Research Article
BibTex RIS Cite

PRESSURE DEPENDENCIES OF RELATIVE CHANGE IN ELECTRICAL RESISTANCE, GAGE FACTOR AND POISSON’S RATIO IN BARE OPTICAL FIBERS

Year 2022, , 613 - 622, 01.09.2022
https://doi.org/10.36306/konjes.1104329

Abstract

In this paper, a distributed sensing method relying on the principle of pressure dependencies of relative change in electrical resistance, gage factor and Poisson’s ratio of the bare optical fiber core has been proposed. Using this method, besides the pressure information, relations between pressure and relative change in electrical resistance, gage factor and Poisson’s ratio of the bare optical fiber core have been examined and then the temperature dependencies of these parameters have been mathematically analyzed and matching simulations have also been carried out in Matlab R2021b and Simulink environments. Moreover, first-order equations expressing the relations between these parameters and their temperature dependencies have been derived benefiting from the curve-fitting method. For pressure variations in the range of 2.2 × 107 Pa – 12 × 107 Pa, relative changes in electrical resistance of the fiber core have been obtained in the range of 0.41 × 10-3 – 2.13 × 10-3. In other words, the pressure dependence of relative change in electrical resistance of the fiber core can be expressed as 1.841 × 10-2 Rrc(GPa)-1, i.e. 1 GPa pressure variation occurring along the fiber core causes about 0.01841 unit of Rrc variation. Furthermore, pressure dependencies of the gage factor and Poisson’s ratio have been acquired as 2.924 × 10-2 GF(GPa)-1 and 1.462 × 10-2 σ(GPa)-1, respectively.

References

  • Arslan, M. M., Bayrak, G., 2022, “Temperature Compensation of FBG Sensors via Sensor Packaging Approach for Harsh Environmental Applications, Gazi University Journal of Science, 35 (4), 1471 – 1482.
  • Bilsel, M., Navruz, İ., 2020, “Concatenated Up and Down Tapered Fiber for Simultaneous Measurements of Strain and Temperature”, Communications Faculty of Sciences University of Ankara Series A2 – A3, 62 (2), 164 – 176.
  • Boydak, S., Yücel, M., 2017, “The Analysis of Raman Scattering in the Fiber Optic Cable”, Journal of Polytechnic, 20 (2), 257 – 265.
  • Carneiro, V.H. and Puga, H., 2018, “Temperature Variability of Poisson’s Ratio and Its Influence on the Complex Modulus Determined by Dynamic Mechanical Analysis”, Technologies, (6) 81.
  • Chen, D., Liu, Q., Fan, X., He, Z., 2015, “Distributed Fiber – Optic Acoustic Sensor with Enhanced Response Bandwidth and High Signal – to – Noise Ratio”, Journal of Lightwave Technology, 14 (8).
  • De Souza, K.R.C.P., 1999, Fiber Optic Distributed Sensing Based on Spontaneous Brillouin Scattering, Ph.D. Thesis, University of Southampton, UK.
  • Ding, Z., Wang, C., Liu, K., Jiang, J., Yang, D., Pan, G., Pu, Z., Liu, T., 2018, “Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review”, Sensors, 18 (1072), 1 – 31.
  • Gökbulut, B., Güvenç, S., İnci, M. N., 2017, “Investigation of a Novel Temperature – Sensing Mechanism Based on Strain – Induced Optical Path – Length Difference in a Multicore Optical Fiber, Turkish Journal of Physics, 41 (5), 410 – 417.
  • Gu, H., Dong, H., Zhang, G., He, J., Xu, N., J. Brown, D., 2012, “Pressure Dependence of Brillouin Frequency Shift in Bare Silica Optical Fibers”, Chinese Optics Letters, 10 (10), 100604.
  • Günday, A, Karlik, S.E., Yilmaz, G., 2014, “The Impact of Temperature and Strain Formations on Young and Shear Moduli in usage of Optical Fiber Distributed Sensing for Power Cables”, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (3), 517 – 525.
  • Günday, A., 2018, “Computational Analysis of the Core Refractive Index Dependencies of Brillouin Frequency Shift and Brillouin Power Change in Brillouin Coherent Detection Based Distributed Sensing Systems”, Optoelectronics and Advanced Materials-Rapid Communication, 12 (9 - 10), 502 – 511.
  • He, H., Shao, L. Y., Li, Z., Zhang, Z., Zou, X., Luo, B., Pan, W., Yan, L., 2016, “Self – Mixing Demodulation for Coherent Phase-Sensitive OTDR System”, Sensors, 16 (5), 681.
  • İrsel, G., 2021, “Research on Electrical Strain Gages and Experimental Stress Analysis: Case Study for a Full Wheatstone Bridge, Dicle University Journal of Engineering (DUJE), 12 (5), 783 – 792.
  • Li, H., Sun, Q., Liu, T., Fan, C., He, T., Yan, Z., Liu, D., Shum, P. P., 2020, “Ultra – High Sensitive Quasi – Distributed Acoustic Sensor Based on Coherent OTDR and Cylindrical Transducer”, Journal of Lightwave Technology, 38 (4), 929 – 938.
  • Pehlivan, C., 2007, Analysis of Fiber Bragg Grating Sensors, M.Sc. Thesis, Kocaeli University, Turkey.
  • Sanchez, L.A., Diez, A., Cruz, J.L., Andres, M.V., 2022, “High Accuracy Measurement of Poisson’s Ratio of Optical Fibers and Its Temperature Dependence Using Forward-Stimulated Brillouin Scattering”, Optics Express, 30 (1/3), 42 – 52.
  • Schenatoa, L., Galtarossab, A., Pasutoa, A., Palmieri, L., 2020, “Distributed Optical Fiber Pressure Sensors”, Optical Fiber Technology, 58 (2020) 102239, 1 – 10.
  • Sokkar, T.Z.N., Shams El – Din, M.A., El – Tawargy, A.S., 2012, “On Young’s Modulus Profile Across Anisotropic Nonhomogeneous Polymeric Fibre Using Automatic Transverse Interferometric Method”, Optics and Lasers in Engineering, 50 (9), 1223 – 1229.
  • Tuttle, M.E., Brinson, H.F., 1984, “Resistance – Foil Strain – Gage Technology as Applied to Composite Materials”, Experimental Mechanics, 24, 54 – 65.
  • Wang, W.H., 2012, “The Elastic Properties, Elastic Models and Elastic Perspectives of Metallic Glasses”, Progress in Materials Science, 57 (3), 487 – 656.
  • Yu, Q., 2006, Distributed Brillouin Sensing Using Polarization - Maintaining Fibers with High Measurement Accuracy, Ph.D. Thesis, Ottowa – Carleton Institute for Physics, University of Ottawa, Canada.

Kılıfsız Optik Fiberlerde Bağıl Direnç Değişimi, Gage Faktörü ve Poisson Oranı’nın Basınç Bağımlılıkları

Year 2022, , 613 - 622, 01.09.2022
https://doi.org/10.36306/konjes.1104329

Abstract

Bu makalede, kılıfsız optik fiber çekirdeğine ait bağıl direnç değişimi, gage faktörü ve Poisson oranının basınç bağımlılıkları prensibine dayalı bir dağınık algılama metodu önerilmiştir. Bu metot kullanılarak, basınç bilgilerinin yanı sıra, basınç ile kılıfsız optik fiber çekirdeğinin bağıl direnç değişimi, gage faktörü ve Poisson oranı arasındaki ilişki incelenmiş ve ardından bu parametrelerin sıcaklık bağımlılıkları matematiksel olarak analiz edilmiş ve ayrıca ilgili benzetimler Matlab R2021b ve Simulink ortamında gerçekleştirilmiştir. Buna ek olarak, bu parametreler ve bu parametrelerin sıcaklık bağımlılıkları arasındaki ilişkileri ifade eden birinci dereceden denklemler, eğri uydurma metodundan yararlanılarak türetilmiştir. Basıncın 2.2 × 107 Pa – 12 × 107 Pa aralığındaki değişimi için fiber çekirdeğine ait bağıl direnç değişimleri 0.41 × 10-3 – 2.13 × 10-3 aralığında elde edilmiştir. Diğer bir ifadeyle, fiber çekirdeğinin bağıl direnç değişiminin basınç bağımlılığı 1.841 × 10-2 Rrc(GPa)-1 olarak ifade edilebilmektedir, yani fiber çekirdeği boyunca meydana gelen 1 GPa değerinde basınç değişimi, Rrc değerinde yaklaşık olarak 0.01841 birimlik değişime neden olmaktadır. Ayrıca, gage faktörünün ve Poisson oranının basınç bağımlılıkları, sırasıyla 2.924 × 10-2 GF(GPa)-1 ve 1.462 × 10-2 σ(GPa)-1 olarak elde edilmiştir.

References

  • Arslan, M. M., Bayrak, G., 2022, “Temperature Compensation of FBG Sensors via Sensor Packaging Approach for Harsh Environmental Applications, Gazi University Journal of Science, 35 (4), 1471 – 1482.
  • Bilsel, M., Navruz, İ., 2020, “Concatenated Up and Down Tapered Fiber for Simultaneous Measurements of Strain and Temperature”, Communications Faculty of Sciences University of Ankara Series A2 – A3, 62 (2), 164 – 176.
  • Boydak, S., Yücel, M., 2017, “The Analysis of Raman Scattering in the Fiber Optic Cable”, Journal of Polytechnic, 20 (2), 257 – 265.
  • Carneiro, V.H. and Puga, H., 2018, “Temperature Variability of Poisson’s Ratio and Its Influence on the Complex Modulus Determined by Dynamic Mechanical Analysis”, Technologies, (6) 81.
  • Chen, D., Liu, Q., Fan, X., He, Z., 2015, “Distributed Fiber – Optic Acoustic Sensor with Enhanced Response Bandwidth and High Signal – to – Noise Ratio”, Journal of Lightwave Technology, 14 (8).
  • De Souza, K.R.C.P., 1999, Fiber Optic Distributed Sensing Based on Spontaneous Brillouin Scattering, Ph.D. Thesis, University of Southampton, UK.
  • Ding, Z., Wang, C., Liu, K., Jiang, J., Yang, D., Pan, G., Pu, Z., Liu, T., 2018, “Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review”, Sensors, 18 (1072), 1 – 31.
  • Gökbulut, B., Güvenç, S., İnci, M. N., 2017, “Investigation of a Novel Temperature – Sensing Mechanism Based on Strain – Induced Optical Path – Length Difference in a Multicore Optical Fiber, Turkish Journal of Physics, 41 (5), 410 – 417.
  • Gu, H., Dong, H., Zhang, G., He, J., Xu, N., J. Brown, D., 2012, “Pressure Dependence of Brillouin Frequency Shift in Bare Silica Optical Fibers”, Chinese Optics Letters, 10 (10), 100604.
  • Günday, A, Karlik, S.E., Yilmaz, G., 2014, “The Impact of Temperature and Strain Formations on Young and Shear Moduli in usage of Optical Fiber Distributed Sensing for Power Cables”, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (3), 517 – 525.
  • Günday, A., 2018, “Computational Analysis of the Core Refractive Index Dependencies of Brillouin Frequency Shift and Brillouin Power Change in Brillouin Coherent Detection Based Distributed Sensing Systems”, Optoelectronics and Advanced Materials-Rapid Communication, 12 (9 - 10), 502 – 511.
  • He, H., Shao, L. Y., Li, Z., Zhang, Z., Zou, X., Luo, B., Pan, W., Yan, L., 2016, “Self – Mixing Demodulation for Coherent Phase-Sensitive OTDR System”, Sensors, 16 (5), 681.
  • İrsel, G., 2021, “Research on Electrical Strain Gages and Experimental Stress Analysis: Case Study for a Full Wheatstone Bridge, Dicle University Journal of Engineering (DUJE), 12 (5), 783 – 792.
  • Li, H., Sun, Q., Liu, T., Fan, C., He, T., Yan, Z., Liu, D., Shum, P. P., 2020, “Ultra – High Sensitive Quasi – Distributed Acoustic Sensor Based on Coherent OTDR and Cylindrical Transducer”, Journal of Lightwave Technology, 38 (4), 929 – 938.
  • Pehlivan, C., 2007, Analysis of Fiber Bragg Grating Sensors, M.Sc. Thesis, Kocaeli University, Turkey.
  • Sanchez, L.A., Diez, A., Cruz, J.L., Andres, M.V., 2022, “High Accuracy Measurement of Poisson’s Ratio of Optical Fibers and Its Temperature Dependence Using Forward-Stimulated Brillouin Scattering”, Optics Express, 30 (1/3), 42 – 52.
  • Schenatoa, L., Galtarossab, A., Pasutoa, A., Palmieri, L., 2020, “Distributed Optical Fiber Pressure Sensors”, Optical Fiber Technology, 58 (2020) 102239, 1 – 10.
  • Sokkar, T.Z.N., Shams El – Din, M.A., El – Tawargy, A.S., 2012, “On Young’s Modulus Profile Across Anisotropic Nonhomogeneous Polymeric Fibre Using Automatic Transverse Interferometric Method”, Optics and Lasers in Engineering, 50 (9), 1223 – 1229.
  • Tuttle, M.E., Brinson, H.F., 1984, “Resistance – Foil Strain – Gage Technology as Applied to Composite Materials”, Experimental Mechanics, 24, 54 – 65.
  • Wang, W.H., 2012, “The Elastic Properties, Elastic Models and Elastic Perspectives of Metallic Glasses”, Progress in Materials Science, 57 (3), 487 – 656.
  • Yu, Q., 2006, Distributed Brillouin Sensing Using Polarization - Maintaining Fibers with High Measurement Accuracy, Ph.D. Thesis, Ottowa – Carleton Institute for Physics, University of Ottawa, Canada.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Abdurrahman Günday 0000-0002-3262-3494

Publication Date September 1, 2022
Submission Date April 15, 2022
Acceptance Date June 29, 2022
Published in Issue Year 2022

Cite

IEEE A. Günday, “PRESSURE DEPENDENCIES OF RELATIVE CHANGE IN ELECTRICAL RESISTANCE, GAGE FACTOR AND POISSON’S RATIO IN BARE OPTICAL FIBERS”, KONJES, vol. 10, no. 3, pp. 613–622, 2022, doi: 10.36306/konjes.1104329.