Research Article
BibTex RIS Cite

İdeal Atkinson Çevriminin Özgül Net İş ve Ortalama Efektif Basınç Temelli Termodinamik Analizi ve Optimizasyonu

Year 2022, , 1035 - 1047, 03.12.2022
https://doi.org/10.36306/konjes.1120243

Abstract

Bu çalışmada, hibrit elektrikli taşıtlarda kullanılan içten yanmalı motorların ideal termodinamik çevrimi olan hava standart Atkinson çevriminde özgül net işi ve ortalama efektif basıncının maksimum değerleri için kriterler incelenmiştir. Bunun için çevrimin belirli sıcaklık aralığında çalıştığı varsayılmıştır. Böylelikle çevrimin maksimum sıcaklığı sabit iken maksimum özgül net iş ve maksimum ortalama efektif basınç için sıkıştırma oranı optimize edilmiştir. Çalışma için bir durum çalışması yapılmıştır. Vaka çalışması için geometrik sıkıştırma oranının 12 olduğu varsayılarak çevrimin maksimum sıcaklık değeri 1961.923 K olarak belirlenmiştir. Bu maksimum sıcaklık değeri referans alınarak özgül net işin ve ortamala efektif basıncın maksimum değerleri sırasıyla 580.139 kJ/kg ve 373.857 kPa olarak belirlenmiştir. Ayrıca özgül net işin ve ortamala efektif basıncın maksimum değerleri için geometrik sıkıştırma oranları ise sırasıyla 15.462 ve 31.063 olarak belirlenmiştir. Günümüz motorlarının geometrik sıkıştırma oranı değerlerine bakıldığında, bu değerlerin maksimum özgül net işin elde edildiği sıkıştırma oranına daha yakın olduğu görülmüştür. Maksimum ortalama efektif basıncın elde edildiği koşullar için sıkıştırma oranı optimize edildiğinde termal verimin de arttığı gözlemlenmiştir. Yapılan bu çalışmadan elde edilen bulguların özellikle motor tasarımcılarının dikkatini çekecek niteliktedir.

References

  • Balmer, R. T, 2011, Modern engineering thermodynamics-textbook with tables booklet. Academic Press.
  • Boggs, D. L., Hubert, H. S., & Schechter, M. M., 1995, The Otto-Atkinson cycle engine-fuel economy and emissions results and hardware design. SAE transactions, 220-232.
  • Borgnakke, C., & Sonntag, R. E., 2020,. Fundamentals of thermodynamics. John Wiley & Sons.
  • Cengel, Y. A., Boles, M. A., & Kanoğlu, M., 2011, Thermodynamics: an engineering approach. New York: McGraw-hill.
  • Costea, M., Petrescu, S., Feidt, M., Dobre, C., & Borcila, B. (2021). Optimization modeling of irreversible Carnot engine from the perspective of combining finite speed and finite time analysis. Entropy, 23(5), 504.
  • Ferguson, C. R., & Kirkpatrick, A. T., 2015, Internal combustion engines: applied thermosciences. John Wiley & Sons.
  • Ganesan, V., 2018, Thermodynamics: basic and applied. McGraw-Hill Education.
  • Gonca, G., & Sahin, B. (2022). Performance investigation and evaluation of an engine operating on a modified dual cycle. International Journal of Energy Research, 46(3), 2454-2466.
  • Grohe, H., 2003, Otto-und Dieselmotoren, 13. Auflage, Vogel Fachbuch.
  • Halderman, J. D., & Mitchell, C. D., 2014, Automotive technology. Pearson.
  • Kim, S., Baik, Y. J., & Kim, M. (2022). Thermodynamic analysis of general heat engine cycle with finite heat capacity rates for power maximization. Case Studies in Thermal Engineering, 35, 102067.
  • Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B., 2010, Fundamentals of engineering thermodynamics. John Wiley & Sons.
  • Nag, P. K., 2013, Engineering thermodynamics. Tata McGraw-Hill Education.
  • Palaci, Y., & Gonca, G., 2020, The effects of different engine material properties on the performance of a diesel engine at maximum combustion temperatures. Thermal Science, 24(1 Part A), 183-191.
  • Pauken, M., 2011, Thermodynamics for dummies. John Wiley & Sons.
  • Potter, M. C., & Somerton, C. W., 2014, Schaum's outline of thermodynamics for engineers. McGraw-Hill Education.
  • Rajput, R. K., 2009, Applied thermodynamics. Laxmi Publications, Ltd.
  • Rajput, R. K., 2009, Engineering thermodynamics: A computer approach (si units version). Jones & Bartlett Publishers.
  • Şahin, H., & Gonca, G. (2021). Endoreversible Performance Analysis of a modified dual cycle and comparison with the classical engine cycles. Avrupa Bilim ve Teknoloji Dergisi, (27), 1003-1009.
  • Schmidt, A., 2019, Technical thermodynamics for engineers. Springer Nature: Cham, Suisse.
  • Wang, R., Ge, Y., Chen, L., Feng, H., & Wu, Z. (2021). Power and thermal efficiency optimization of an irreversible steady-flow lenoir cycle. Entropy, 23(4), 425.
  • Whitman, A. M., 2020, Thermodynamics: Basic Principles and Engineering Applications. Springer.
  • Wu, C., 2007, Thermodynamics and heat powered cycles: a cognitive engineering approach. Nova Publishers.
  • Zhao, J., Xu, M., Li, M., Wang, B., & Liu, S., 2012, Design and optimization of an Atkinson cycle engine with the Artificial Neural Network Method. Applied energy, 92, 492-502.

SPECIFIC NET WORK AND MEAN EFFECTIVE PRESSURE BASED THERMODYNAMIC ANALYSIS AND OPTIMIZATION OF IDEAL ATKINSON CYCLE

Year 2022, , 1035 - 1047, 03.12.2022
https://doi.org/10.36306/konjes.1120243

Abstract

In this study, the criteria for maximum values of specific net work and mean effective pressure in the air standard Atkinson cycle, which is the ideal thermodynamic cycle of internal combustion engines used in hybrid electric vehicles, were examined. For this, it was assumed that the cycle operates in a certain temperature range. Thus, while the maximum temperature of the cycle is constant, the compression ratio was optimized for maximum specific net work and maximum mean effective pressure. A case study was conducted for this study. For the case study, assuming the geometric expansion ratio of 12, the maximum temperature value of the cycle was determined as 1961.923 K. Based on this maximum temperature value, the maximum values of the specific net work and the ambient effective pressure were determined as 580.139 kJ/kg and 373.857 kPa, respectively. In addition, the geometric compression ratios for the maximum values of the specific net work and the ambient effective pressure were determined as 15.462 and 31.063, respectively. Looking at the geometric compression ratio values of today's engines, it was seen that these values were closer to the compression ratio at which the maximum specific net work was achieved. It was observed that the thermal efficiency increased when the compression ratio was optimized for the conditions where the maximum average effective pressure was achieved. The results obtained from this study are particularly attractive to engine designers.

References

  • Balmer, R. T, 2011, Modern engineering thermodynamics-textbook with tables booklet. Academic Press.
  • Boggs, D. L., Hubert, H. S., & Schechter, M. M., 1995, The Otto-Atkinson cycle engine-fuel economy and emissions results and hardware design. SAE transactions, 220-232.
  • Borgnakke, C., & Sonntag, R. E., 2020,. Fundamentals of thermodynamics. John Wiley & Sons.
  • Cengel, Y. A., Boles, M. A., & Kanoğlu, M., 2011, Thermodynamics: an engineering approach. New York: McGraw-hill.
  • Costea, M., Petrescu, S., Feidt, M., Dobre, C., & Borcila, B. (2021). Optimization modeling of irreversible Carnot engine from the perspective of combining finite speed and finite time analysis. Entropy, 23(5), 504.
  • Ferguson, C. R., & Kirkpatrick, A. T., 2015, Internal combustion engines: applied thermosciences. John Wiley & Sons.
  • Ganesan, V., 2018, Thermodynamics: basic and applied. McGraw-Hill Education.
  • Gonca, G., & Sahin, B. (2022). Performance investigation and evaluation of an engine operating on a modified dual cycle. International Journal of Energy Research, 46(3), 2454-2466.
  • Grohe, H., 2003, Otto-und Dieselmotoren, 13. Auflage, Vogel Fachbuch.
  • Halderman, J. D., & Mitchell, C. D., 2014, Automotive technology. Pearson.
  • Kim, S., Baik, Y. J., & Kim, M. (2022). Thermodynamic analysis of general heat engine cycle with finite heat capacity rates for power maximization. Case Studies in Thermal Engineering, 35, 102067.
  • Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. B., 2010, Fundamentals of engineering thermodynamics. John Wiley & Sons.
  • Nag, P. K., 2013, Engineering thermodynamics. Tata McGraw-Hill Education.
  • Palaci, Y., & Gonca, G., 2020, The effects of different engine material properties on the performance of a diesel engine at maximum combustion temperatures. Thermal Science, 24(1 Part A), 183-191.
  • Pauken, M., 2011, Thermodynamics for dummies. John Wiley & Sons.
  • Potter, M. C., & Somerton, C. W., 2014, Schaum's outline of thermodynamics for engineers. McGraw-Hill Education.
  • Rajput, R. K., 2009, Applied thermodynamics. Laxmi Publications, Ltd.
  • Rajput, R. K., 2009, Engineering thermodynamics: A computer approach (si units version). Jones & Bartlett Publishers.
  • Şahin, H., & Gonca, G. (2021). Endoreversible Performance Analysis of a modified dual cycle and comparison with the classical engine cycles. Avrupa Bilim ve Teknoloji Dergisi, (27), 1003-1009.
  • Schmidt, A., 2019, Technical thermodynamics for engineers. Springer Nature: Cham, Suisse.
  • Wang, R., Ge, Y., Chen, L., Feng, H., & Wu, Z. (2021). Power and thermal efficiency optimization of an irreversible steady-flow lenoir cycle. Entropy, 23(4), 425.
  • Whitman, A. M., 2020, Thermodynamics: Basic Principles and Engineering Applications. Springer.
  • Wu, C., 2007, Thermodynamics and heat powered cycles: a cognitive engineering approach. Nova Publishers.
  • Zhao, J., Xu, M., Li, M., Wang, B., & Liu, S., 2012, Design and optimization of an Atkinson cycle engine with the Artificial Neural Network Method. Applied energy, 92, 492-502.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Emre Arabacı 0000-0002-6219-7246

Bayram Kılıç 0000-0002-8577-1845

Publication Date December 3, 2022
Submission Date May 23, 2022
Acceptance Date October 17, 2022
Published in Issue Year 2022

Cite

IEEE E. Arabacı and B. Kılıç, “SPECIFIC NET WORK AND MEAN EFFECTIVE PRESSURE BASED THERMODYNAMIC ANALYSIS AND OPTIMIZATION OF IDEAL ATKINSON CYCLE”, KONJES, vol. 10, no. 4, pp. 1035–1047, 2022, doi: 10.36306/konjes.1120243.