Bu çalışmada ultra yüksek basınç altında çalışan kalın cidarlı silindirlerin tasarımına etki eden geometrik parametreler araştırılmıştır. Bu kapsamda, 350 MPa basınç altında, tasarım parametrelerinin silindir iç yüzeyinde meydana gelen maksimum gerilmelere ve katmanlar arasındaki maksimum ara yüzey basıncına etkileri analitik ve nümerik olarak belirlenmiştir. Tasarım parametreleri sırasıyla iç silindir çapı, iç ve dış cidar kalınlıkları ile tek taraflı sıkı geçme toleransıdır. Parametrelerin etkileşimi ve sonuçların anlamlılığını araştırmak için tam faktöriyel deney tasarımı oluşturulmuştur. Sonuçlara regresyon ve varyans analizleri uygulanmıştır. Sonuç olarak silindirde oluşan maksimum gerilmeye etki eden en önemli parametrenin % 32.7 ile sıkılık toleransı olduğu bulunmuştur. İç cidar kalınlığının ise %6.2 oranla gerilme düzeyi üzerinde en az etkiye sahip olduğu görülmüştür. Ayrıca kalın cidarlı silindirlerin tasarımında Sonlu Elemanlar Analizlerinin de (SEA) kullanılabilirliğini göstermek için basınç altındaki silindirlerde meydana gelen Von-Mises eşdeğer gerilmeleri ve ara yüzey basıncı SEA ile de elde edilmiştir. SEA sonuçlarının analitik sonuçlarla karşılaştırılması ile SEA’ların güvenilirlikleri belirlenmiştir. SEA’lar iki farklı (Ansys ve Solidworks) sonlu elemanlar çözücüsü kullanılarak gerçekleştirilmiş ve aralarındaki hesap farkı tespit edilmiştir. Gerilme değerinde Solidworks ve analitik çözüm arasındaki fark % 2.05 iken Ansys ve analitik çözüm arasındaki fark % 0.5 olarak hesaplanmıştır. Buradan SEA çözücülerinin her ikisinin de oldukça yüksek doğrulukta tahminlerde bulunabildiği tespit edilmiştir.
In this study, geometric parameters affecting the design of thick-walled cylinders operating under ultra-high pressure were investigated. In this context, the effects of design parameters on the maximum stresses occurring on the inner surface of the cylinder and the maximum interface pressure between the layers under 350 MPa pressure were determined analytically and numerically. The design parameters are the inner cylinder diameter, the inner and outer wall thicknesses, and the one-sided shrinking allowance respectively. A full factorial experimental design was created to investigate the interaction of the parameters and the significance of the results. Regression and variance analysis were applied to the results. As a result, it was found that the most important parameter affecting the maximum stress in the cylinder was the shrinking allowance with 32.7%. It was observed that the inner wall thickness had the least effect on the stress level with a rate of 6.2%. In addition, Von-Mises equivalent stresses and interface pressure between the cylinders under internal pressure were obtained by Finite Element Analysis (FEA) to show the usability of (FEA) in the design of thick-walled cylinders. The reliability of the FEAs was determined by comparing the results of the FEA with the analytical results. FEAs were performed using two different finite element solvers (Ansys and Solidworks) and the calculation difference between them was determined. In the stress value, the difference between Solidworks and analytical solution was 2.05%, while the difference between Ansys and analytical solution was 0.5%. From this, it has been determined that both FEA solvers can make predictions with very high accuracy.
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Research Article |
Authors | |
Publication Date | June 1, 2022 |
Submission Date | February 5, 2022 |
Acceptance Date | April 20, 2022 |
Published in Issue | Year 2022 |