Research Article
BibTex RIS Cite

Fluorescence Glucose Biosensors Assays Analysis and Novel Classifications: Frequency Range Specification for Medical Applications

Year 2024, Volume: 7 Issue: 2, 96 - 108, 30.11.2024
https://doi.org/10.34088/kojose.1266492

Abstract

The use of luminous glucose sensing as a potential replacement for more traditional forms of glucose measurement has shown encouraging results. Investigation of the efficiency of fluorescence resonance energy transfer (FRET) in glucose sensing is being conducted, with particular focus on the effect of donor-acceptor arrangement. The findings of the experiments indicated that the FRET efficiency was around 50.4% when FITC was used as the acceptor and TRITC was used as the donor. However, the FRET efficiency increased to over 60% when FITC was employed as the donor and TRITC was utilized as the acceptor in the experiment. The significance of the donor-acceptor configuration for efficient energy transfer has been brought to light by the findings presented here. In the process of glucose sensing, the data suggest that FITC should be utilized as the donor, while TRITC should be employed as the acceptor. The engineering medical application of a FITC-TRICTC biosensor requires an excitation wavelength of 544 nm and an absorption wavelength of 516 nm, respectively. In addition to these requirements, you will also need an antenna for transmission that operates at 580 GHz and a wavelength of 551 for the excitation. This article will be an extremely helpful resource for researchers working in the field of fluorescent glucose sensing. The article elucidates the essential concepts of competitive binding and oxidation, both of which are crucial to the process.

References

  • [1] Fluorescence Excitation and Emission Fundamentals. [accessed 2023 Jan 29].
  • [2] Klonoff DC. Fluorescence Glucose Sensing, Part I: Overview of Fluorescence Glucose Sensing: A Technology with a Bright Future. Journal of Diabetes Science and Technology. 2012 [accessed 2023 Jan 29];6(6):1242. /pmc/articles/PMC3570863/. doi:10.1177/193229681200600602
  • [3] Carravilla P, Nieva JL, Eggeling C. Fluorescence Microscopy of the HIV-1 Envelope. Viruses. 2020 [accessed 2023 Jan 29];12(3). https://pubmed.ncbi.nlm.nih.gov/32245254/. doi:10.3390/V12030348
  • [4] Woo Y, Chaurasiya S, O’Leary M, Han E, Fong Y. Fluorescent imaging for cancer therapy and cancer gene therapy. Molecular Therapy Oncolytics. 2021 [accessed 2023 Jan 29];23:231. /pmc/articles/PMC8531657/. doi:10.1016/J.OMTO.2021.06.007
  • [5] Jenkins R, Burdette MK, Foulger SH. Mini-review: fluorescence imaging in cancer cells using dye-doped nanoparticles. RSC Advances. 2016 [accessed 2023 Jan 29];6(70):65459–65474. https://pubs.rsc.org/en/content/articlehtml/2016/ra/c6ra10473h. doi:10.1039/C6RA10473H
  • [6] Lwin TM, Turner MA, Amirfakhri S, Nishino H, Hoffman RM, Bouvet M. Fluorescence Molecular Targeting of Colon Cancer to Visualize the Invisible. Cells 2022, Vol. 11, Page 249. 2022 [accessed 2023 Jan 29];11(2):249. https://www.mdpi.com/2073-4409/11/2/249/htm. doi:10.3390/CELLS11020249
  • [7] Chen L, Hwang E, Zhang J. Fluorescent Nanobiosensors for Sensing Glucose. Sensors 2018, Vol. 18, Page 1440. 2018 [accessed 2023 Jan 29];18(5):1440. https://www.mdpi.com/1424-8220/18/5/1440/htm. doi:10.3390/S18051440
  • [8] Jernelv IL, Milenko K, Fuglerud SS, Hjelme DR, Ellingsen R, Aksnes A. A review of optical methods for continuous glucose monitoring. Applied Spectroscopy Reviews. 2019 [accessed 2023 Jan 29];54(7):543–572. doi:10.1080/05704928.2018.1486324
  • [9] Gonzales WV, Mobashsher AT, Abbosh A. The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors 2019, Vol. 19, Page 800. 2019 [accessed 2023 Jan 29];19(4):800. https://www.mdpi.com/1424-8220/19/4/800/htm. doi:10.3390/S19040800
  • [10] Wu W, Shao X, Zhao J, Wu M. Controllable Photodynamic Therapy Implemented by Regulating Singlet Oxygen Efficiency. Advanced Science. 2017 [accessed 2023 Jan 29];4(7). doi:10.1002/ADVS.201700113
  • [11] Russell R, Pishko M, Gefrides C, Cote G. A fluorescent glucose assay using poly-L-lysine and calcium alginate microencapsulated TRITC-succinyl-concanavalin A and FITC-dextran. 2002 Nov 28 [accessed 2023 Jan 29]:2858–2861. doi:10.1109/IEMBS.1998.746080
  • [12] Gunther GR, Wang JL, Yahara I, Cunningham BA, Edelman GM. Concanavalin A derivatives with altered biological activities. Proceedings of the National Academy of Sciences of the United States of America. 1973 [accessed 2023 Jan 29];70(4):1012–1016. https://pubmed.ncbi.nlm.nih.gov/4515602/. doi:10.1073/PNAS.70.4.1012
  • [13] Meadows DL, Schultz JS. Design, manufacture and characterization of an optical fiber glucose affinity sensor based on an homogeneous fluorescence energy transfer assay system. Analytica Chimica Acta. 1993 [accessed 2023 Jan 29];280(1):21–30. doi:10.1016/0003-2670(93)80236-E
  • [14] Chapter 4 Affinity Biosensors. Techniques and Instrumentation in Analytical Chemistry. 1992 [accessed 2023 Jan 29];11(100):253–290. doi:10.1016/S0167-9244(08)70036-2
  • [15] Mc Shane MJ, Russell RJ, Pishko M v., Cote GL. Glucose monitoring using implanted fluorescent microspheres. IEEE Engineering in Medicine and Biology Magazine. 2000 [accessed 2023 Jan 29];19(6):36–45. doi:10.1109/51.887244
  • [16] Ibey BL, Coté GL, Yadavalli V, Gant VA, Newmyer K, Pishko M v. Analysis of Longer Wavelength AlexaFluor Dyes for Use in a Minimally Invasive Glucose Sensor. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. 2003 [accessed 2023 Jan 29];4:3446–3449. doi:10.1109/IEMBS.2003.1280888
  • [17] Ibey BL, Coté GL, Yadavalli V, Gant VA, Newmyer K, Pishko M v. Analysis of Longer Wavelength AlexaFluor Dyes for Use in a Minimally Invasive Glucose Sensor. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. 2003 [accessed 2023 Jan 29];4:3446–3449. doi:10.1109/IEMBS.2003.1280888
  • [18] Natarajan S, Derosa M, Joseph J, Shah MI, Karthik S. Aptamer based lateral flow assays for rapid and sensitive detection of CKD marker Cystatin C. 2021 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2021 - Conference Proceedings. 2021 Jun 23 [accessed 2023 Jan 29]. doi:10.1109/MEMEA52024.2021.9478684
  • [19] Shafiul Azam ABM, Boukadoum M, Izquierdo R, Acharya A, Packirisamy M. Integrated multifunctional fluorescence biosensor based on OLED technology. 2008 Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conference, NEWCAS-TAISA. 2008 [accessed 2023 Jan 29]:173–176. doi:10.1109/NEWCAS.2008.4606349
  • [20] Deng W, Drozdowicz-Tomsia K, Jin D, Goldys EM. Silver nanostructure coated beads enhance fluorescence for sensitive immunoassays and bioimaging. ICONN 2010 - Proceedings of the 2010 International Conference on Nanoscience and Nanotechnology. 2010 [accessed 2023 Jan 29]:108–111. doi:10.1109/ICONN.2010.6045197
  • [21] Ye K, Schultz JS. Genetic engineering of an allosterically based glucose indicator protein for continuous glucose monitoring by fluorescence resonance energy transfer. Analytical chemistry. 2003 [accessed 2023 Jan 29];75(14):3451–3459. https://pubmed.ncbi.nlm.nih.gov/14570197/. doi:10.1021/AC034022Q
  • [22] Garrett JR, Wu X, Ye K. Development of a pH-insensitive glucose indicator for continuous glucose monitoring. 2007 IEEE Region 5 Technical Conference, TPS. 2007 [accessed 2023 Jan 29]:171–174. doi:10.1109/TPSD.2007.4380375
  • [23] Kabilan S, Marshall AJ, Blyth J, Hussain A, Yang X, Lee MC, Lowe CR. Selective holographic glucose sensors. Proceedings of IEEE Sensors. 2004 [accessed 2023 Jan 29]; 2:1003–1006. doi:10.1109/ICSENS.2004.1426342
  • [24] Beier BL, Brandner EM, Musick KM, Matsumoto A, Panitch A, Nauman EA, Irazoqui PP. Preliminary characterization of a glucose-sensitive hydrogel. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2010 [accessed 2023 Jan 29]; 2010:5014–5017. https://pubmed.ncbi.nlm.nih.gov/21096685/. doi:10.1109/IEMBS.2010.5627210
  • [25] Kawanishi T, Romey MA, Zhu PC, Holody MZ, Shinkai S. A study of boronic acid based fluorescent glucose sensors. Journal of Fluorescence. 2004 [accessed 2023 Jan 29];14(5):499–512. https://link.springer.com/article/10.1023/B:JOFL.0000039338.16715.48. doi:10.1023/B: JOFL.0000039338.16715.48/METRICS
  • [26] Shibata H, Tsuda Y, Kawanishi T, Yamamoto N, Okitsu T, Takeuchi S. Implantable fluorescent hydrogel for continous blood glucose monitoring. TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems. 2009 [accessed 2023 Jan 29]:1453–1456. doi:10.1109/SENSOR.2009.5285817
  • [27] Jiang D, Liu E, Chen X, Huang J. Study on a new fiber optic glucose biosensor. 2002 15th Optical Fiber Sensors Conference Technical Digest, OFS 2002. 2002 [accessed 2023 Jan 29]:451–454. doi:10.1109/OFS.2002.1000689
  • [28] Grant PS, Lvov Y, McShane MJ. Nanostructured fluorescent biosensor for glucose detection. 2003 Jun 26 [accessed 2023 Jan 29]:1710–1711. doi:10.1109/IEMBS.2002.1106614
  • [29] Nayak SR, Guice K, Lvov Y, McShane MJ. Nanoengineered fluorescent sensors containing enzyme assays. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. 2002 [accessed 2023 Jan 29]; 2:1679–1680. doi:10.1109/IEMBS.2002.1106599
  • [30] McShane MJ. Nanoengineering of Fluorescence-Based Chemical Sensors Using Electrostatic Self-Assembly: Thin Films and Micro/Nanoshells. Proceedings of IEEE Sensors. 2002 [accessed 2023 Jan 29];1(1):293–297. doi:10.1109/ICSENS.2002.1037102
  • [31] Chen S, Xiong Z, Ye H, Dong X. An optical glucose biosensor fabricated by encapsulating glucose oxidase in silica gel via sol-gel method. Proceedings - International Symposium on Advanced Packaging Materials. 2011 [accessed 2023 Jan 29]:31–34. doi:10.1109/ISAPM.2011.6105687
  • [32] Gao Z, Gong S, Kim CS, Henthorn DB. Optofluidic glucose sensor utilizing an epoxy-based, transparent dry film resist. Proceedings of IEEE Sensors. 2011 [accessed 2023 Jan 29]:284–287. doi:10.1109/ICSENS.2011.6127035
  • [33] Hu M, Lu H, Yuwen L, Wang L. Label-free detection of glucose based on quantum dots. INEC 2010 - 2010 3rd International Nanoelectronics Conference, Proceedings. 2010 [accessed 2023 Jan 29]:868–869. doi:10.1109/INEC.2010.5425164
  • [34] Suzuki M, Nomura A, Yamamoto M, Minakuchi K, Iribe Y. Novel integration method for chemical and enzyme sensor array by using microcontact printing. 2010 International Symposium on Micro-NanoMechatronics and Human Science: From Micro and Nano Scale Systems to Robotics and Mechatronics Systems, MHS 2010, Micro-Nano GCOE 2010, Bio-Manipulation 2010. 2010 [accessed 2023 Jan 29]:301–306. doi:10.1109/MHS.2010.5669540
  • [35] Zhang K, Tao G, Zeng X, Sheng W, Zhou J. Compact and portable chemiluminescence detector for glucose. Proceedings of International Conference on ASIC. 2013 [accessed 2023 Jan 29]. doi:10.1109/ASICON.2013.6811925
  • [36] Thomas N, Lähdesmäki I, Parviz B. Direct immobilization of enzymes on common photoresists. Proceedings of the IEEE International Conference on Micro Electromechanical Systems (MEMS). 2011 [accessed 2023 Jan 29]:233–236. doi:10.1109/MEMSYS.2011.5734404
  • [37] Starly B, Lan SF. Real time measurement of cellular Oxygen Uptake Rates (OUR) by a fiber optic sensor. 2009 IEEE International Conference on Virtual Environments, Human-Computer Interfaces, and Measurements Systems, VECIMS 2009 - Proceedings. 2009 [accessed 2023 Jan 29]:123–128. doi:10.1109/VECIMS.2009.5068878
  • [38] Yu JQ, Chin LK, Fu Y, Yu T, Luo KQ, Liu AQ. Pulsatile shear stress and high glucose concentrations induced reactive oxigen species production in endothelial cells. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’11. 2011 [accessed 2023 Jan 29]:767–770. doi:10.1109/TRANSDUCERS.2011.5969310
  • [39] Li Y, Chang J, Liu C, Xiong X, Gong Y, Li Z. Lily polysaccharide prevents alloxan-induced HIT-T15 cell damage by reducing ROS generation. Proceedings - 2012 International Conference on Biomedical Engineering and Biotechnology, iCBEB 2012. 2012 [accessed 2023 Jan 29]:364–367. doi:10.1109/ICBEB.2012.264
  • [40] Heo YJ, Shibata H, Okitsu T, Kawanishi T, Takeuchi S. Fluorescent hydrogel fibers for long-term in vivo glucose monitoring. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’11. 2011 [accessed 2023 Jan 29]:2140–2143. doi:10.1109/TRANSDUCERS.2011.5969342
  • [41] Takahashi M, Heo YJ, Kawanishi T, Okitsu T, Takeuchi S. Portable continuous glucose monitoring systems with implantable fluorescent hydrogel microfibers. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2013 [accessed 2023 Jan 29]:1089–1092. doi:10.1109/MEMSYS.2013.6474439
  • [42] Tokuda T, Takahashi M, Uejima K, Masuda K, Kawamura T, Ohta Y, Motoyama M, Noda T, Sasagawa K, Okitsu T, et al. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel. Biomedical Optics Express. 2014 [accessed 2023 Jan 29];5(11):3859. /pmc/articles/PMC4242023/. doi:10.1364/BOE.5.003859
  • [43] Sawayama J, Nam E, Takeuchi S. Fabrication of biocompatible fluorescent hydrogel for implantable continuous glucose monitoring device. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2017 Feb 23 [accessed 2023 Jan 29]:221–222. doi:10.1109/MEMSYS.2017.7863380
  • [44] Sawayama J, Ozawa F, Takeuchi S. Continuous Glucose Monitoring of 3D Tissue Using a Perfusable Device. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2019 [accessed 2023 Jan 29];2019-January:586–587. doi:10.1109/MEMSYS.2019.8870795
  • [45] Morimoto Y, Sawayama J, Takeuchi S. In Situ Glugose Monitoring in 3D-Cultured Skeletal Muscle Tissues. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2019 [accessed 2023 Jan 29];2019-January:584–585. doi:10.1109/MEMSYS.2019.8870712
  • [46] Chinnayelka S, McShane MJ. RET nanobiosensors using affinity of an apo-enzyme toward its substrate. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. 2004 [accessed 2023 Jan 29];26 IV:2599–2602. doi:10.1109/IEMBS.2004.1403747
  • [47] Mack AC, Mao J, McShane MJ. Transduction of pH and glucose-sensitive hydrogel swelling through fluorescence resonance energy transfer. Proceedings of IEEE Sensors. 2005 [accessed 2023 Jan 29];2005:912–915. doi:10.1109/ICSENS.2005.1597848
  • [48] Chinnayelka S, McShane MJ. Competitive binding assays in microcapsules as “smart tattoo” biosensors. Proceedings of IEEE Sensors. 2005 [accessed 2023 Jan 29];2005:1304–1307. doi:10.1109/ICSENS.2005.1597946
  • [49] Li W, Jiang T, Pu Y, Jiao X, Tan W, Qin S. Glucose biosensor using fluorescence quenching with chitosan-modified graphene oxide. Micro & Nano Letters. 2019 [accessed 2023 Jan 29];14(3):344–348. https://onlinelibrary.wiley.com/doi/full/10.1049/mnl.2018.5269. doi:10.1049/MNL.2018.5269
  • [50] Ricciardi S. Polymeric Microcavities for Dye Lasers and Wavefront Shapers. 2008 [accessed 2023 Jan 29].
  • [51] Zumdahl SS, Zumdahl SA. Chemistry : an atoms first approach. [accessed 2023 Jan 29]:90.
  • [52] About Us | AAT Bioquest. [accessed 2023 Jan 29]. https://www.aatbio.com/aboutus.html
  • [53] WebPlotDigitizer - Copyright 2010-2022 Ankit Rohatgi. [accessed 2023 Jan 29]. https://apps.automeris.io/wpd/
  • [54] Procedure for Antibody Labeling with FITC. 2013 [accessed 2023 Jan 29]. www.thermoscientific.com/pierce.

Fluorescence Glucose Biosensors Assays Analysis and Novel Classifications: Frequency Range Specification for Medical Applications

Year 2024, Volume: 7 Issue: 2, 96 - 108, 30.11.2024
https://doi.org/10.34088/kojose.1266492

Abstract

The use of luminous glucose sensing as a potential replacement for more traditional forms of glucose measurement has shown encouraging results. Investigation of the efficiency of fluorescence resonance energy transfer (FRET) in glucose sensing is being conducted, with particular focus on the effect of donor-acceptor arrangement. The findings of the experiments indicated that the FRET efficiency was around 50.4% when FITC was used as the acceptor and TRITC was used as the donor. However, the FRET efficiency increased to over 60% when FITC was employed as the donor and TRITC was utilized as the acceptor in the experiment. The significance of the donor-acceptor configuration for efficient energy transfer has been brought to light by the findings presented here. In the process of glucose sensing, the data suggest that FITC should be utilized as the donor, while TRITC should be employed as the acceptor. The engineering medical application of a FITC-TRICTC biosensor requires an excitation wavelength of 544 nm and an absorption wavelength of 516 nm, respectively. In addition to these requirements, you will also need an antenna for transmission that operates at 580 GHz and a wavelength of 551 for the excitation. This article will be an extremely helpful resource for researchers working in the field of fluorescent glucose sensing. The article elucidates the essential concepts of competitive binding and oxidation, both of which are crucial to the process.

References

  • [1] Fluorescence Excitation and Emission Fundamentals. [accessed 2023 Jan 29].
  • [2] Klonoff DC. Fluorescence Glucose Sensing, Part I: Overview of Fluorescence Glucose Sensing: A Technology with a Bright Future. Journal of Diabetes Science and Technology. 2012 [accessed 2023 Jan 29];6(6):1242. /pmc/articles/PMC3570863/. doi:10.1177/193229681200600602
  • [3] Carravilla P, Nieva JL, Eggeling C. Fluorescence Microscopy of the HIV-1 Envelope. Viruses. 2020 [accessed 2023 Jan 29];12(3). https://pubmed.ncbi.nlm.nih.gov/32245254/. doi:10.3390/V12030348
  • [4] Woo Y, Chaurasiya S, O’Leary M, Han E, Fong Y. Fluorescent imaging for cancer therapy and cancer gene therapy. Molecular Therapy Oncolytics. 2021 [accessed 2023 Jan 29];23:231. /pmc/articles/PMC8531657/. doi:10.1016/J.OMTO.2021.06.007
  • [5] Jenkins R, Burdette MK, Foulger SH. Mini-review: fluorescence imaging in cancer cells using dye-doped nanoparticles. RSC Advances. 2016 [accessed 2023 Jan 29];6(70):65459–65474. https://pubs.rsc.org/en/content/articlehtml/2016/ra/c6ra10473h. doi:10.1039/C6RA10473H
  • [6] Lwin TM, Turner MA, Amirfakhri S, Nishino H, Hoffman RM, Bouvet M. Fluorescence Molecular Targeting of Colon Cancer to Visualize the Invisible. Cells 2022, Vol. 11, Page 249. 2022 [accessed 2023 Jan 29];11(2):249. https://www.mdpi.com/2073-4409/11/2/249/htm. doi:10.3390/CELLS11020249
  • [7] Chen L, Hwang E, Zhang J. Fluorescent Nanobiosensors for Sensing Glucose. Sensors 2018, Vol. 18, Page 1440. 2018 [accessed 2023 Jan 29];18(5):1440. https://www.mdpi.com/1424-8220/18/5/1440/htm. doi:10.3390/S18051440
  • [8] Jernelv IL, Milenko K, Fuglerud SS, Hjelme DR, Ellingsen R, Aksnes A. A review of optical methods for continuous glucose monitoring. Applied Spectroscopy Reviews. 2019 [accessed 2023 Jan 29];54(7):543–572. doi:10.1080/05704928.2018.1486324
  • [9] Gonzales WV, Mobashsher AT, Abbosh A. The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors 2019, Vol. 19, Page 800. 2019 [accessed 2023 Jan 29];19(4):800. https://www.mdpi.com/1424-8220/19/4/800/htm. doi:10.3390/S19040800
  • [10] Wu W, Shao X, Zhao J, Wu M. Controllable Photodynamic Therapy Implemented by Regulating Singlet Oxygen Efficiency. Advanced Science. 2017 [accessed 2023 Jan 29];4(7). doi:10.1002/ADVS.201700113
  • [11] Russell R, Pishko M, Gefrides C, Cote G. A fluorescent glucose assay using poly-L-lysine and calcium alginate microencapsulated TRITC-succinyl-concanavalin A and FITC-dextran. 2002 Nov 28 [accessed 2023 Jan 29]:2858–2861. doi:10.1109/IEMBS.1998.746080
  • [12] Gunther GR, Wang JL, Yahara I, Cunningham BA, Edelman GM. Concanavalin A derivatives with altered biological activities. Proceedings of the National Academy of Sciences of the United States of America. 1973 [accessed 2023 Jan 29];70(4):1012–1016. https://pubmed.ncbi.nlm.nih.gov/4515602/. doi:10.1073/PNAS.70.4.1012
  • [13] Meadows DL, Schultz JS. Design, manufacture and characterization of an optical fiber glucose affinity sensor based on an homogeneous fluorescence energy transfer assay system. Analytica Chimica Acta. 1993 [accessed 2023 Jan 29];280(1):21–30. doi:10.1016/0003-2670(93)80236-E
  • [14] Chapter 4 Affinity Biosensors. Techniques and Instrumentation in Analytical Chemistry. 1992 [accessed 2023 Jan 29];11(100):253–290. doi:10.1016/S0167-9244(08)70036-2
  • [15] Mc Shane MJ, Russell RJ, Pishko M v., Cote GL. Glucose monitoring using implanted fluorescent microspheres. IEEE Engineering in Medicine and Biology Magazine. 2000 [accessed 2023 Jan 29];19(6):36–45. doi:10.1109/51.887244
  • [16] Ibey BL, Coté GL, Yadavalli V, Gant VA, Newmyer K, Pishko M v. Analysis of Longer Wavelength AlexaFluor Dyes for Use in a Minimally Invasive Glucose Sensor. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. 2003 [accessed 2023 Jan 29];4:3446–3449. doi:10.1109/IEMBS.2003.1280888
  • [17] Ibey BL, Coté GL, Yadavalli V, Gant VA, Newmyer K, Pishko M v. Analysis of Longer Wavelength AlexaFluor Dyes for Use in a Minimally Invasive Glucose Sensor. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. 2003 [accessed 2023 Jan 29];4:3446–3449. doi:10.1109/IEMBS.2003.1280888
  • [18] Natarajan S, Derosa M, Joseph J, Shah MI, Karthik S. Aptamer based lateral flow assays for rapid and sensitive detection of CKD marker Cystatin C. 2021 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2021 - Conference Proceedings. 2021 Jun 23 [accessed 2023 Jan 29]. doi:10.1109/MEMEA52024.2021.9478684
  • [19] Shafiul Azam ABM, Boukadoum M, Izquierdo R, Acharya A, Packirisamy M. Integrated multifunctional fluorescence biosensor based on OLED technology. 2008 Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conference, NEWCAS-TAISA. 2008 [accessed 2023 Jan 29]:173–176. doi:10.1109/NEWCAS.2008.4606349
  • [20] Deng W, Drozdowicz-Tomsia K, Jin D, Goldys EM. Silver nanostructure coated beads enhance fluorescence for sensitive immunoassays and bioimaging. ICONN 2010 - Proceedings of the 2010 International Conference on Nanoscience and Nanotechnology. 2010 [accessed 2023 Jan 29]:108–111. doi:10.1109/ICONN.2010.6045197
  • [21] Ye K, Schultz JS. Genetic engineering of an allosterically based glucose indicator protein for continuous glucose monitoring by fluorescence resonance energy transfer. Analytical chemistry. 2003 [accessed 2023 Jan 29];75(14):3451–3459. https://pubmed.ncbi.nlm.nih.gov/14570197/. doi:10.1021/AC034022Q
  • [22] Garrett JR, Wu X, Ye K. Development of a pH-insensitive glucose indicator for continuous glucose monitoring. 2007 IEEE Region 5 Technical Conference, TPS. 2007 [accessed 2023 Jan 29]:171–174. doi:10.1109/TPSD.2007.4380375
  • [23] Kabilan S, Marshall AJ, Blyth J, Hussain A, Yang X, Lee MC, Lowe CR. Selective holographic glucose sensors. Proceedings of IEEE Sensors. 2004 [accessed 2023 Jan 29]; 2:1003–1006. doi:10.1109/ICSENS.2004.1426342
  • [24] Beier BL, Brandner EM, Musick KM, Matsumoto A, Panitch A, Nauman EA, Irazoqui PP. Preliminary characterization of a glucose-sensitive hydrogel. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2010 [accessed 2023 Jan 29]; 2010:5014–5017. https://pubmed.ncbi.nlm.nih.gov/21096685/. doi:10.1109/IEMBS.2010.5627210
  • [25] Kawanishi T, Romey MA, Zhu PC, Holody MZ, Shinkai S. A study of boronic acid based fluorescent glucose sensors. Journal of Fluorescence. 2004 [accessed 2023 Jan 29];14(5):499–512. https://link.springer.com/article/10.1023/B:JOFL.0000039338.16715.48. doi:10.1023/B: JOFL.0000039338.16715.48/METRICS
  • [26] Shibata H, Tsuda Y, Kawanishi T, Yamamoto N, Okitsu T, Takeuchi S. Implantable fluorescent hydrogel for continous blood glucose monitoring. TRANSDUCERS 2009 - 15th International Conference on Solid-State Sensors, Actuators and Microsystems. 2009 [accessed 2023 Jan 29]:1453–1456. doi:10.1109/SENSOR.2009.5285817
  • [27] Jiang D, Liu E, Chen X, Huang J. Study on a new fiber optic glucose biosensor. 2002 15th Optical Fiber Sensors Conference Technical Digest, OFS 2002. 2002 [accessed 2023 Jan 29]:451–454. doi:10.1109/OFS.2002.1000689
  • [28] Grant PS, Lvov Y, McShane MJ. Nanostructured fluorescent biosensor for glucose detection. 2003 Jun 26 [accessed 2023 Jan 29]:1710–1711. doi:10.1109/IEMBS.2002.1106614
  • [29] Nayak SR, Guice K, Lvov Y, McShane MJ. Nanoengineered fluorescent sensors containing enzyme assays. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. 2002 [accessed 2023 Jan 29]; 2:1679–1680. doi:10.1109/IEMBS.2002.1106599
  • [30] McShane MJ. Nanoengineering of Fluorescence-Based Chemical Sensors Using Electrostatic Self-Assembly: Thin Films and Micro/Nanoshells. Proceedings of IEEE Sensors. 2002 [accessed 2023 Jan 29];1(1):293–297. doi:10.1109/ICSENS.2002.1037102
  • [31] Chen S, Xiong Z, Ye H, Dong X. An optical glucose biosensor fabricated by encapsulating glucose oxidase in silica gel via sol-gel method. Proceedings - International Symposium on Advanced Packaging Materials. 2011 [accessed 2023 Jan 29]:31–34. doi:10.1109/ISAPM.2011.6105687
  • [32] Gao Z, Gong S, Kim CS, Henthorn DB. Optofluidic glucose sensor utilizing an epoxy-based, transparent dry film resist. Proceedings of IEEE Sensors. 2011 [accessed 2023 Jan 29]:284–287. doi:10.1109/ICSENS.2011.6127035
  • [33] Hu M, Lu H, Yuwen L, Wang L. Label-free detection of glucose based on quantum dots. INEC 2010 - 2010 3rd International Nanoelectronics Conference, Proceedings. 2010 [accessed 2023 Jan 29]:868–869. doi:10.1109/INEC.2010.5425164
  • [34] Suzuki M, Nomura A, Yamamoto M, Minakuchi K, Iribe Y. Novel integration method for chemical and enzyme sensor array by using microcontact printing. 2010 International Symposium on Micro-NanoMechatronics and Human Science: From Micro and Nano Scale Systems to Robotics and Mechatronics Systems, MHS 2010, Micro-Nano GCOE 2010, Bio-Manipulation 2010. 2010 [accessed 2023 Jan 29]:301–306. doi:10.1109/MHS.2010.5669540
  • [35] Zhang K, Tao G, Zeng X, Sheng W, Zhou J. Compact and portable chemiluminescence detector for glucose. Proceedings of International Conference on ASIC. 2013 [accessed 2023 Jan 29]. doi:10.1109/ASICON.2013.6811925
  • [36] Thomas N, Lähdesmäki I, Parviz B. Direct immobilization of enzymes on common photoresists. Proceedings of the IEEE International Conference on Micro Electromechanical Systems (MEMS). 2011 [accessed 2023 Jan 29]:233–236. doi:10.1109/MEMSYS.2011.5734404
  • [37] Starly B, Lan SF. Real time measurement of cellular Oxygen Uptake Rates (OUR) by a fiber optic sensor. 2009 IEEE International Conference on Virtual Environments, Human-Computer Interfaces, and Measurements Systems, VECIMS 2009 - Proceedings. 2009 [accessed 2023 Jan 29]:123–128. doi:10.1109/VECIMS.2009.5068878
  • [38] Yu JQ, Chin LK, Fu Y, Yu T, Luo KQ, Liu AQ. Pulsatile shear stress and high glucose concentrations induced reactive oxigen species production in endothelial cells. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’11. 2011 [accessed 2023 Jan 29]:767–770. doi:10.1109/TRANSDUCERS.2011.5969310
  • [39] Li Y, Chang J, Liu C, Xiong X, Gong Y, Li Z. Lily polysaccharide prevents alloxan-induced HIT-T15 cell damage by reducing ROS generation. Proceedings - 2012 International Conference on Biomedical Engineering and Biotechnology, iCBEB 2012. 2012 [accessed 2023 Jan 29]:364–367. doi:10.1109/ICBEB.2012.264
  • [40] Heo YJ, Shibata H, Okitsu T, Kawanishi T, Takeuchi S. Fluorescent hydrogel fibers for long-term in vivo glucose monitoring. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS’11. 2011 [accessed 2023 Jan 29]:2140–2143. doi:10.1109/TRANSDUCERS.2011.5969342
  • [41] Takahashi M, Heo YJ, Kawanishi T, Okitsu T, Takeuchi S. Portable continuous glucose monitoring systems with implantable fluorescent hydrogel microfibers. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2013 [accessed 2023 Jan 29]:1089–1092. doi:10.1109/MEMSYS.2013.6474439
  • [42] Tokuda T, Takahashi M, Uejima K, Masuda K, Kawamura T, Ohta Y, Motoyama M, Noda T, Sasagawa K, Okitsu T, et al. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel. Biomedical Optics Express. 2014 [accessed 2023 Jan 29];5(11):3859. /pmc/articles/PMC4242023/. doi:10.1364/BOE.5.003859
  • [43] Sawayama J, Nam E, Takeuchi S. Fabrication of biocompatible fluorescent hydrogel for implantable continuous glucose monitoring device. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2017 Feb 23 [accessed 2023 Jan 29]:221–222. doi:10.1109/MEMSYS.2017.7863380
  • [44] Sawayama J, Ozawa F, Takeuchi S. Continuous Glucose Monitoring of 3D Tissue Using a Perfusable Device. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2019 [accessed 2023 Jan 29];2019-January:586–587. doi:10.1109/MEMSYS.2019.8870795
  • [45] Morimoto Y, Sawayama J, Takeuchi S. In Situ Glugose Monitoring in 3D-Cultured Skeletal Muscle Tissues. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). 2019 [accessed 2023 Jan 29];2019-January:584–585. doi:10.1109/MEMSYS.2019.8870712
  • [46] Chinnayelka S, McShane MJ. RET nanobiosensors using affinity of an apo-enzyme toward its substrate. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. 2004 [accessed 2023 Jan 29];26 IV:2599–2602. doi:10.1109/IEMBS.2004.1403747
  • [47] Mack AC, Mao J, McShane MJ. Transduction of pH and glucose-sensitive hydrogel swelling through fluorescence resonance energy transfer. Proceedings of IEEE Sensors. 2005 [accessed 2023 Jan 29];2005:912–915. doi:10.1109/ICSENS.2005.1597848
  • [48] Chinnayelka S, McShane MJ. Competitive binding assays in microcapsules as “smart tattoo” biosensors. Proceedings of IEEE Sensors. 2005 [accessed 2023 Jan 29];2005:1304–1307. doi:10.1109/ICSENS.2005.1597946
  • [49] Li W, Jiang T, Pu Y, Jiao X, Tan W, Qin S. Glucose biosensor using fluorescence quenching with chitosan-modified graphene oxide. Micro & Nano Letters. 2019 [accessed 2023 Jan 29];14(3):344–348. https://onlinelibrary.wiley.com/doi/full/10.1049/mnl.2018.5269. doi:10.1049/MNL.2018.5269
  • [50] Ricciardi S. Polymeric Microcavities for Dye Lasers and Wavefront Shapers. 2008 [accessed 2023 Jan 29].
  • [51] Zumdahl SS, Zumdahl SA. Chemistry : an atoms first approach. [accessed 2023 Jan 29]:90.
  • [52] About Us | AAT Bioquest. [accessed 2023 Jan 29]. https://www.aatbio.com/aboutus.html
  • [53] WebPlotDigitizer - Copyright 2010-2022 Ankit Rohatgi. [accessed 2023 Jan 29]. https://apps.automeris.io/wpd/
  • [54] Procedure for Antibody Labeling with FITC. 2013 [accessed 2023 Jan 29]. www.thermoscientific.com/pierce.
There are 54 citations in total.

Details

Primary Language English
Subjects Industrial Biotechnology, Biomedical Engineering
Journal Section Articles
Authors

Rajaa Naeem 0000-0002-6871-155X

Doğu Çağdaş Atilla 0000-0002-4249-6951

Early Pub Date November 29, 2024
Publication Date November 30, 2024
Acceptance Date February 21, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Naeem, R., & Atilla, D. Ç. (2024). Fluorescence Glucose Biosensors Assays Analysis and Novel Classifications: Frequency Range Specification for Medical Applications. Kocaeli Journal of Science and Engineering, 7(2), 96-108. https://doi.org/10.34088/kojose.1266492