Research Article
BibTex RIS Cite

GENTAMİSİN YÜKLÜ POLİ(VİNİL ALKOL)/JELATİN NANOFİBERLERİN ELEKTROEĞİRME YÖNTEMİYLE YARA ÖRTÜSÜ MALZEMESİ OLARAK ÜRETİLMESİ

Year 2022, , 878 - 888, 03.12.2022
https://doi.org/10.36306/konjes.1124919

Abstract

İyi antimikrobiyal performansa ve cilt yenileme kabiliyetine sahip nanofiber polimer yapı iskelelerine dayalı yara örtüleri, yara enfeksiyonunu önlemek ve yara iyileşmesini hızlandırmak için umut verici seçeneklerdir. Bu çalışmada, yara örtüsü uygulamaları için Gentamisin (GEN) yüklü polivinil alkol ve jelatin (PVA/JEL) nanofiberleri elektroeğirme yöntemi ile başarıyla üretilmiştir. Üretilen nanofiberlerin mekanik mukavemetini arttırmak ve hızlı bozulmalarını önlemek için glutaraldehit (GA) buharı ile çapraz bağlama yapılmıştır. Nanofiberlerin taramalı elektron mikroskobu (SEM) görüntüleri incelendiğinde, boncuksuz düzgün bir yapıya sahip oldukları ve yüzeyde ilaç kristalleri ve kümeleri görülmediği gözlemlendi. Ayrıca PVA/JEL, PVA/JEL/0.25GEN ve PVA/JEL/0.5GEN nanofiberlerinin ortalama çapları sırasıyla 278±40 nm, 373± 68 nm ve 493± 105 nm olarak ölçüldü. Nanofiber içerisindeki ilaç miktarındaki artış fiber çaplarında az bir artışa neden olsa da fiber morfolojilerini olumsuz etkilememiştir. Fourier-dönüşümlü kızılötesi spektroskopisi (FTIR) ile PVA, JEL ve GEN arasındaki etkileşim kanıtlanmıştır. Çekme testine göre, PVA/JEL nanofiberi, 6.31 ± 0.23 MPa' lık bir gerilme mukavemetine sahiptir. Ağırlıkça %0.25 ve %0.5 GEN, bu PVA/JEL nanofiberlerine ayrı ayrı yüklendiğinde, gerilme mukavemetleri sırasıyla 4.30 ± 0.58 ve 3.95 ± 0.24 MPa idi. GEN miktarı arttıkça mekanik mukavemetinin saf nanofibere göre zayıfladığı gözlemlenmiştir. Antimikrobiyal aktivite sonuçlarına bakıldığında, PVA/JEL/0.25GEN nanofiberinde herhangi bir antibakteriyel etki görülmezken PVA/JEL/0.5GEN nanofiberinde antibakteriyel etki görülmüştür. Antibakteriyel etki görülen PVA/JEL/0.5GEN nanofiberinde ilaç salım çalışmaları gerçekleştirilmiştir. İlaç salım sonuçlarına göre, GEN' in nanofiberden 264 saate kadar uzayan bir salım profili sergilediği gözlemlenmiştir. Tüm sonuçlar değerlendirildiğinde, GEN içeren nanofiberler, doku mühendisliği ve yara örtüsü uygulamalarında umut verici bir potansiyele sahip olabilir.

References

  • Aadil, K. R., Mussatto, S. I., Jha, H., 2018, “Synthesis and characterization of silver nanoparticles loaded poly (vinyl alcohol)-lignin electrospun nanofibers and their antimicrobial activity” International journal of biological macromolecules, Cilt 120, ss. 763-767.
  • Abrigo, M., McArthur, S. L., Kingshott, P., 2014, “Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects”, Macromolecular bioscience, Cilt 14, Sayı 6, ss. 772-792.
  • Ahlawat, J., Kumar, V., Gopinath, P., 2019, “Carica papaya loaded poly (vinyl alcohol)-gelatin nanofibrous scaffold for potential application in wound dressing”, Materials Science and Engineering: C, Cilt 103, ss. 109834.
  • Angammana, C. J., Jayaram, S. H., 2016, “Fundamentals of electrospinning and processing technologies”, Particulate Science and Technology, Cilt 34, Sayı 1, 72-82.
  • Bakhsheshi-Rad, H. R., Ismail, A. F., Aziz, M., Hadisi, Z., Omidi, M., Chen, X., 2019, “Antibacterial activity and corrosion resistance of Ta2O5 thin film and electrospun PCL/MgO-Ag nanofiber coatings on biodegradable Mg alloy implants”, Ceramics International, Cilt 45, Sayı 9, ss. 11883-11892.
  • Bakhsheshi-Rad, H. R., Hadisi, Z., Ismail, A. F., Aziz, M., Akbari, M., Berto, F., Chen, X. B., 2020, “In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance”, Polymer Testing, Cilt 82, ss. 106298.
  • Cam, M. E., Ertas, B., Alenezi, H., Hazar-Yavuz, A. N., Cesur, S., Ozcan, G. S., ..., Edirisinghe, M., 2021, “Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: An in vitro and in vivo evaluation study”, Materials Science and Engineering: C, Cilt 119, ss. 111586.
  • Cesur, S., Ulag, S., Ozak, L., Gumussoy, A., Arslan, S., Yilmaz, B. K., ..., Gunduz, O., 2020, “Production and characterization of elastomeric cardiac tissue-like patches for Myocardial Tissue Engineering”, Polymer Testing, Cilt 90, ss. 106613.
  • Cesur, S., Cam, M. E., Sayın, F. S., Su, S., Harker, A., Edirisinghe, M., Gunduz, O., 2021, “Metformin-Loaded Polymer-Based Microbubbles/Nanoparticles Generated for the Treatment of Type 2 Diabetes Mellitus”, Langmuir. Cilt 38, Sayı 17, ss. 5040–5051.
  • Cesur, S., Cam, M. E., Sayin, F. S., Gunduz, O., 2022, “Electrically controlled drug release of donepezil and BiFeO3 magnetic nanoparticle-loaded PVA microbubbles/nanoparticles for the treatment of Alzheimer's disease”, Journal of Drug Delivery Science and Technology, Cilt 67, ss. 102977.
  • Ceylan, M., Yang, S. Y., Asmatulu, R., 2017, “Effects of gentamicin-loaded PCL nanofibers on growth of Gram positive and Gram negative bacteria”, Cilt 5, ss. 40-51.
  • Cui, Z., Zheng, Z., Lin, L., Si, J., Wang, Q., Peng, X., Chen, W., 2018, “Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery”, Advances in Polymer Technology, Cilt 37, Sayı 6, ss. 1917-1928.
  • Foroutan Koudehi, M., Zibaseresht, R., 2020, “Synthesis of molecularly imprinted polymer nanoparticles containing gentamicin drug as wound dressing based polyvinyl alcohol/gelatin nanofiber”, Materials Technology, Cilt 35, sayı 1, ss. 21-30.
  • Hajikhani, M., Emam-Djomeh, Z., Askari, G., 2021, “Fabrication and characterization of mucoadhesive bioplastic patch via coaxial polylactic acid (PLA) based electrospun nanofibers with antimicrobial and wound healing application”, International Journal of Biological Macromolecules, Cilt 172, ss. 143-153.
  • Kondaveeti, S., de Assis Bueno, P. V., Carmona-Ribeiro, A. M., Esposito, F., Lincopan, N., Sierakowski, M. R., Petri, D. F. S., 2018, “Microbicidal gentamicin-alginate hydrogels”, Carbohydrate polymers, Cilt 186, ss. 159-167.
  • Konop, M., Czuwara, J., Kłodzińska, E., Laskowska, A. K., Zielenkiewicz, U., Brzozowska, I., ..., Rudnicka, L., 2018, “Development of a novel keratin dressing which accelerates full-thickness skin wound healing in diabetic mice: In vitro and in vivo studies”, Journal of Biomaterials Applications, Cilt 33, Sayı 4, ss. 527-540.
  • Koudehi, M. F., Pourmortazavi, S. M., 2018, “Polyvinyl alcohol/polypyrrole/molecularly imprinted polymer nanocomposite as highly selective chemiresistor sensor for 2, 4‐DNT vapor recognition”, Electroanalysis, Cilt 30, Sayı 10, ss. 2302-2310.
  • Kumar, V., Naqvi, S., Gopinath, P., 2018, “Applications of nanofibers in tissue engineering”, In Applications of nanomaterials, Woodhead Publishing, ss. 179-203.
  • Lv, X., Zhang, W., Liu, Y., Zhao, Y., Zhang, J., Hou, M., 2018, “Hygroscopicity modulation of hydrogels based on carboxymethyl chitosan/Alginate polyelectrolyte complexes and its application as pH-sensitive delivery system”, Carbohydrate polymers, Cilt 198, ss. 86-93.
  • Mosselhy, D. A., He, W., Hynönen, U., Meng, Y., Mohammadi, P., Palva, A., ..., Linder, M. B., 2018, “Silica–gentamicin nanohybrids: combating antibiotic resistance, bacterial biofilms, and in vivo toxicity”, International journal of nanomedicine, Cilt 13, ss. 7939.
  • Ohyabu, Y., Hatayama, H., Yunoki, S., 2014, “Evaluation of gelatin hydrogel as a potential carrier for cell transportation”, Journal of bioscience and bioengineering, Cilt 118, Sayı 1, ss. 112-115.
  • Pásztor, N., Rédai, E., Szabó, Z. I., Sipos, E., 2017, “Preparation and characterization of levofloxacin-loaded nanofibers as potential wound dressings”, Acta Marisiensis-Seria Medica, Cilt 63, Sayı 2, ss. 66-69.
  • Reneker, D. H., Yarin, A. L., Zussman, E., Xu, H., 2007, “Electrospinning of nanofibers from polymer solutions and melts” Advances in applied mechanics, Cilt 41, ss. 43-346.
  • Sikareepaisan, P., Ruktanonchai, U., Supaphol, P., 2011, “Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings”, Carbohydrate Polymers, Cilt 83, Sayı 4, ss. 1457-1469.
  • Tao, G., Wang, Y., Cai, R., Chang, H., Song, K., Zuo, H., ..., He, H., 2019, “Design and performance of sericin/poly (vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application”, Materials Science and Engineering: C, Cilt 101, ss. 341-351.
  • Wutticharoenmongkol, P., Samanmak, V., 2021, “Electrospun centella asiatica leaf extract–loaded poly (vinyl alcohol)/gelatin fiber mats as potential wound dressings”, Interdisciplinary Research Review, Cilt 16, Sayı 6, ss. 38-46.
  • Yang, D., Li, Y., Nie, J., 2007, “Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs”, Carbohydrate Polymers, Cilt 69, Sayı 3, ss. 538-543.

Production of Gentamycin-Loaded Poly(Vinyl Alcohol)/Gelatin Nanofiber by Electrospinning Method as Wound Dressing Material

Year 2022, , 878 - 888, 03.12.2022
https://doi.org/10.36306/konjes.1124919

Abstract

Wound dressings based on nanofiber polymer scaffolds with good antimicrobial capacity and skin regeneration ability are hopeful alternatives for hindering wound infection and speeding wound healing. In this study, Gentamicin (GEN) loaded polyvinyl alcohol and gelatin (PVA/GEL) nanofibers were successfully produced by electrospinning for wound dressing applications. In order to increase the mechanical strength of the produced nanofibers and to prevent their rapid deterioration, crosslinking was done with glutaraldehyde (GA) vapor. When the scanning electron microscopy (SEM) images of the nanofibers were examined, it was observed that they had a smooth structure without beads and no drug crystals and clusters were observed on the surface. In addition, the mean diameters of PVA/JEL, PVA/JEL/0.25GEN and PVA/JEL/0.5GEN nanofibers were measured as 278±40 nm, 373±68 nm and 493±105 nm, respectively. Although the increase in the amount of drug in the nanofiber caused a slight increase in the fiber diameters, it did not adversely affect the fiber morphologies. The interaction between Fourier-transform infrared spectroscopy (FTIR) and PVA, GEL, and GEN has been proven. According to the tensile test, the PVA/JEL nanofiber has a tensile strength of 6.31 ± 0.23 MPa. When 0.25% and 0.5% by weight GEN were loaded into these PVA/JEL nanofibers separately, their tensile strengths were 4.30 ± 0.58 and 3.95 ± 0.24 MPa, respectively. It was observed that as the amount of GEN increased, its mechanical strength weakened compared to the pure nanofiber. Considering the antimicrobial activity results, no antibacterial effect was observed in the PVA/GEL/0.25GEN nanofiber, while the antibacterial effect was observed in the PVA/GEL/0.5GEN nanofiber. Drug release studies have been carried out on PVA/GEL/0.5GEN nanofibers with antibacterial effects. Based on the drug release results, it was observed that GEN exhibited a release profile extending from nanofiber up to 264 hours per hour. Considering all the results, GEN-containing nanofibers may have promising potential in tissue engineering and wound dressing applications.

References

  • Aadil, K. R., Mussatto, S. I., Jha, H., 2018, “Synthesis and characterization of silver nanoparticles loaded poly (vinyl alcohol)-lignin electrospun nanofibers and their antimicrobial activity” International journal of biological macromolecules, Cilt 120, ss. 763-767.
  • Abrigo, M., McArthur, S. L., Kingshott, P., 2014, “Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects”, Macromolecular bioscience, Cilt 14, Sayı 6, ss. 772-792.
  • Ahlawat, J., Kumar, V., Gopinath, P., 2019, “Carica papaya loaded poly (vinyl alcohol)-gelatin nanofibrous scaffold for potential application in wound dressing”, Materials Science and Engineering: C, Cilt 103, ss. 109834.
  • Angammana, C. J., Jayaram, S. H., 2016, “Fundamentals of electrospinning and processing technologies”, Particulate Science and Technology, Cilt 34, Sayı 1, 72-82.
  • Bakhsheshi-Rad, H. R., Ismail, A. F., Aziz, M., Hadisi, Z., Omidi, M., Chen, X., 2019, “Antibacterial activity and corrosion resistance of Ta2O5 thin film and electrospun PCL/MgO-Ag nanofiber coatings on biodegradable Mg alloy implants”, Ceramics International, Cilt 45, Sayı 9, ss. 11883-11892.
  • Bakhsheshi-Rad, H. R., Hadisi, Z., Ismail, A. F., Aziz, M., Akbari, M., Berto, F., Chen, X. B., 2020, “In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance”, Polymer Testing, Cilt 82, ss. 106298.
  • Cam, M. E., Ertas, B., Alenezi, H., Hazar-Yavuz, A. N., Cesur, S., Ozcan, G. S., ..., Edirisinghe, M., 2021, “Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: An in vitro and in vivo evaluation study”, Materials Science and Engineering: C, Cilt 119, ss. 111586.
  • Cesur, S., Ulag, S., Ozak, L., Gumussoy, A., Arslan, S., Yilmaz, B. K., ..., Gunduz, O., 2020, “Production and characterization of elastomeric cardiac tissue-like patches for Myocardial Tissue Engineering”, Polymer Testing, Cilt 90, ss. 106613.
  • Cesur, S., Cam, M. E., Sayın, F. S., Su, S., Harker, A., Edirisinghe, M., Gunduz, O., 2021, “Metformin-Loaded Polymer-Based Microbubbles/Nanoparticles Generated for the Treatment of Type 2 Diabetes Mellitus”, Langmuir. Cilt 38, Sayı 17, ss. 5040–5051.
  • Cesur, S., Cam, M. E., Sayin, F. S., Gunduz, O., 2022, “Electrically controlled drug release of donepezil and BiFeO3 magnetic nanoparticle-loaded PVA microbubbles/nanoparticles for the treatment of Alzheimer's disease”, Journal of Drug Delivery Science and Technology, Cilt 67, ss. 102977.
  • Ceylan, M., Yang, S. Y., Asmatulu, R., 2017, “Effects of gentamicin-loaded PCL nanofibers on growth of Gram positive and Gram negative bacteria”, Cilt 5, ss. 40-51.
  • Cui, Z., Zheng, Z., Lin, L., Si, J., Wang, Q., Peng, X., Chen, W., 2018, “Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery”, Advances in Polymer Technology, Cilt 37, Sayı 6, ss. 1917-1928.
  • Foroutan Koudehi, M., Zibaseresht, R., 2020, “Synthesis of molecularly imprinted polymer nanoparticles containing gentamicin drug as wound dressing based polyvinyl alcohol/gelatin nanofiber”, Materials Technology, Cilt 35, sayı 1, ss. 21-30.
  • Hajikhani, M., Emam-Djomeh, Z., Askari, G., 2021, “Fabrication and characterization of mucoadhesive bioplastic patch via coaxial polylactic acid (PLA) based electrospun nanofibers with antimicrobial and wound healing application”, International Journal of Biological Macromolecules, Cilt 172, ss. 143-153.
  • Kondaveeti, S., de Assis Bueno, P. V., Carmona-Ribeiro, A. M., Esposito, F., Lincopan, N., Sierakowski, M. R., Petri, D. F. S., 2018, “Microbicidal gentamicin-alginate hydrogels”, Carbohydrate polymers, Cilt 186, ss. 159-167.
  • Konop, M., Czuwara, J., Kłodzińska, E., Laskowska, A. K., Zielenkiewicz, U., Brzozowska, I., ..., Rudnicka, L., 2018, “Development of a novel keratin dressing which accelerates full-thickness skin wound healing in diabetic mice: In vitro and in vivo studies”, Journal of Biomaterials Applications, Cilt 33, Sayı 4, ss. 527-540.
  • Koudehi, M. F., Pourmortazavi, S. M., 2018, “Polyvinyl alcohol/polypyrrole/molecularly imprinted polymer nanocomposite as highly selective chemiresistor sensor for 2, 4‐DNT vapor recognition”, Electroanalysis, Cilt 30, Sayı 10, ss. 2302-2310.
  • Kumar, V., Naqvi, S., Gopinath, P., 2018, “Applications of nanofibers in tissue engineering”, In Applications of nanomaterials, Woodhead Publishing, ss. 179-203.
  • Lv, X., Zhang, W., Liu, Y., Zhao, Y., Zhang, J., Hou, M., 2018, “Hygroscopicity modulation of hydrogels based on carboxymethyl chitosan/Alginate polyelectrolyte complexes and its application as pH-sensitive delivery system”, Carbohydrate polymers, Cilt 198, ss. 86-93.
  • Mosselhy, D. A., He, W., Hynönen, U., Meng, Y., Mohammadi, P., Palva, A., ..., Linder, M. B., 2018, “Silica–gentamicin nanohybrids: combating antibiotic resistance, bacterial biofilms, and in vivo toxicity”, International journal of nanomedicine, Cilt 13, ss. 7939.
  • Ohyabu, Y., Hatayama, H., Yunoki, S., 2014, “Evaluation of gelatin hydrogel as a potential carrier for cell transportation”, Journal of bioscience and bioengineering, Cilt 118, Sayı 1, ss. 112-115.
  • Pásztor, N., Rédai, E., Szabó, Z. I., Sipos, E., 2017, “Preparation and characterization of levofloxacin-loaded nanofibers as potential wound dressings”, Acta Marisiensis-Seria Medica, Cilt 63, Sayı 2, ss. 66-69.
  • Reneker, D. H., Yarin, A. L., Zussman, E., Xu, H., 2007, “Electrospinning of nanofibers from polymer solutions and melts” Advances in applied mechanics, Cilt 41, ss. 43-346.
  • Sikareepaisan, P., Ruktanonchai, U., Supaphol, P., 2011, “Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings”, Carbohydrate Polymers, Cilt 83, Sayı 4, ss. 1457-1469.
  • Tao, G., Wang, Y., Cai, R., Chang, H., Song, K., Zuo, H., ..., He, H., 2019, “Design and performance of sericin/poly (vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application”, Materials Science and Engineering: C, Cilt 101, ss. 341-351.
  • Wutticharoenmongkol, P., Samanmak, V., 2021, “Electrospun centella asiatica leaf extract–loaded poly (vinyl alcohol)/gelatin fiber mats as potential wound dressings”, Interdisciplinary Research Review, Cilt 16, Sayı 6, ss. 38-46.
  • Yang, D., Li, Y., Nie, J., 2007, “Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs”, Carbohydrate Polymers, Cilt 69, Sayı 3, ss. 538-543.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Sümeyye Cesur 0000-0001-5050-1303

Publication Date December 3, 2022
Submission Date June 2, 2022
Acceptance Date September 1, 2022
Published in Issue Year 2022

Cite

IEEE S. Cesur, “GENTAMİSİN YÜKLÜ POLİ(VİNİL ALKOL)/JELATİN NANOFİBERLERİN ELEKTROEĞİRME YÖNTEMİYLE YARA ÖRTÜSÜ MALZEMESİ OLARAK ÜRETİLMESİ”, KONJES, vol. 10, no. 4, pp. 878–888, 2022, doi: 10.36306/konjes.1124919.