterdam, Holland: Elsevier.
  • [12] Sotner R., Jerabek J., Kartci A., Domansky O., Herencsar N., Kledrowetz V., and Yeroglu C., 2019. Electronically reconfigurable two-path fractional-order PI/D controller employing constant phase blocks based on bilinear segments using CMOS modified current differencing unit. Microelectronics Journal, 86, pp. 114-129.
  • [13] Podlubny I., 1994. Fractional-order systems and fractional-order controllers. Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, vol. 12(3), pp. 1-18.
  • [14] Mainardi F., 1996. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons & Fractals, 7(9), pp. 1461-1477.
  • [15] Alagöz B. B., Alisoy H., 2018. “Estimation of reduced order equivalent circuit model parameters of batteries from noisy current and voltage measurements. Balkan Journal of Electrical and Computer Engineering, 6(4), pp. 224-231.
  • [16] Khalil R., al Horani M., Yousef A., and Sababheh M., 2014. A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, pp. 65–70.
  • [17] Abdeljawad T., 2015. On conformable fractional calculus. Journal of computational and Applied Mathematics, 279, pp. 57-66.
  • [18] Zhao D., and Luo M., 2017. General conformable fractional derivative and its physical interpretation. Calcolo, 54(3), pp. 903-917.
  • [19] Francisco G. A. J, Juan R. G., Manuel G. C., and Roberto R. H. J., 2014. Fractional RC and LC electrical circuits. Ingeniería Investigación y Tecnología, 15(2), pp. 311-319.
  • [20] Freeborn T. J., Maundy B., and Elwakil A. S., 2013. Measurement of supercapacitor fractional-order model parameters from voltage-excited step response. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), pp. 367-376.
  • [21] Freeborn T. J., Maundy B., and Elwakil A. S., 2015. Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Materials for Renewable and Sustainable Energy, 4(3), pp. 1-7.
  • [22] Kopka R., 2017. Estimation of supercapacitor energy storage based on fractional differential equations. Nanoscale research letters, 12(1), pp. 636.
  • [23] Piotrowska E., Rogowski K., 2017. Analysis of fractional electrical circuit using Caputo and conformable derivative definitions. Paper presented at Conference on Non-integer Order Calculus and Its Applications, Łódź, Poland, 2017, 11-13 October, pp. 183-194.
  • [24] Piotrowska E., 2019. Analysis of fractional electrical circuit with sinusoidal input signal using Caputo and conformable derivative definitions. Poznan University of Technology Academic Journals. Electrical Engineering, 97, pp. 155-167.
  • [25] Martínez L., Rosales J. J., Carreño C. A., and Lozano J. M., 2018. Electrical circuits described by fractional conformable derivative. International Journal of Circuit Theory and Applications, 46(5), pp. 1091-1100.
  • [26] Piotrowska E., 2018. Analysis the conformable fractional derivative and Caputo definitions in the action of an electric circuit containing a supercapacitor. Paper presented at Proc. of SPIE, Wilga, Poland, 3-10 June, pp. 108081T.
  • [27] Sumper A., Baggini A., 2012. Electrical energy efficiency: technologies and applications, 1st ed., John Wiley & Sons, West Sussex, United Kingdom.
  • [28] Cheung C. K., Tan S. C., Chi K. T., and Ioinovici A., 2012. On energy efficiency of switched-capacitor converters. IEEE Transactions on Power Electronics, 28(2), pp. 862-876.
  • [29] Fouda M. E., Elwakil A. S., Radwan A. G., and Allagui A., 2016. Power and energy analysis of fractional-order electrical energy storage devices. Energy, 111, pp. 785-792.
  • [30] Hartley T. T., Veillette R. J., Adams J. L., and Lorenzo C. F., 2015. Energy storage and loss in fractional-order circuit elements. IET Circuits, Devices & Systems, 9(3), pp. 227-235.
  • [31] Martynyuk V., Ortigueira M., 2015. Fractional model of an electrochemical capacitor. Signal Processing, 107, pp. 355-360.
  • [32] Quintana J. J., Ramos A., and Nuez I., 2006. Identification of the fractional impedance of ultracapacitors. IFAC Proceedings, 39(11), pp. 432-436.
  • [33] Bertrand N., Sabatier J., Briat O., and Vinassa J. M., 2010. Embedded fractional nonlinear supercapacitor model and its parametric estimation method. IEEE Transactions on Industrial Electronics, 57(12), pp. 3991-4000.
  • [34] Halliday D., Resnick R., and Walker J., 2014. Fundamentals of Physics, 10th ed., John Wiley & Sons, New York, USA.
  • [35] Voldman S. H., 2015. ESD: Circuits and Devices, 2nd ed., John Wiley & Sons, New York, USA.
  • [36] Irwin J. D., Nelms R. M., 2015. Basic Engineering Circuit Analysis, 11th ed., John Wiley & Sons, New York, USA.
  • [37] Abu-Labdeh A. M., and Al-Jaber S. M., 2008. Energy consideration from non-equilibrium to equilibrium state in the process of charging a capacitor. Journal of Electrostatics, 66(3-4), pp. 190-192.
  • [38] Morse P. M., Feshbach H., 1954. Methods of theoretical physics. American Journal of Physics, 22(6), pp. 410-413.
  • [39] Thompson I., 2011. NIST Handbook of Mathematical Functions, 1st ed., Cambridge University Press, New York, USA.
There are 39 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Articles
Authors

Utku Palaz 0000-0003-4579-0424

Reşat Mutlu 0000-0003-0030-7136

Early Pub Date October 17, 2022
Publication Date November 30, 2022
Acceptance Date February 17, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Palaz, U., & Mutlu, R. (2022). Energy Consideration of a Capacitor Modelled Using Conformal Fractional-Order Derivative. Kocaeli Journal of Science and Engineering, 5(2), 117-125. https://doi.org/10.34088/kojose.966342