Research Article
BibTex RIS Cite

Cytotoxic Effects of Disinfectants in Tap Water on Hordeum vulgare L. and Eisenia fetida Savigny

Year 2024, Volume: 7 Issue: 2, 158 - 165, 30.11.2024
https://doi.org/10.34088/kojose.1329925

Abstract

The tap water must be disinfected to remove the disease-causing microorganisms. Most disinfection methods used in water treatment are decoction, chlorination, disinfection with ozone, disinfection with ultraviolet light, with peracetic acid. The effects of some disinfectants used in tap water treatment were investigated in the seeds of Hordeum vulgare and the worm Eisenia fetida. The concentration that halves the root lenghts for the seeds and the concentration that is lethal for fifty percent of worms were calculated using these disinfectants. Within three days of application, the EC50 values for H. vulgare were determined as 20 µl/ml, 240 mg/ml and 80 µl/ml for NaOCl, Ca(ClO)2 and PAA respectively. The lethal dose that kills the fifty percent of red worms was determined as 30µl/ml, 8 mg/ml and 25µl/ml for NaOCl, Ca(ClO)2 and PAA respectively. Cytotoxic effects were examined using the mitotic index and chromosomal abnormality test in H. vulgare. We observed that different concentrations of NaOCl, Ca(ClO)2 and PAA decreased the value of mitotic index. Also the abnormal cell frequency in mitotic divisions on the root meristematic cells of H.vulgare were increased. The alkaline single-cell gel electrophoresis method was used to determine the genotoxicity of NaOCl and Ca(ClO)2 applications on E.fetida. Compared with the control group, it was determined that the degree of DNA damage after Ca(ClO)2 application was higher than NaOCl. Because these chemicals can create cytotoxic effects, they should also be used cautiously at low concentrations.

Supporting Institution

Kocaeli Üniversitesi

Project Number

KOU-BAP-2018-131

Thanks

The authors would like to thank Kocaeli University that this study was supported by Kocaeli University Scientific Research Projects Unit under Grant 2018-131.

References

  • [1] Hofer M., Shuker L., 2002. ILSI Europe Report Series Assessing Health. Risks from environmental exposure to chemicals: the example of drinking water. Europe Environment, 38(1), pp. 3-12.
  • [2] Monarca S., Feretti D., Zani C., Rizzoni M., Casarella S., Gustavino B., 2005. Genotoxicity of drinking water disinfectants in plant bioassays, Environmental Molecular Mutagenesis, 46(2), pp. 96-103.
  • [3] Temesgen, G., Lelago, A., Assefa, E. et al. Evaluation of chlorination efficiency on improving microbiological and physicochemical parameters in water samples available in Sheble Berenta district Amhara region, Ethiopia. Appl Water Sci, 13, 120 (2023). https://doi.org/10.1007/s13201-023-01922-5.
  • [4] Demirbaş K.D., 2011. Investigation of Factors Affecting the Formation of Disinfection By-Products in Drinking Waters. Master Thesis. Pamukkale Üniversitesi. Fen Bilimleri Enstitüsü. Denizli. 287636.
  • [5] Oğur R., Tekbaş Ö.F., Hasde M., 2004. Chlorination of Drinking and Use Water. Gülhane Askeri Tıp Akademisi.
  • [6] Harris Daniel C., 2010. Quantitative Chemical Analysis, W. H. Freeman and Company 41 Madison Avenue New York, NY 10010.
  • [7] Kalchayanand N, Arthur TM, Wang R, Brown T, Wheeler TL. Evaluation of Peracetic Acid Treatment on Beef Trimmings and Subprimals Against Salmonella and E. Coli O157:H7 Within Regulatory Retained Water Limitations. J Food Prot. 2024 Mar;87(3):100217. doi: 10.1016/j.jfp.2024.100217. Epub 2024 Jan 4. PMID: 38184149.
  • [8] Vural T., Çelen E., 2005. Principles of Use of Hydrogen Peroxide, Peracetic Acid and Derivative Instrument Disinfectants as Liquid Disinfectants. Comparison of Combinations. 4. Ulusal Sterilizasyon Dezenfeksiyon Kongresi. pp. 203.
  • [9] Levitt J., 1980. Responses of plants to environmental stresses. Academic press. New York. U.S.A. pp. 3-18.
  • [10] Sarkar A.K., Saha R., Halder R., 2022. Chromosomes damage by sewage water studies in the Allium cepa L. and Zea mays L. Caryologia, 75(1), pp. 55-63. DOI: 10.36253/caryologia-1067.
  • [11] Bennett M.D., Finch R.A., 1972. The Mitotic Cycle Time of Root Meristem Cells of Hordeum vulgare. Caryologia, 25(4), pp. 439-444. DOI: 10.1080/00087114.1972.10796497
  • [12] Dikilitaş S., Aksoy Ö., 2018. The genotoxic effects of some food colorants on Zea mays L. var. saccharata Sturt. Caryologia, 71(4), pp. 438-445.
  • [13] Aydin D., Yuksel B., 2022. Lessening the toxic effect of the methylisothiazolinone via vermicompost tea on Pisum sativum. Environmental Science and Pollution Research, 29, pp. 50443-50453.
  • [14] Gupta K, Mishra K, Srivastava S, Kumar A. 2018. Cytotoxic Assessment of Chromium and Arsenic Using Chromosomal Behavior of Root Meristem in Allium cepa L. Bulletin of Environmental Contamination and Toxicology, 100(6), pp. 803-808.
  • [15] Sudhakar R., Ninge Gowda K.N., Venu G., 2001. Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologia, 66(3), pp. 235-239.
  • [16] Saxena P.N., Chauhan L.K.S., Gupta S.K., 2005. Cytogenetic effects of commercial formulation of cypermethrin in root meristem cells of Allium sativum: Spectroscopic basis of chromosome damage. Toxicology, 216(2-3), pp. 244-252.
  • [17] Hidalgo A., Gonzalez-Reyes J.A., Navas P., Garcia-Herdugo G., 1989. Abnormal mitosis and growth inhibition in Allium cepa roots induced by propham and chlorpropham. Cytobios, 57(228), pp. 7-14.
  • [18] Livanos P., Galatis B., Quader H., Apostolakos P.. 2017. ROS homeostasis as a prerequisite for the accomplishment of plant cytokinesis. Protoplasma, 254(1), pp. 569-586.
  • [19] Vardar F., Ünal M., 2009. Effects of Tralkoxydim and Prochlorase on Peroxidase Activity in Barley (Hordeum vulgare L. Cv Efes) Roots. Marmara Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21, 29-35.
  • [20] Jaskowiak J., Tkaczyk O., Slota M., Kwasniewska J., Szarejko I., 2018. Analysis of aluminum toxicity in Hordeum vulgare roots with an emphasis on DNA integrity and cell cycle. Plos One, 13(2), e0193156. https://doi.org/10.1371/journal.pone.0193156.
  • [21] Huri Gölge B., Vardar F., 2020. Temporal Analysis of Al-Induced Programmed Cell Death in Barley (Hordeum vulgare L.) Roots. Caryologia, 73(1), pp. 45-55. DOI: 10.13128/caryologia-185.
  • [22] Kumar G., Srivastava N., 2011. Genotoxic Effects of Two Commonly Used Food Additives of Boric Acid and Sunset Yellow in Root Meristems of Trigonella Foenum-Graecum. Journal of Environmental Health Science and Engineering, 8(4), pp. 361–366.
  • [23] Luo L.Z., Werner K.M., Gollin S.M., Saunders W.S., 2004. Cigarette smoke induces anaphase bridges and genomic imbalances in normal cells. Mutation Research - Fundam Mol Mech Mutagen. 554(1–2), pp. 375–38.
  • [24] Manrique R.R., Marlyn Catalina O.V., Quesada D.R., 2011. Pruebas de ecotoxicidad para establecer el potencial genotóxico del hipoclorito de sodio, mediante bulbos de cebolla Allium cepa L. y semillas de lechuga Lactuca sativa L como bioindicadores. Iteckne, 8(1), pp. 7-14.
  • [25] Mercado S., Contreras N., 2017. Asymbiotic seed germination and in vitro propagation of Cattleya trianae Linden & Reichb.f. (Orchidaceae). Acta Agronomica, 66(4), 544-548.
  • [26] Mercado S.A., 2012. Germinación asimbiótica de semillas y desarrollo in vitro de plántulas de cattleya mendelii dombrain (Orchidaceae). Acta Agronomica, 61(1), pp. 69-78.
  • [27] Salazar S., Amaya A., Barrientos F., 2013. Evaluación de diferentes medios de cultivo in vitro en el desarrollo de híbridos de Phalaenopsis (Orchidaceae). Rev Colomb Biotecnol. 15(2).
  • [28] Juárez R.P., Lucas O.N., 2001. Complicaciones ocasionadas por la infiltración accidental con una solución de hipoclorito de sodio. Revista ADM. 58(5), pp. 173-176.
  • [29] Jiang X., Chang Y., Zhang T., Qiao Y., Klobučar G., Li M., 2020. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida), Environmental Pollution, 259,113896.
  • [30] Rico A., Sabater C., Castillo M.A., 2016. Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida. Ecotoxicology Environment Safety, 127, pp. 222-229.
  • [31] Wang J., Coffin S., Sun C., Schlenk D., Gan J., 2019. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environmental Pollution, 249: pp. 776-784.
  • [32] Dinçer Y, Kankaya S. 2010. Comet Assay for Detection of DNA Damage, Biyokimya, 30(4), pp. 1365–1373.

Cytotoxic Effects of Disinfectants in Tap Water on Hordeum vulgare L. and Eisenia fetida Savigny

Year 2024, Volume: 7 Issue: 2, 158 - 165, 30.11.2024
https://doi.org/10.34088/kojose.1329925

Abstract

The tap water must be disinfected to remove the disease-causing microorganisms. Most disinfection methods used in water treatment are decoction, chlorination, disinfection with ozone, disinfection with ultraviolet light, with peracetic acid. The effects of some disinfectants used in tap water treatment were investigated in the seeds of Hordeum vulgare and the worm Eisenia fetida. The concentration that halves the root lenghts for the seeds and the concentration that is lethal for fifty percent of worms were calculated using these disinfectants. Within three days of application, the EC50 values for H. vulgare were determined as 20 µl/ml, 240 mg/ml and 80 µl/ml for NaOCl, Ca(ClO)2 and PAA respectively. The lethal dose that kills the fifty percent of red worms was determined as 30µl/ml, 8 mg/ml and 25µl/ml for NaOCl, Ca(ClO)2 and PAA respectively. Cytotoxic effects were examined using the mitotic index and chromosomal abnormality test in H. vulgare. We observed that different concentrations of NaOCl, Ca(ClO)2 and PAA decreased the value of mitotic index. Also the abnormal cell frequency in mitotic divisions on the root meristematic cells of H.vulgare were increased. The alkaline single-cell gel electrophoresis method was used to determine the genotoxicity of NaOCl and Ca(ClO)2 applications on E.fetida. Compared with the control group, it was determined that the degree of DNA damage after Ca(ClO)2 application was higher than NaOCl. Because these chemicals can create cytotoxic effects, they should also be used cautiously at low concentrations.

Project Number

KOU-BAP-2018-131

References

  • [1] Hofer M., Shuker L., 2002. ILSI Europe Report Series Assessing Health. Risks from environmental exposure to chemicals: the example of drinking water. Europe Environment, 38(1), pp. 3-12.
  • [2] Monarca S., Feretti D., Zani C., Rizzoni M., Casarella S., Gustavino B., 2005. Genotoxicity of drinking water disinfectants in plant bioassays, Environmental Molecular Mutagenesis, 46(2), pp. 96-103.
  • [3] Temesgen, G., Lelago, A., Assefa, E. et al. Evaluation of chlorination efficiency on improving microbiological and physicochemical parameters in water samples available in Sheble Berenta district Amhara region, Ethiopia. Appl Water Sci, 13, 120 (2023). https://doi.org/10.1007/s13201-023-01922-5.
  • [4] Demirbaş K.D., 2011. Investigation of Factors Affecting the Formation of Disinfection By-Products in Drinking Waters. Master Thesis. Pamukkale Üniversitesi. Fen Bilimleri Enstitüsü. Denizli. 287636.
  • [5] Oğur R., Tekbaş Ö.F., Hasde M., 2004. Chlorination of Drinking and Use Water. Gülhane Askeri Tıp Akademisi.
  • [6] Harris Daniel C., 2010. Quantitative Chemical Analysis, W. H. Freeman and Company 41 Madison Avenue New York, NY 10010.
  • [7] Kalchayanand N, Arthur TM, Wang R, Brown T, Wheeler TL. Evaluation of Peracetic Acid Treatment on Beef Trimmings and Subprimals Against Salmonella and E. Coli O157:H7 Within Regulatory Retained Water Limitations. J Food Prot. 2024 Mar;87(3):100217. doi: 10.1016/j.jfp.2024.100217. Epub 2024 Jan 4. PMID: 38184149.
  • [8] Vural T., Çelen E., 2005. Principles of Use of Hydrogen Peroxide, Peracetic Acid and Derivative Instrument Disinfectants as Liquid Disinfectants. Comparison of Combinations. 4. Ulusal Sterilizasyon Dezenfeksiyon Kongresi. pp. 203.
  • [9] Levitt J., 1980. Responses of plants to environmental stresses. Academic press. New York. U.S.A. pp. 3-18.
  • [10] Sarkar A.K., Saha R., Halder R., 2022. Chromosomes damage by sewage water studies in the Allium cepa L. and Zea mays L. Caryologia, 75(1), pp. 55-63. DOI: 10.36253/caryologia-1067.
  • [11] Bennett M.D., Finch R.A., 1972. The Mitotic Cycle Time of Root Meristem Cells of Hordeum vulgare. Caryologia, 25(4), pp. 439-444. DOI: 10.1080/00087114.1972.10796497
  • [12] Dikilitaş S., Aksoy Ö., 2018. The genotoxic effects of some food colorants on Zea mays L. var. saccharata Sturt. Caryologia, 71(4), pp. 438-445.
  • [13] Aydin D., Yuksel B., 2022. Lessening the toxic effect of the methylisothiazolinone via vermicompost tea on Pisum sativum. Environmental Science and Pollution Research, 29, pp. 50443-50453.
  • [14] Gupta K, Mishra K, Srivastava S, Kumar A. 2018. Cytotoxic Assessment of Chromium and Arsenic Using Chromosomal Behavior of Root Meristem in Allium cepa L. Bulletin of Environmental Contamination and Toxicology, 100(6), pp. 803-808.
  • [15] Sudhakar R., Ninge Gowda K.N., Venu G., 2001. Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologia, 66(3), pp. 235-239.
  • [16] Saxena P.N., Chauhan L.K.S., Gupta S.K., 2005. Cytogenetic effects of commercial formulation of cypermethrin in root meristem cells of Allium sativum: Spectroscopic basis of chromosome damage. Toxicology, 216(2-3), pp. 244-252.
  • [17] Hidalgo A., Gonzalez-Reyes J.A., Navas P., Garcia-Herdugo G., 1989. Abnormal mitosis and growth inhibition in Allium cepa roots induced by propham and chlorpropham. Cytobios, 57(228), pp. 7-14.
  • [18] Livanos P., Galatis B., Quader H., Apostolakos P.. 2017. ROS homeostasis as a prerequisite for the accomplishment of plant cytokinesis. Protoplasma, 254(1), pp. 569-586.
  • [19] Vardar F., Ünal M., 2009. Effects of Tralkoxydim and Prochlorase on Peroxidase Activity in Barley (Hordeum vulgare L. Cv Efes) Roots. Marmara Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21, 29-35.
  • [20] Jaskowiak J., Tkaczyk O., Slota M., Kwasniewska J., Szarejko I., 2018. Analysis of aluminum toxicity in Hordeum vulgare roots with an emphasis on DNA integrity and cell cycle. Plos One, 13(2), e0193156. https://doi.org/10.1371/journal.pone.0193156.
  • [21] Huri Gölge B., Vardar F., 2020. Temporal Analysis of Al-Induced Programmed Cell Death in Barley (Hordeum vulgare L.) Roots. Caryologia, 73(1), pp. 45-55. DOI: 10.13128/caryologia-185.
  • [22] Kumar G., Srivastava N., 2011. Genotoxic Effects of Two Commonly Used Food Additives of Boric Acid and Sunset Yellow in Root Meristems of Trigonella Foenum-Graecum. Journal of Environmental Health Science and Engineering, 8(4), pp. 361–366.
  • [23] Luo L.Z., Werner K.M., Gollin S.M., Saunders W.S., 2004. Cigarette smoke induces anaphase bridges and genomic imbalances in normal cells. Mutation Research - Fundam Mol Mech Mutagen. 554(1–2), pp. 375–38.
  • [24] Manrique R.R., Marlyn Catalina O.V., Quesada D.R., 2011. Pruebas de ecotoxicidad para establecer el potencial genotóxico del hipoclorito de sodio, mediante bulbos de cebolla Allium cepa L. y semillas de lechuga Lactuca sativa L como bioindicadores. Iteckne, 8(1), pp. 7-14.
  • [25] Mercado S., Contreras N., 2017. Asymbiotic seed germination and in vitro propagation of Cattleya trianae Linden & Reichb.f. (Orchidaceae). Acta Agronomica, 66(4), 544-548.
  • [26] Mercado S.A., 2012. Germinación asimbiótica de semillas y desarrollo in vitro de plántulas de cattleya mendelii dombrain (Orchidaceae). Acta Agronomica, 61(1), pp. 69-78.
  • [27] Salazar S., Amaya A., Barrientos F., 2013. Evaluación de diferentes medios de cultivo in vitro en el desarrollo de híbridos de Phalaenopsis (Orchidaceae). Rev Colomb Biotecnol. 15(2).
  • [28] Juárez R.P., Lucas O.N., 2001. Complicaciones ocasionadas por la infiltración accidental con una solución de hipoclorito de sodio. Revista ADM. 58(5), pp. 173-176.
  • [29] Jiang X., Chang Y., Zhang T., Qiao Y., Klobučar G., Li M., 2020. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida), Environmental Pollution, 259,113896.
  • [30] Rico A., Sabater C., Castillo M.A., 2016. Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida. Ecotoxicology Environment Safety, 127, pp. 222-229.
  • [31] Wang J., Coffin S., Sun C., Schlenk D., Gan J., 2019. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environmental Pollution, 249: pp. 776-784.
  • [32] Dinçer Y, Kankaya S. 2010. Comet Assay for Detection of DNA Damage, Biyokimya, 30(4), pp. 1365–1373.
There are 32 citations in total.

Details

Primary Language English
Subjects Plant Developmental and Reproductive Biology
Journal Section Articles
Authors

Sibel Sütlüoğlu 0000-0002-0381-1613

Özlem Aksoy 0000-0003-0969-5171

Project Number KOU-BAP-2018-131
Early Pub Date November 30, 2024
Publication Date November 30, 2024
Acceptance Date May 15, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Sütlüoğlu, S., & Aksoy, Ö. (2024). Cytotoxic Effects of Disinfectants in Tap Water on Hordeum vulgare L. and Eisenia fetida Savigny. Kocaeli Journal of Science and Engineering, 7(2), 158-165. https://doi.org/10.34088/kojose.1329925