Research Article
BibTex RIS Cite

Polietilenimin ile Modifiye Edilmiş Silika Kserojellerin Kullanımı ile CO2 Tutumu

Year 2021, , 1109 - 1118, 04.12.2021
https://doi.org/10.36306/konjes.1016120

Abstract

CO2 emisyonundan kaynaklı çevre kirliliğinin azaltılmasında katı adsorbentlerin kullanıldığı CO2 tutma teknolojileri umut vadeden bir yaklaşımdır. Bu çalışmada ucuz başlangıç malzemesinden elde edilen silika kserojel, polietilenimin (PEI) modifikasyonunun ardından CO2 adsorbent olarak kullanılmıştır. Fourier dönüşümlü kızılötesi spektrometresi analizleri PEI ile modifiye edilmiş silika kserojellerin başarılı bir şekilde hazırlandığını göstermiştir. N2 adsorpsiyon-desorpsiyon izotermleri PEI yüklemesinin silika kserojelin gözenek boyutunun aksine spesifik yüzey alanı ve gözenek hacmini azalttığını açığa çıkarmıştır. PEI yüklemesi sırasında silika kserojelin partikül boyutunun arttığı gözlenmiştir. Negatif yüzey yüküne sahip silika kserojele PEI yüklenmesiyle pozitif yüzey yüklü PEI ile modifiye edilmiş silika kserojeller elde edilmiştir. CO2 adsorpsiyon ölçümleri artan PEI yüklemesiyle (ağırlıkça %30 - 70) silika kserojelin CO2 adsorpsiyon kapasitesinin (0.98 mmol g-1) önemli ölçüde arttığını göstermiştir. Optimum PEI yüklemesinde (ağırlıkça %50), silika kserojelin CO2 adsorpsiyon kapasitesi 1.94 mmol g-1 olarak belirlenmiştir. 5 kez yapılan adsorpsiyon-desorpsiyon döngüsünün ardından PEI ile modifiye edilmiş silika kserojeller hala yüksek CO2 adsorpsiyon kapasitesi göstermiştir. Bu ümit vadeden sonuçlar PEI ile modifiye edilmiş silika kserojellerin iyi bir CO2 adsorpsiyon performansı ve kararlılığı ile adsorbent olarak kullanılabileceğini göstermiştir.

References

  • Balsamo, M., Rodríguez-Reinoso, F., Montagnaro, F., Lancia, A., Erto, A., 2013, "Highlighting the Role of Activated Carbon Particle Size on CO2 Capture from Model Flue Gas", Industrial & Engineering Chemistry Research, 52, 12183-12191.
  • Chen, C., Son, W.-J., You, K.-S., Ahn, J.-W., Ahn, W.-S., 2010, "Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity", Chemical Engineering Journal, 161, 46-52.
  • Chen, C., Zhang, S., Row, K. H., Ahn, W.-S., 2017, "Amine–silica composites for CO2 capture: A short review", Journal of Energy Chemistry, 26, 868-880.
  • Cogswell, C. F., Jiang, H., Ramberger, J., Accetta, D., Willey, R. J., Choi, S., 2015, "Effect of Pore Structure on CO2 Adsorption Characteristics of Aminopolymer Impregnated MCM-36", Langmuir, 31, 4534-4541.
  • Dos Santos, L. M., Bernard, F. L., Polesso, B. B., Pinto, I. S., Frankenberg, C. C., Corvo, M. C., ... & Einloft, S., 2020, "Designing silica xerogels containing RTIL for CO2 capture and CO2/CH4 separation: Influence of ILs anion, cation and cation side alkyl chain length and ramification", Journal of Environmental Management, 268, 110340.
  • Dutcher, B., Fan, M., Russell, A. G., 2015, "Amine-based CO2 capture technology development from the beginning of 2013-a review", ACS Applied Materials & Interfaces, 7, 2137-48.
  • Gargiulo, N., Peluso, A., Aprea, P., Pepe, F., Caputo, D., 2014, "CO2 Adsorption on Polyethylenimine-Functionalized SBA-15 Mesoporous Silica: Isotherms and Modeling", Journal of Chemical & Engineering Data, 59, 896-902.
  • Goeppert, A., Czaun, M., May, R. B., Prakash, G. K. S., Olah, G. A., Narayanan, S. R., 2011, "Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent", Journal of the American Chemical Society, 133, 20164-20167.
  • Guzel Kaya, G., Yilmaz, E., Deveci, H., 2019, "A novel silica xerogel synthesized from volcanic tuff as an adsorbent for high‐efficient removal of methylene blue: parameter optimization using Taguchi experimental design", Journal of Chemical Technology & Biotechnology, 94, 2729-2737.
  • Guzel Kaya, G., Yilmaz, E., Deveci, H., 2020, "Synthesis of sustainable silica xerogels/aerogels using inexpensive steel slag and bean pod ash: A comparison study", Advanced Powder Technology, 31, 926-936.
  • Heydari-Gorji, A., Belmabkhout, Y., Sayari, A., 2011, "Polyethylenimine-Impregnated Mesoporous Silica: Effect of Amine Loading and Surface Alkyl Chains on CO2 Adsorption", Langmuir, 27, 12411-12416.
  • Kim, M.-S., Kwak, D.-H., 2017, "Effect of Zeta Potential on Collision-Attachment Coefficient and Removal Efficiency for Dissolved Carbon Dioxide Flotation", Environmental Engineering Science, 34, 272-280.
  • Kishor, R., Ghoshal, A. K., 2017, "Amine-Modified Mesoporous Silica for CO2 Adsorption: The Role of Structural Parameters", Industrial & Engineering Chemistry Research, 56, 6078-6087.
  • Kong, Y., Jiang, G., Wu, Y., Cui, S., Shen, X., 2016, "Amine hybrid aerogel for high-efficiency CO2 capture: Effect of amine loading and CO2 concentration", Chemical Engineering Journal, 306, 362-368.
  • Li, B., Duan, Y., Luebke, D., Morreale, B., 2013, "Advances in CO2 capture technology: A patent review", Applied Energy, 102, 1439-1447.
  • Li, K., Jiang, J., Tian, S., Yan, F., Chen, X., 2015, "Polyethyleneimine–nano silica composites: a low-cost and promising adsorbent for CO2 capture", Journal of Materials Chemistry A, 3, 2166-2175.
  • Linneen, N. N., Pfeffer, R., Lin, Y. S., 2013, "Amine Distribution and Carbon Dioxide Sorption Performance of Amine Coated Silica Aerogel Sorbents: Effect of Synthesis Methods", Industrial & Engineering Chemistry Research, 52, 14671-14679.
  • Liu, X., Gao, F., Xu, J., Zhou, L., Liu, H., Hu, J., 2016, "Zeolite@Mesoporous silica-supported-amine hybrids for the capture of CO2 in the presence of water", Microporous and Mesoporous Materials, 222, 113-119.
  • Lou, F., Zhang, A., Zhang, G., Ren, L., Guo, X., Song, C., 2020, "Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure", Applied Energy, 264, 114637.
  • Minju, N., Abhilash, P., Nair, B. N., Mohamed, A. P., Ananthakumar, S., 2015, "Amine impregnated porous silica gel sorbents synthesized from water–glass precursors for CO2 capturing", Chemical Engineering Journal, 269, 335-342.
  • Mondal, M. K., Balsora, H. K., Varshney, P., 2012, "Progress and trends in CO2 capture/separation technologies: A review", Energy, 46, 431-441.
  • Niu, M., Yang, H., Zhang, X., Wang, Y., Tang, A., 2016, "Amine-Impregnated Mesoporous Silica Nanotube as an Emerging Nanocomposite for CO2 Capture", ACS Applied Materials & Interfaces, 8, 17312-17320.
  • Olivares-Marín, M., Maroto-Valer, M. M., 2012, "Development of adsorbents for CO2 capture from waste materials: a review", Greenhouse Gases: Science and Technology, 2, 20-35.
  • Panek, R., Wdowin, M., Franus, W., Czarna, D., Stevens, L. A., Deng, H., ... & Snape, C. E., 2017, "Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture", Journal of CO2 Utilization, 22, 81-90.
  • S. Aquino, A., O. Vieira, M., Ferreira, A. S. D., Cabrita, E. J., Einloft, S., O. de Souza, M., 2019, "Hybrid Ionic Liquid–Silica Xerogels Applied in CO2 Capture", Applied Sciences, 9, 2614.
  • Sang Sefidi, V., Luis, P., 2019, "Advanced Amino Acid-Based Technologies for CO2 Capture: A Review", Industrial & Engineering Chemistry Research, 58, 20181-20194.
  • Santiago, R., Lemus, J., Hospital-Benito, D., Moya, C., Bedia, J., Alonso-Morales, N.,... & Palomar, J., 2019, "CO2 Capture by Supported Ionic Liquid Phase: Highlighting the Role of the Particle Size", ACS Sustainable Chemistry & Engineering, 7, 13089-13097.
  • Sanz-Pérez, E. S., Dantas, T. C. M., Arencibia, A., Calleja, G., Guedes, A. P. M. A., Araujo, A. S., & Sanz, R., 2017, "Reuse and recycling of amine-functionalized silica materials for CO2 adsorption", Chemical Engineering Journal, 308, 1021-1033.
  • Sher, F., Iqbal, S. Z., Albazzaz, S., Ali, U., Mortari, D. A., Rashid, T., 2020, "Development of biomass derived highly porous fast adsorbents for post-combustion CO2 capture", Fuel, 282, 118506.
  • Son, W.-J., Choi, J.-S., Ahn, W.-S., 2008, "Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials", Microporous and Mesoporous Materials, 113, 31-40.
  • Taheri, F. S., Ghaemi, A., Maleki, A., Shahhosseini, S., 2019, "High CO2 Adsorption on Amine-Functionalized Improved Mesoporous Silica Nanotube as an Eco-Friendly Nanocomposite", Energy & Fuels, 33, 5384-5397.
  • Thi Le, M. U., Lee, S.-Y., Park, S.-J., 2014, "Preparation and characterization of PEI-loaded MCM-41 for CO2 capture", International Journal of Hydrogen Energy, 39, 12340-12346.
  • Wang, X., Chen, L., Guo, Q., 2015, "Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture", Chemical Engineering Journal, 260, 573-581.
  • Witoon, T., Tatan, N., Rattanavichian, P., Chareonpanich, M., 2011, "Preparation of silica xerogel with high silanol content from sodium silicate and its application as CO2 adsorbent", Ceramics International, 37, 2297-2303.
  • Xu, X., Song, C., Andresen, J. M., Miller, B. G., Scaroni, A. W., 2002, "Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture", Energy & Fuels, 16, 1463-1469.
  • Zeleňák, V., Badaničová, M., Halamová, D., Čejka, J., Zukal, A., Murafa, N., & Goerigk, G., 2008, "Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture", Chemical Engineering Journal, 144, 336-342.
  • Zhang, S., Chen, C., Ahn, W.-S., 2019, "Recent progress on CO2 capture using amine-functionalized silica", Current Opinion in Green and Sustainable Chemistry, 16, 26-32.
  • Zhao, P., Zhang, G., Xu, Y., Lv, Y., 2019, "Amine functionalized hierarchical bimodal mesoporous silicas as a promising nanocomposite for highly efficient CO2 capture", Journal of CO2 Utilization, 34, 543-557.

CO2 CAPTURE USING POLYETHYLENEIMINE FUNCTIONALIZED SILICA XEROGELS

Year 2021, , 1109 - 1118, 04.12.2021
https://doi.org/10.36306/konjes.1016120

Abstract

CO2 capture technologies using solid adsorbents are promising approach to reduce environmental pollution resulting from CO2 emission. In this study, silica xerogel derived from cheap precursor was used as a CO2 adsorbent after polyethyleneimine (PEI) functionalization. Fourier transform infrared (FTIR) analyses indicated that PEI functionalized silica xerogels were successfully prepared. N2 adsorption-desorption isotherms revealed that PEI loading decreased specific surface area and pore volume of the neat silica xerogel in contrast to pore size. An increase in particle size of the neat silica xerogel was observed in the case of PEI loading. Positively surface charged silica xerogels were obtained with PEI loading of the neat silica xerogel which had negatively charged surface. CO2 adsorption measurements showed that CO2 adsorption capacity of the neat silica xerogel (0.98 mmol g-1) significantly increased with increasing PEI loading (30 – 70 wt%). At optimum PEI loading (50 wt%), CO2 adsorption capacity of silica xerogel was determined as 1.94 mmol g-1. After 5 adsorption-desorption cycles, PEI functionalized silica xerogels still exhibited high CO2 adsorption capacity. The hopeful results showed that PEI functionalized silica xerogels can be used as an adsorbent with a good CO2 adsorption performance and stability.

References

  • Balsamo, M., Rodríguez-Reinoso, F., Montagnaro, F., Lancia, A., Erto, A., 2013, "Highlighting the Role of Activated Carbon Particle Size on CO2 Capture from Model Flue Gas", Industrial & Engineering Chemistry Research, 52, 12183-12191.
  • Chen, C., Son, W.-J., You, K.-S., Ahn, J.-W., Ahn, W.-S., 2010, "Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity", Chemical Engineering Journal, 161, 46-52.
  • Chen, C., Zhang, S., Row, K. H., Ahn, W.-S., 2017, "Amine–silica composites for CO2 capture: A short review", Journal of Energy Chemistry, 26, 868-880.
  • Cogswell, C. F., Jiang, H., Ramberger, J., Accetta, D., Willey, R. J., Choi, S., 2015, "Effect of Pore Structure on CO2 Adsorption Characteristics of Aminopolymer Impregnated MCM-36", Langmuir, 31, 4534-4541.
  • Dos Santos, L. M., Bernard, F. L., Polesso, B. B., Pinto, I. S., Frankenberg, C. C., Corvo, M. C., ... & Einloft, S., 2020, "Designing silica xerogels containing RTIL for CO2 capture and CO2/CH4 separation: Influence of ILs anion, cation and cation side alkyl chain length and ramification", Journal of Environmental Management, 268, 110340.
  • Dutcher, B., Fan, M., Russell, A. G., 2015, "Amine-based CO2 capture technology development from the beginning of 2013-a review", ACS Applied Materials & Interfaces, 7, 2137-48.
  • Gargiulo, N., Peluso, A., Aprea, P., Pepe, F., Caputo, D., 2014, "CO2 Adsorption on Polyethylenimine-Functionalized SBA-15 Mesoporous Silica: Isotherms and Modeling", Journal of Chemical & Engineering Data, 59, 896-902.
  • Goeppert, A., Czaun, M., May, R. B., Prakash, G. K. S., Olah, G. A., Narayanan, S. R., 2011, "Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent", Journal of the American Chemical Society, 133, 20164-20167.
  • Guzel Kaya, G., Yilmaz, E., Deveci, H., 2019, "A novel silica xerogel synthesized from volcanic tuff as an adsorbent for high‐efficient removal of methylene blue: parameter optimization using Taguchi experimental design", Journal of Chemical Technology & Biotechnology, 94, 2729-2737.
  • Guzel Kaya, G., Yilmaz, E., Deveci, H., 2020, "Synthesis of sustainable silica xerogels/aerogels using inexpensive steel slag and bean pod ash: A comparison study", Advanced Powder Technology, 31, 926-936.
  • Heydari-Gorji, A., Belmabkhout, Y., Sayari, A., 2011, "Polyethylenimine-Impregnated Mesoporous Silica: Effect of Amine Loading and Surface Alkyl Chains on CO2 Adsorption", Langmuir, 27, 12411-12416.
  • Kim, M.-S., Kwak, D.-H., 2017, "Effect of Zeta Potential on Collision-Attachment Coefficient and Removal Efficiency for Dissolved Carbon Dioxide Flotation", Environmental Engineering Science, 34, 272-280.
  • Kishor, R., Ghoshal, A. K., 2017, "Amine-Modified Mesoporous Silica for CO2 Adsorption: The Role of Structural Parameters", Industrial & Engineering Chemistry Research, 56, 6078-6087.
  • Kong, Y., Jiang, G., Wu, Y., Cui, S., Shen, X., 2016, "Amine hybrid aerogel for high-efficiency CO2 capture: Effect of amine loading and CO2 concentration", Chemical Engineering Journal, 306, 362-368.
  • Li, B., Duan, Y., Luebke, D., Morreale, B., 2013, "Advances in CO2 capture technology: A patent review", Applied Energy, 102, 1439-1447.
  • Li, K., Jiang, J., Tian, S., Yan, F., Chen, X., 2015, "Polyethyleneimine–nano silica composites: a low-cost and promising adsorbent for CO2 capture", Journal of Materials Chemistry A, 3, 2166-2175.
  • Linneen, N. N., Pfeffer, R., Lin, Y. S., 2013, "Amine Distribution and Carbon Dioxide Sorption Performance of Amine Coated Silica Aerogel Sorbents: Effect of Synthesis Methods", Industrial & Engineering Chemistry Research, 52, 14671-14679.
  • Liu, X., Gao, F., Xu, J., Zhou, L., Liu, H., Hu, J., 2016, "Zeolite@Mesoporous silica-supported-amine hybrids for the capture of CO2 in the presence of water", Microporous and Mesoporous Materials, 222, 113-119.
  • Lou, F., Zhang, A., Zhang, G., Ren, L., Guo, X., Song, C., 2020, "Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure", Applied Energy, 264, 114637.
  • Minju, N., Abhilash, P., Nair, B. N., Mohamed, A. P., Ananthakumar, S., 2015, "Amine impregnated porous silica gel sorbents synthesized from water–glass precursors for CO2 capturing", Chemical Engineering Journal, 269, 335-342.
  • Mondal, M. K., Balsora, H. K., Varshney, P., 2012, "Progress and trends in CO2 capture/separation technologies: A review", Energy, 46, 431-441.
  • Niu, M., Yang, H., Zhang, X., Wang, Y., Tang, A., 2016, "Amine-Impregnated Mesoporous Silica Nanotube as an Emerging Nanocomposite for CO2 Capture", ACS Applied Materials & Interfaces, 8, 17312-17320.
  • Olivares-Marín, M., Maroto-Valer, M. M., 2012, "Development of adsorbents for CO2 capture from waste materials: a review", Greenhouse Gases: Science and Technology, 2, 20-35.
  • Panek, R., Wdowin, M., Franus, W., Czarna, D., Stevens, L. A., Deng, H., ... & Snape, C. E., 2017, "Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture", Journal of CO2 Utilization, 22, 81-90.
  • S. Aquino, A., O. Vieira, M., Ferreira, A. S. D., Cabrita, E. J., Einloft, S., O. de Souza, M., 2019, "Hybrid Ionic Liquid–Silica Xerogels Applied in CO2 Capture", Applied Sciences, 9, 2614.
  • Sang Sefidi, V., Luis, P., 2019, "Advanced Amino Acid-Based Technologies for CO2 Capture: A Review", Industrial & Engineering Chemistry Research, 58, 20181-20194.
  • Santiago, R., Lemus, J., Hospital-Benito, D., Moya, C., Bedia, J., Alonso-Morales, N.,... & Palomar, J., 2019, "CO2 Capture by Supported Ionic Liquid Phase: Highlighting the Role of the Particle Size", ACS Sustainable Chemistry & Engineering, 7, 13089-13097.
  • Sanz-Pérez, E. S., Dantas, T. C. M., Arencibia, A., Calleja, G., Guedes, A. P. M. A., Araujo, A. S., & Sanz, R., 2017, "Reuse and recycling of amine-functionalized silica materials for CO2 adsorption", Chemical Engineering Journal, 308, 1021-1033.
  • Sher, F., Iqbal, S. Z., Albazzaz, S., Ali, U., Mortari, D. A., Rashid, T., 2020, "Development of biomass derived highly porous fast adsorbents for post-combustion CO2 capture", Fuel, 282, 118506.
  • Son, W.-J., Choi, J.-S., Ahn, W.-S., 2008, "Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials", Microporous and Mesoporous Materials, 113, 31-40.
  • Taheri, F. S., Ghaemi, A., Maleki, A., Shahhosseini, S., 2019, "High CO2 Adsorption on Amine-Functionalized Improved Mesoporous Silica Nanotube as an Eco-Friendly Nanocomposite", Energy & Fuels, 33, 5384-5397.
  • Thi Le, M. U., Lee, S.-Y., Park, S.-J., 2014, "Preparation and characterization of PEI-loaded MCM-41 for CO2 capture", International Journal of Hydrogen Energy, 39, 12340-12346.
  • Wang, X., Chen, L., Guo, Q., 2015, "Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture", Chemical Engineering Journal, 260, 573-581.
  • Witoon, T., Tatan, N., Rattanavichian, P., Chareonpanich, M., 2011, "Preparation of silica xerogel with high silanol content from sodium silicate and its application as CO2 adsorbent", Ceramics International, 37, 2297-2303.
  • Xu, X., Song, C., Andresen, J. M., Miller, B. G., Scaroni, A. W., 2002, "Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture", Energy & Fuels, 16, 1463-1469.
  • Zeleňák, V., Badaničová, M., Halamová, D., Čejka, J., Zukal, A., Murafa, N., & Goerigk, G., 2008, "Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture", Chemical Engineering Journal, 144, 336-342.
  • Zhang, S., Chen, C., Ahn, W.-S., 2019, "Recent progress on CO2 capture using amine-functionalized silica", Current Opinion in Green and Sustainable Chemistry, 16, 26-32.
  • Zhao, P., Zhang, G., Xu, Y., Lv, Y., 2019, "Amine functionalized hierarchical bimodal mesoporous silicas as a promising nanocomposite for highly efficient CO2 capture", Journal of CO2 Utilization, 34, 543-557.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Gülcihan Güzel Kaya 0000-0003-2753-7724

Hüseyin Deveci 0000-0002-1103-7234

Publication Date December 4, 2021
Submission Date October 28, 2021
Acceptance Date November 27, 2021
Published in Issue Year 2021

Cite

IEEE G. Güzel Kaya and H. Deveci, “CO2 CAPTURE USING POLYETHYLENEIMINE FUNCTIONALIZED SILICA XEROGELS”, KONJES, vol. 9, no. 4, pp. 1109–1118, 2021, doi: 10.36306/konjes.1016120.