Research Article
BibTex RIS Cite
Year 2023, Volume: 6 Issue: 2, 162 - 171, 30.11.2023
https://doi.org/10.34088/kojose.1233583

Abstract

References

  • [1] Johnson M. I. and Bjordal J. M., 2011. Transcutaneous electrical nerve stimulation for the management of painful conditions: focus on neuropathic pain, Expert Rev. Neurother., 11(5), pp. 735–753.
  • [2] Headache Classification Committee of the International Headache Society (IHS)., 2013. The International Classification of Headache Disorders, 3rd edition (beta version), Cephalalgia, 33(9), pp. 629–808.
  • [3] Magis D. et al., 2016. Cerebral metabolism before and after external trigeminal nerve stimulation in episodic migraine, Cephalalgia, 37(9), pp. 1–11.
  • [4] Riederer F., Penning S., and Schoenen J., 2015. Transcutaneous Supraorbital Nerve Stimulation (t-SNS) with the Cefaly(®) Device for Migraine Prevention: A Review of the Available Data, Pain Therapy., 4(2), pp. 135–147.
  • [5] Magis D., Sava S., d’Elia T. S., Baschi R., and Schoenen J., 2013. Safety and patients’ satisfaction of transcutaneous supraorbital neurostimulation (tSNS) with the Cefaly® device in headache treatment: a survey of 2,313 headache sufferers in the general population, J. Headache Pain, 14, p. 95.
  • [6] Schoenen J. et al., 2013. Migraine prevention with a supraorbital transcutaneous stimulator: A randomized controlled trial, Neurology, 80(8), pp. 697–704.
  • [7] Salkim E., Shiraz A. N., and Demosthenous A., 2017. Effect of Nerve Variations on the Stimulus Current Level in a Wearable Neuromodulator for Migraine: A Modeling Study, in 8th International IEEE EMBS Conference on Neural Engineering, pp. 239–242.
  • [8] Schiefer M. A. and Grill W. M., 2006. Sites of Neuronal Excitation by Epiretinal Electrical Stimulation, 14(1), pp. 5–13.
  • [9] Rubinstein J. T. and Rubinstein J. T., 1193. Axon Termination Conditions for Electrical Stimulation, IEEE Trans. Biomed. Eng., 40(7), pp. 654–663.
  • [10] Butson C. R., Computational Models of Neuromodulation, 2012. 1st ed., 107. Elsevier Inc.
  • [11] Salkim E., Shiraz A. N., and Demosthenous A., 2017. Effect of Model Complexity on Fiber Activation Estimates in a Wearable Neuromodulator for Migraine, in 2017 IEEE Biomedical Circuits and Systems Conference, pp. 1–4.
  • [12] Salkim E., Shiraz A., and Demosthenous A., 2018. Influence of cellular structures of skin on fiber activation thresholds and computation cost influence of cellular structures of skin on fiber activation thresholds and computation cost, Biomed. Phys. Eng. Express, 5(1), p. 015015.
  • [13] Bikson M., Rahman A., and Datta A., 2012. Computational Models of Transcranial Direct Current Stimulation, Clin. EEG Neurosci., 43(3), pp. 176–183.
  • [14] Takema Y., Yorimoto Y., Kawai M., and Imokawa G., 1994. Age-related changes in the elastic properties and thickness of human facial skin, Br. J. Dermatol., 131(5), pp. 641–648.
  • [15] Ha R. Y., Nojima K., Adams W. P., and a Brown S., 2005. Analysis of facial skin thickness: defining the relative thickness index, Plast. Reconstr. Surg., 115(6), pp. 1769–1773.
  • [16] Pinar Y., Govsa F., Ozer M. A., and Ertam I., 2016. Anatomocosmetic implication rules of the corrugator supercilii muscle for youthful eye appearance, Surg. Radiol. Anat., 38(9), pp. 1045–1051.
  • [17] Ruan J. and Prasad P., 2001. The effects of skull thickness variations on human head dynamic impact responses, Stapp Car Crash J., 45(November), pp. 395–414.
  • [18] Christensen K. N., Lachman N., Pawlina W., and Baum C. L., 2014. Cutaneous Depth of the Supraorbital Nerve, Dermatologic Surg., 40(12), pp. 1342–1348.
  • [19] Gil Y.-C., Shin K.-J., Lee S.-H., Song W.-C., Koh K.-S., and Shin H. J., 2017. Topography of the supraorbital nerve with reference to the lacrimal caruncle: danger zone for direct browplasty, Br. J. Ophthalmol., 101(7), pp. 940–945.
  • [20] Raspopovic S., Stanisa and Capogrosso, Marco and Micera, 2011. A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode, IEEE Trans. Neural Syst. Rehabil. Eng., 19(4), pp. 333–344.
  • [21] Cogan S. F., 2008. Neural Stimulation and Recording Electrodes, Annu. Rev. Biomed. Eng., 10(1), pp. 275–309.
  • [22] Salkim E., 2019. Optimization of a Wearable Neuromodulator for Migraine Using Computational Methods, UCL (University College London).
  • [23] Shannon R. V, 1992. A Model of Save Levels for Electrical Stimulation, IEEE T Bio-Med Eng, 39(4), pp. 424–426.
  • [24] McIntyre C. C., Richardson A. G., and Grill W. M., 2002. Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle., J. Neurophysiol., 87(2), pp. 995–1006.
  • [25] McNeal D. R., 1976. Analysis of a model for excitation of myelinated nerve., IEEE Trans. Biomed. Eng., 23(4), pp. 329–337.
  • [26] Rattay F., 1989. Analysis of models for extracellular fiber stimulation.pdf., IEEE Trans. Biomed. Eng., 36(7), pp. 676–682.
  • [27] Pelot N. A., Behrend C. E., and Grill W. M., 2019. On the parameters used in finite element modeling of compound peripheral nerves, J. Neural Eng., 16(1).
  • [28] Howell B., Huynh B., and Grill W. M., 2015. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes, J. Neural Eng., 12(4).
  • [29] Lempka S. F., McIntyre C. C., Kilgore K. L., and Machado A. G., 2015. Computational Analysis of Kilohertz Frequency Spinal Cord Stimulation for Chronic Pain Management, Anesthesiology, 122(6), pp. 1362–76.
  • [30] Yamamoto T. and Yamamoto Y., 1976. Electrical properties of the epidermal stratum corneum, Med. Biol. Eng., 14(2), pp. 151–158.
  • [31] Gabriel C. et al., 1996. The dielectric properties of biological tissues: I. Literature survey, Phys. Med. Biol., 41(11), pp. 2231–2249.
  • [32] Kuhn A., Keller T., Micera S., and Morari M., 2009. Array electrode design for transcutaneous electrical stimulation: A simulation study, Med. Eng. Phys., 31(8), pp. 945–951.
  • [33] Oostendorp T. F., Delbeke J., and Stegeman D. F., 2000. The conductivity of the human skull: Results of in vivo and in vitro measurements, IEEE Trans. Biomed. Eng., 47(11), pp. 1487–1492.
  • [34] Baumann S. B., Wozny D. R., Kelly S. K., and Meno F. M., 1997. The electrical conductivity of human cerebrospinal fluid at body temperature, IEEE Trans. Biomed. Eng., 44(3), pp. 220–225.
  • [35] “Low Frequency (Conductivity) » IT’IS Foundation.” [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/low-frequency-conductivity/. [Accessed: 20-December-2022].
  • [36] Gibson W., Wand B. M., Meads C., Catley M. J., and O’Connell N. E., 2019. Transcutaneous electrical nerve stimulation (TENS) for chronic pain - an overview of Cochrane Reviews doi: 10.1002/14651858.cd011890.pub3.
  • [37] T Mokhtari., Ren Q., Li N., Wang F., Bi Y., and Hu L., 2020. Transcutaneous Electrical Nerve Stimulation in Relieving Neuropathic Pain: Basic Mechanisms and Clinical Applications, Current Pain and Headache Reports, 24(4). Springer. doi: 10.1007/s11916-020-0846-1.

Transcutaneous Nerve Stimulation Current Thresholds Based on Nerve Bending Angle and Nerve Termination Point

Year 2023, Volume: 6 Issue: 2, 162 - 171, 30.11.2023
https://doi.org/10.34088/kojose.1233583

Abstract

There is increasing interest in using transcutaneous electrical stimulation to treat or suppress brain-related disorders. Primary headache disorder is a socioeconomic burden whose pharmaceutical and invasive treatment method may have troublesome side effects. There are various transcutaneous electrical nerve stimulation neuromodulation systems that are used for health-related disorders. TMany factors may affect these systems’ efficiency, including stimulus current levels. A device for primary headaches showed mixed results. This may be related to the higher stimulus current levels that are applied through the electrodes. A feasible solution to reduce the required current levels is considering the geometrical features of the target nerve bending and nerve termination trajectories. In this study, the impact of the geometrical features of the nerve, such as nerve bending and nerve termination, on the stimulus current thresholds were analyzed based on FEM hybrid models. Twenty nerve models were generated considering statistical variations to assess the effect of the nerve geometrical features on the target neuromodulatory system. Finally, the safety parameters were calculated based on the target neuromodulator settings. The results showed that the geometric features of the target nerve have a significant effect on the required stimulus current thresholds. These results may provide important guidance mainly for transcutaneous nerve stimulation and future electrical nerve stimulation design.

References

  • [1] Johnson M. I. and Bjordal J. M., 2011. Transcutaneous electrical nerve stimulation for the management of painful conditions: focus on neuropathic pain, Expert Rev. Neurother., 11(5), pp. 735–753.
  • [2] Headache Classification Committee of the International Headache Society (IHS)., 2013. The International Classification of Headache Disorders, 3rd edition (beta version), Cephalalgia, 33(9), pp. 629–808.
  • [3] Magis D. et al., 2016. Cerebral metabolism before and after external trigeminal nerve stimulation in episodic migraine, Cephalalgia, 37(9), pp. 1–11.
  • [4] Riederer F., Penning S., and Schoenen J., 2015. Transcutaneous Supraorbital Nerve Stimulation (t-SNS) with the Cefaly(®) Device for Migraine Prevention: A Review of the Available Data, Pain Therapy., 4(2), pp. 135–147.
  • [5] Magis D., Sava S., d’Elia T. S., Baschi R., and Schoenen J., 2013. Safety and patients’ satisfaction of transcutaneous supraorbital neurostimulation (tSNS) with the Cefaly® device in headache treatment: a survey of 2,313 headache sufferers in the general population, J. Headache Pain, 14, p. 95.
  • [6] Schoenen J. et al., 2013. Migraine prevention with a supraorbital transcutaneous stimulator: A randomized controlled trial, Neurology, 80(8), pp. 697–704.
  • [7] Salkim E., Shiraz A. N., and Demosthenous A., 2017. Effect of Nerve Variations on the Stimulus Current Level in a Wearable Neuromodulator for Migraine: A Modeling Study, in 8th International IEEE EMBS Conference on Neural Engineering, pp. 239–242.
  • [8] Schiefer M. A. and Grill W. M., 2006. Sites of Neuronal Excitation by Epiretinal Electrical Stimulation, 14(1), pp. 5–13.
  • [9] Rubinstein J. T. and Rubinstein J. T., 1193. Axon Termination Conditions for Electrical Stimulation, IEEE Trans. Biomed. Eng., 40(7), pp. 654–663.
  • [10] Butson C. R., Computational Models of Neuromodulation, 2012. 1st ed., 107. Elsevier Inc.
  • [11] Salkim E., Shiraz A. N., and Demosthenous A., 2017. Effect of Model Complexity on Fiber Activation Estimates in a Wearable Neuromodulator for Migraine, in 2017 IEEE Biomedical Circuits and Systems Conference, pp. 1–4.
  • [12] Salkim E., Shiraz A., and Demosthenous A., 2018. Influence of cellular structures of skin on fiber activation thresholds and computation cost influence of cellular structures of skin on fiber activation thresholds and computation cost, Biomed. Phys. Eng. Express, 5(1), p. 015015.
  • [13] Bikson M., Rahman A., and Datta A., 2012. Computational Models of Transcranial Direct Current Stimulation, Clin. EEG Neurosci., 43(3), pp. 176–183.
  • [14] Takema Y., Yorimoto Y., Kawai M., and Imokawa G., 1994. Age-related changes in the elastic properties and thickness of human facial skin, Br. J. Dermatol., 131(5), pp. 641–648.
  • [15] Ha R. Y., Nojima K., Adams W. P., and a Brown S., 2005. Analysis of facial skin thickness: defining the relative thickness index, Plast. Reconstr. Surg., 115(6), pp. 1769–1773.
  • [16] Pinar Y., Govsa F., Ozer M. A., and Ertam I., 2016. Anatomocosmetic implication rules of the corrugator supercilii muscle for youthful eye appearance, Surg. Radiol. Anat., 38(9), pp. 1045–1051.
  • [17] Ruan J. and Prasad P., 2001. The effects of skull thickness variations on human head dynamic impact responses, Stapp Car Crash J., 45(November), pp. 395–414.
  • [18] Christensen K. N., Lachman N., Pawlina W., and Baum C. L., 2014. Cutaneous Depth of the Supraorbital Nerve, Dermatologic Surg., 40(12), pp. 1342–1348.
  • [19] Gil Y.-C., Shin K.-J., Lee S.-H., Song W.-C., Koh K.-S., and Shin H. J., 2017. Topography of the supraorbital nerve with reference to the lacrimal caruncle: danger zone for direct browplasty, Br. J. Ophthalmol., 101(7), pp. 940–945.
  • [20] Raspopovic S., Stanisa and Capogrosso, Marco and Micera, 2011. A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode, IEEE Trans. Neural Syst. Rehabil. Eng., 19(4), pp. 333–344.
  • [21] Cogan S. F., 2008. Neural Stimulation and Recording Electrodes, Annu. Rev. Biomed. Eng., 10(1), pp. 275–309.
  • [22] Salkim E., 2019. Optimization of a Wearable Neuromodulator for Migraine Using Computational Methods, UCL (University College London).
  • [23] Shannon R. V, 1992. A Model of Save Levels for Electrical Stimulation, IEEE T Bio-Med Eng, 39(4), pp. 424–426.
  • [24] McIntyre C. C., Richardson A. G., and Grill W. M., 2002. Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle., J. Neurophysiol., 87(2), pp. 995–1006.
  • [25] McNeal D. R., 1976. Analysis of a model for excitation of myelinated nerve., IEEE Trans. Biomed. Eng., 23(4), pp. 329–337.
  • [26] Rattay F., 1989. Analysis of models for extracellular fiber stimulation.pdf., IEEE Trans. Biomed. Eng., 36(7), pp. 676–682.
  • [27] Pelot N. A., Behrend C. E., and Grill W. M., 2019. On the parameters used in finite element modeling of compound peripheral nerves, J. Neural Eng., 16(1).
  • [28] Howell B., Huynh B., and Grill W. M., 2015. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes, J. Neural Eng., 12(4).
  • [29] Lempka S. F., McIntyre C. C., Kilgore K. L., and Machado A. G., 2015. Computational Analysis of Kilohertz Frequency Spinal Cord Stimulation for Chronic Pain Management, Anesthesiology, 122(6), pp. 1362–76.
  • [30] Yamamoto T. and Yamamoto Y., 1976. Electrical properties of the epidermal stratum corneum, Med. Biol. Eng., 14(2), pp. 151–158.
  • [31] Gabriel C. et al., 1996. The dielectric properties of biological tissues: I. Literature survey, Phys. Med. Biol., 41(11), pp. 2231–2249.
  • [32] Kuhn A., Keller T., Micera S., and Morari M., 2009. Array electrode design for transcutaneous electrical stimulation: A simulation study, Med. Eng. Phys., 31(8), pp. 945–951.
  • [33] Oostendorp T. F., Delbeke J., and Stegeman D. F., 2000. The conductivity of the human skull: Results of in vivo and in vitro measurements, IEEE Trans. Biomed. Eng., 47(11), pp. 1487–1492.
  • [34] Baumann S. B., Wozny D. R., Kelly S. K., and Meno F. M., 1997. The electrical conductivity of human cerebrospinal fluid at body temperature, IEEE Trans. Biomed. Eng., 44(3), pp. 220–225.
  • [35] “Low Frequency (Conductivity) » IT’IS Foundation.” [Online]. Available: https://itis.swiss/virtual-population/tissue-properties/database/low-frequency-conductivity/. [Accessed: 20-December-2022].
  • [36] Gibson W., Wand B. M., Meads C., Catley M. J., and O’Connell N. E., 2019. Transcutaneous electrical nerve stimulation (TENS) for chronic pain - an overview of Cochrane Reviews doi: 10.1002/14651858.cd011890.pub3.
  • [37] T Mokhtari., Ren Q., Li N., Wang F., Bi Y., and Hu L., 2020. Transcutaneous Electrical Nerve Stimulation in Relieving Neuropathic Pain: Basic Mechanisms and Clinical Applications, Current Pain and Headache Reports, 24(4). Springer. doi: 10.1007/s11916-020-0846-1.
There are 37 citations in total.

Details

Primary Language English
Subjects Biomedical Engineering
Journal Section Articles
Authors

Enver Salkım 0000-0002-7342-8126

Early Pub Date October 24, 2023
Publication Date November 30, 2023
Acceptance Date May 4, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Salkım, E. (2023). Transcutaneous Nerve Stimulation Current Thresholds Based on Nerve Bending Angle and Nerve Termination Point. Kocaeli Journal of Science and Engineering, 6(2), 162-171. https://doi.org/10.34088/kojose.1233583