Research Article
BibTex RIS Cite

A Mechanistic Modeling and Sensitivity Analysis Based on Permanent Deformation and Fatigue for Flexible Pavements

Year 2022, , 512 - 523, 01.06.2022
https://doi.org/10.36306/konjes.1089467

Abstract

Empirical approaches, one of the flexible pavement design methods, are largely based on road tests. However, in the mechanistic-empirical design method, certain factors such as environmental and physical conditions of the road are estimated and the stress, deformation or deflections caused by the vehicles, as a result of which fatigue distress, rutting or thermal cracks in the pavement are taken into account. It is aimed to find the required service life for the road by determining the pavement thickness. In this study, the main purpose is to estimate the service life of the road by entering a few scenarios from the design combinations taken from the General Directorate of Highways, Project Guide of Flexible Pavements to KENPAVE software, which uses a mechanistic-empirical method for design of flexible pavements. Afterwards, the effects of AASHTO 93 flexible pavement design parameters such as traffic category, total SN value, subgrade-MR (Modulus of Elasticity) values on service life were analyzed by performing sensitivity analysis. Considering the sensitivity of the decision variables on the service life, it was determined that the effect of the number of axle loads and the subgrade-MR were significant in the 95% confidence interval, and the number of axle loads affected the service life more than the subgrade-MR.

References

  • Alimohammadi, H., Zheng, J., Buss, A., Schaefer, V. R., Williams, C., & Zheng, G. (2020). Field and simulated rutting behavior of hot mix and warm mix asphalt overlays. Construction and Building Materials, 265, 120366.
  • American Association of State Highway and Transportation Officials (AASHTO), 1993. AASHTO Guide for Design of Pavement Structures. AASHTO, Washington DC.
  • Azizian, M., Tafreshi, S. M., & Darabi, N. J. (2020). Experimental evaluation of an expanded polystyrene (EPS) block-geogrid system to protect buried pipes. Soil Dynamics and Earthquake Engineering, 129, 105965.
  • Asphalt Institute, 1982. Research and Development of Asphalt Institute's Thickness Design Manual, ninth ed. Asphalt Institute, Lexington.
  • Bağdatlı, M. E. C., & Yıldırım, M. Ş. (2017). Karayolu üstyapılarındaki bozulmaların bakım maliyetlerine etkisi. Nevşehir Bilim ve Teknoloji Dergisi, 6(1), 102-111. DOI: 10.17100/nevbiltek.304473
  • Bressi, S., Primavera, M., & Santos, J. (2022). A comparative life cycle assessment study with uncertainty analysis of cement treated base (CTB) pavement layers containing recycled asphalt pavement (RAP) materials. Resources, conservation and recycling, 180, 106160.
  • Burmister DM (1945). The General Theory of Stresses andDisplacement in Layered Systems. J. Appl. Phys. 15: 89-94, 126-127,296-302.
  • Carvalho, R.L., 2006, Mechanistic-Empirical Design of Flexible Pavements: A Sensitivity Study, Yüksek lisans tezi, Department of Civil and Environmental Engineering, University of Maryland, 166.
  • Chan, K. M., & Wang, Y. (2020). Resilient pavement design with consideration of flooding effect caused by climate change. Transportmetrica A: Transport Science, 16(3), 1136-1155.
  • Coree B., Ceylan H., Harrington D., 2005, Implementing the MechanisticEmpirical Pavement Design Guide: Implementation Plan, IOWA State Üniversitesi, ABD.
  • Ekwulo, E. O., & Eme, D. B. (2009). Fatigue and rutting strain analysis of flexible pavements designed using CBR methods. African Journal of Environmental Science and Technology, 3(12).
  • Göktolga, D., 1998, Esnek Üstyapı Tasarım Yöntemlerinin Karşılaştırılması, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, 112.
  • Hanlı, E., 2009, Esnek Yol Üst Yapısında Oluşan Bozulmalar ve Değerlendirilmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, 130.
  • Huang, Y.H., 2004, Pavement Analysis and Design (2nd ed.) New Jersey: Pearson Prentice Hall.
  • Ilıcalı, M., Tayfur, S., Özen, H., Sönmez, İ., ve Eren, K., 2001, Asfalt ve uygulamaları, Yıldız Teknik Üniversitesi Yayın Merkezi Başkanlığı, İsfalt.
  • Kaya, O., Comparative Design and Economic Analysis of Asphalt and Concrete Overlays for Airfield Pavements. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(5), 873-882. DOI: 10.35414/akufemubid.713979
  • KGM, 2008, Karayolları Esnek Üstyapılar Projelendirme Rehberi, Karayolları Genel Müdürlüğü Teknik Araştırma Dairesi Başkanlığı, Ankara, Türkiye.
  • Kulkarni, S., & Ranadive, M. S. (2022). The parametric comparison of perpetual pavements with respect to Life-cycle cost and greenhouse gas emissions. Materials Today: Proceedings, 52, 1147-1152.
  • NCHRP, Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, National Cooperative Highway Research Program, NCHRP Project 1-37A, National Research Council, Washington, DC, 2004.
  • Patel, A., Singh, V., & Shanker, R. (2022). FEM based parametric analysis for investigating wheel base characteristics and axle configurations on flexural stresses in rigid pavements. Materials Today: Proceedings.
  • Singh, A. K., & Sahoo, J. P. (2021). Rutting prediction models for flexible pavement structures: A review of historical and recent developments. Journal of Traffic and Transportation Engineering (English Edition), 8(3), 315-338.
  • Westergaard HM (1926). Stresses in Concrete Pavement Computedby Theoretical Analysis. Public Roads, Vol, 7, No. 2, pp. 25-35.

ESNEK ÜSTYAPILARDA KALICI DEFORMASYON VE YORULMAYA BAĞLI MEKANİSTİK BİR MODELLEME VE DUYARLILIK ANALİZİ

Year 2022, , 512 - 523, 01.06.2022
https://doi.org/10.36306/konjes.1089467

Abstract

Esnek üstyapı tasarım metotlarından olan ampirik yöntemler büyük ölçüde yol testlerine dayanmaktadır. Fakat mekanistik-ampirik tasarım yönteminde belirli faktörler göz önünde bulundurularak ortamın çevresel ve fiziki şartları hesaba katılarak bölgeden geçen araç trafiğinin sebep olduğu gerilme, deformasyon ve deplasmanlar ve bunun sonucunda da kaplamada oluşan yorulma düzensizlikleri, tekerlek izleri, termal çatlaklar göz önüne alınır, üstyapı kalınlıkları belirlenir ve o yol için gerekli servis ömrünün bulunması hedeflenir. Bu çalışmada, esnek üstyapı tasarımında mekanistik-ampirik bir metodu kullanan KENPAVE yazılımına, Karayolları Genel Müdürlüğü, Esnek Üstyapı Projelendirme Rehberi’nde bulunan tasarım kombinasyonlarından birkaç senaryo girilerek yolun servis ömrünün tahmin edilmesi amaçlanmıştır. Bu amaçla, elastik ve tabakalı bir kaplama sistemi tanımlandıktan sonra, asfalt tabaka alt noktasındaki yatay çekme gerilmesinin neden olduğu yorulma ve taban zemini üst noktasında düşey basınç gerilmesinin neden olduğu tekerlek izi deformasyonuna ait hasar modelleri programa girilmiştir. İkinci aşamada AASHTO 93 esnek üstyapı tasarım parametreleri olan trafik kategorisi, toplam mevcut SN değeri, taban zemini-MR (Esneklik Modülü) değerlerinin servis ömrüne etkileri, duyarlılık analizi yapılarak irdelenmiştir. Karar değişkenlerinin servis ömrü üzerindeki duyarlılıkları göz önüne alındığında dingil yükü sayısı ve taban zemini-MR etkisinin %95 güven aralığında anlamlı olduğu ve dingil yükü sayısının, servis ömrünü taban zemini-MR‘a göre daha çok etkilediği tespit edilmiştir.

References

  • Alimohammadi, H., Zheng, J., Buss, A., Schaefer, V. R., Williams, C., & Zheng, G. (2020). Field and simulated rutting behavior of hot mix and warm mix asphalt overlays. Construction and Building Materials, 265, 120366.
  • American Association of State Highway and Transportation Officials (AASHTO), 1993. AASHTO Guide for Design of Pavement Structures. AASHTO, Washington DC.
  • Azizian, M., Tafreshi, S. M., & Darabi, N. J. (2020). Experimental evaluation of an expanded polystyrene (EPS) block-geogrid system to protect buried pipes. Soil Dynamics and Earthquake Engineering, 129, 105965.
  • Asphalt Institute, 1982. Research and Development of Asphalt Institute's Thickness Design Manual, ninth ed. Asphalt Institute, Lexington.
  • Bağdatlı, M. E. C., & Yıldırım, M. Ş. (2017). Karayolu üstyapılarındaki bozulmaların bakım maliyetlerine etkisi. Nevşehir Bilim ve Teknoloji Dergisi, 6(1), 102-111. DOI: 10.17100/nevbiltek.304473
  • Bressi, S., Primavera, M., & Santos, J. (2022). A comparative life cycle assessment study with uncertainty analysis of cement treated base (CTB) pavement layers containing recycled asphalt pavement (RAP) materials. Resources, conservation and recycling, 180, 106160.
  • Burmister DM (1945). The General Theory of Stresses andDisplacement in Layered Systems. J. Appl. Phys. 15: 89-94, 126-127,296-302.
  • Carvalho, R.L., 2006, Mechanistic-Empirical Design of Flexible Pavements: A Sensitivity Study, Yüksek lisans tezi, Department of Civil and Environmental Engineering, University of Maryland, 166.
  • Chan, K. M., & Wang, Y. (2020). Resilient pavement design with consideration of flooding effect caused by climate change. Transportmetrica A: Transport Science, 16(3), 1136-1155.
  • Coree B., Ceylan H., Harrington D., 2005, Implementing the MechanisticEmpirical Pavement Design Guide: Implementation Plan, IOWA State Üniversitesi, ABD.
  • Ekwulo, E. O., & Eme, D. B. (2009). Fatigue and rutting strain analysis of flexible pavements designed using CBR methods. African Journal of Environmental Science and Technology, 3(12).
  • Göktolga, D., 1998, Esnek Üstyapı Tasarım Yöntemlerinin Karşılaştırılması, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, 112.
  • Hanlı, E., 2009, Esnek Yol Üst Yapısında Oluşan Bozulmalar ve Değerlendirilmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, 130.
  • Huang, Y.H., 2004, Pavement Analysis and Design (2nd ed.) New Jersey: Pearson Prentice Hall.
  • Ilıcalı, M., Tayfur, S., Özen, H., Sönmez, İ., ve Eren, K., 2001, Asfalt ve uygulamaları, Yıldız Teknik Üniversitesi Yayın Merkezi Başkanlığı, İsfalt.
  • Kaya, O., Comparative Design and Economic Analysis of Asphalt and Concrete Overlays for Airfield Pavements. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(5), 873-882. DOI: 10.35414/akufemubid.713979
  • KGM, 2008, Karayolları Esnek Üstyapılar Projelendirme Rehberi, Karayolları Genel Müdürlüğü Teknik Araştırma Dairesi Başkanlığı, Ankara, Türkiye.
  • Kulkarni, S., & Ranadive, M. S. (2022). The parametric comparison of perpetual pavements with respect to Life-cycle cost and greenhouse gas emissions. Materials Today: Proceedings, 52, 1147-1152.
  • NCHRP, Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, National Cooperative Highway Research Program, NCHRP Project 1-37A, National Research Council, Washington, DC, 2004.
  • Patel, A., Singh, V., & Shanker, R. (2022). FEM based parametric analysis for investigating wheel base characteristics and axle configurations on flexural stresses in rigid pavements. Materials Today: Proceedings.
  • Singh, A. K., & Sahoo, J. P. (2021). Rutting prediction models for flexible pavement structures: A review of historical and recent developments. Journal of Traffic and Transportation Engineering (English Edition), 8(3), 315-338.
  • Westergaard HM (1926). Stresses in Concrete Pavement Computedby Theoretical Analysis. Public Roads, Vol, 7, No. 2, pp. 25-35.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Fatma Çarkanat 0000-0003-2943-6820

Sinem Bozatlı 0000-0002-8285-6050

Yavuz Abut 0000-0003-4249-7791

Publication Date June 1, 2022
Submission Date March 17, 2022
Acceptance Date May 21, 2022
Published in Issue Year 2022

Cite

IEEE F. Çarkanat, S. Bozatlı, and Y. Abut, “ESNEK ÜSTYAPILARDA KALICI DEFORMASYON VE YORULMAYA BAĞLI MEKANİSTİK BİR MODELLEME VE DUYARLILIK ANALİZİ”, KONJES, vol. 10, no. 2, pp. 512–523, 2022, doi: 10.36306/konjes.1089467.