Research Article
BibTex RIS Cite

Nükleer Reaktörlerde Nanoparçacık Olarak Kalsiyum Karbonat Kullanımının Araştırılması

Year 2023, , 1 - 9, 01.03.2023
https://doi.org/10.36306/konjes.1139083

Abstract

Nanoparçacık kullanarak sistem verimini iyileştirme, teknolojinin birçok alanında uygulanmaya başlanmıştır. Bu çalışmada nanoparçacık olarak, kireçtaşı olarak bilinen kalsiyum karbonat (CaCO3) ele alınmıştır. Kalsiyum karbonat, özlelikle inşaat ve seramik alanında yaygın kullanılsa da, bu çalışmada nükleer sistemlerde ki etkisi incelenmiştir. PhY-X açık erişimli yazılım ile radyasyon zırhlama parametrelerinden olan half value layer (HVL) ve mean free path (MFP) değerleri incelenmiştir. Sonrasında MCNP kodu ile güç dağılımı belirlenerek, COBRA kodu ile termal analizleri yapılmıştır. Bu analizler üç farklı nanoparçacık oranı için yapılmıştır. Seçilen ananoparçacık oranları; %0.01, %0.02 ve %0.03’ dür. Analizler sonucu, soğutucu olarak sadece su kullanıldığında sıcaklık değeri kanal sonunda yaklaşık 613 K iken, %0.03 oranında nanoparçacık kullanıldığında kanal sonu sıcaklığı 611.19 K olarak belirlenmiştir. Sıcaklık nanoparçacık oranıyla artmış olsa da, sadece su kullanılan duruma göre azaldığı görülmüştür.

References

  • [1] S. B. Baştürk, “An Investigation on the Flexural and Thermo-mechanical Properties of CaCO 3” Epoxy Composites, vol. 18, no.2 ,p. 161–167, 2022.
  • [2] S., Leblebici, G. Işık, “The Effects of Calcium Carbonate (Caco3) Application At Different Concentrations on Seed Germination of Different Varieties of Carthamus Tinctorius L. (Asteraceae)”, Anadolu University Journal Of Science And Technology –C Life Sciences and Biotechnology, vol. 7, no.1, p.1–1, 2018.
  • [3] A. Şenlikci, M. Doğu, E. Eren, E. Çetinkaya, S. Karadağ, “Pressure calcimeter as a simple method for measuring the CaCO3 content of soil and comparison with Scheibler calcimeter”, Toprak Dergisi, vol. Special Issue, p. 24–28, 2015.
  • [4] E. Wondu, Z. Lule, J. Kim, “Polyisocyanate-based water-soluble polyurethane/CaCO3 composites for gunpowder storage”, Polymer Testing, vol. 99, 107211, 2021.
  • [5] A.E. Abd El-Hakim, A.E.M. Fettouh , A.A.A. Haroun, A.G.M. Rabie, G.A.M. Ali, M.Y.M. Abdelrahim, "Improving the mechanical and thermal properties of chlorinated poly(vinyl chloride) by incorporating modified CaCO3 nanoparticles as a filler" , Turkish Journal of Chemistry, vol. 43, no.3, p. 750–759, 2019.
  • [6] H.B. Kaybal, H. Ulus, A. Avci, "Influence of Nano-CaCO3 Particles on Shear Strength of Epoxy Resin Adhesives", Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, vol. 9, no.3, p. 29–35, 2017.
  • [7] H. B.Kaybal, "Tabakalararası kayma mukavemeti ve kırılma tokluğu üzerine deneysel bir çalışma: CaCO3 nanoparçacıkları ile iyileştirilmiş karbon fiber takviyeli epoksi kompozitler", Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 2, p. 777–783, 2021.
  • [8] E. F. Şükür, "Dry Sliding Friction And Wear Properties Of Caco3 Nanoparticle Filled Epoxy/Carbon Fiber Composites", Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol.9, no. 2, p. 1108–1117. 2020.
  • [9] J.A. Abdalla, B.S. Thomas, R.A. Hawileh, J. Yang, B.B. Jindal, E. Ariyachandra,"Influence of nano-TiO2, nano-Fe2O3, nanoclay and nano-CaCO3 on the properties of cement/geopolymer concrete", Cleaner Materials, vol. 4(March), 100061, 2022.
  • [10] M. Al-Samhan, F. Al-Attar, "Comparative analysis of the mechanical, thermal and barrier properties of polypropylene incorporated with CaCO3 and nano CaCO3", Surfaces and Interfaces, vol. 31(May), 102055, 2022.
  • [11] A. Misra, M. Shukla, M.K. Shukla, D. Srivastava, A.K. Nagpal, "Nano CaCO3 modified multifunctional epoxy nanocomposites: A study on flexural and structural properties", Materials Today: Proceedings, vol. 47, p. 3295–3300, 2021.
  • [12] A. M. Yarahmadi, G. Shafabakhsh, A. Asakereh, "Laboratory investigation of the effect of nano Caco3 on rutting and fatigue of stone mastic asphalt mixtures", Construction and Building Materials, 317, 126127, 2022.
  • [13] C. Luan, Y. Zhou, Y. Liu, Z. Ren, J. Wang, L. Yuan, S. Du, Z. Zhou, Y. Huang, "Effects of nano-SiO2, nano-CaCO3 and nano-TiO2 on properties and microstructure of the high content calcium silicate phase cement (HCSC)", Construction and Building Materials, vol. 314(PA), 125377, 2022.
  • [14] T. Alomayri, "Performance evaluation of basalt fiber-reinforced geopolymer composites with various contents of nano CaCO3", Ceramics International, vol. 47(21), 29949–29959, 2021.
  • [15] K. Cui, D. Lau, Y. Zhang, J. Chang, "Mechanical properties and mechanism of nano-CaCO3 enhanced sulphoaluminate cement-based reactive powder concrete", Construction and Building Materials, vol. 309, 125099, 2021.
  • [16] M. Sun, J. Zhu, T. Sun, Y. Chen, X. Li, W. Yin, J. Han, "Multiple effects of nano-CaCO3 and modified polyvinyl alcohol fiber on flexure–tension-resistant performance of engineered cementitious composites", Construction and Building Materials, vol. 303, 124426, 2021.
  • [17] A. Acir, S. Uzun, Y. Genç, Ş. Asal, "Thermal Analysis Of The Vver-1000 Reactor With Thorium Fuel And Coolant Containing Al2o3, Cuo, And Tio2 Nanoparticles", Heat Transfer Research, vol. 52(4), 79-93, 2021.
  • [18] Y.Genc, S. Uzun, A. Acir, "Evaluation of the al/, cu/, si/, ag/water nanofluid effects on heat transfer characteristics in vver-1200 loaded with plutonium-thorium-based fuel". Heat Transfer Research, vol. 52(16), 1–12, 2021.
  • [19] E. Şakar, Ö. F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, "Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry", Radiation Physics and Chemistry, vol. 166, 2020.
  • [20] J.F. Briesmeister "A General Monte Carlo N-Particle Transport Code", LA-13709M, Los Alamos National Laboratory, MCNP, 2020.
  • [21] B.J. Webb, "COBRA-IV PC: A Personal Computer Version of CobraIV-I For Thermal-Hydraulic Analysis of Rod Bundle Nuclear Fuel Elements and Cores". U.S. Department of Energy under Contract DE-AC06-76RLO 1830, 1988.
  • [22] C. Aksoy, S. Dizman, B. Çakir, T. E. Koparan, E. Tiraşoğlu, "The Radiation Shielding Properties of the Low Temperature Alloys". Afyon Kocatepe University Journal of Sciences and Engineering, vol. 21(5), 1022–1026, 2021.
  • [23] Z. Aygun, N. Yarbasi, M. Aygun, "Spectroscopic and radiation shielding features of Nemrut, Pasinler, Sarıkamıs and Ikizdere obsidians in Turkey: Experimental and theoretical study", Ceramics International, vol. 47, no. 24, p. 34207-34217, 2021.
  • [24] Z. Aygun, M. Aygun, "A study on usability of Ahlat ignimbrites and pumice as radiation shielding materials, by using EpiXS code", International Journal of Environmental Science and Technology, vol. 19, p. 5675–5688, 2022.
  • [25] Z. Aygun, M. Aygun, "Radiation Shielding Potentials of Rene Alloys by Phy-X/PSD Code", ACTA PHYSICA POLONICA A, vol. 141, no. 5, p. 507-515, 2022.
  • [26] H. Knipe, F. Macori, "Half-value layer". Reference article, Radiopaedia.org. (accessed on 05 Sep 2022) https://doi.org/10.53347/rID-22271.
  • [27] M. Şekerci, H. Özdoğan, A. Kaplan, "An Investigation on Gamma-Ray Shielding Propertiesof Zr-Based Bulk Metallic Glasses", HNPS Advances in Nuclear Physics, vol. 27, p. 48–55, 2019.
  • [28] M.H. Rahimi, G. Jahanfarnia, "Thermal-Hydraulic Core Analysis Of The VVER-1000 Reactorusing A Porous Media Approach", Journal Of Fluids And Structures, vol.51, p. 85-96, 2014.
  • [29] N.E.Todreas, M.S. Kazimi, "Nuclear Systems II Elements of Thermal Hydraulic Design", Taylor & Francis, New York, 2001.
  • [30] O.E. Özkan, "Investigation of the Radiation Shielding Properties of Black Pine Wood Impregnated with Boric Acid", Kastamonu Univ., Journal of Forestry Faculty, 20(2), 200-207, 2020.
  • [31] G, ALMisned Zakaly, SAM Issa, A. Ene, G. Kilic, O. Bawazeer, A. Almatar, D. Shamsi, E. Rabaa, Z. Sideig, HO. Tekin, "Gamma-Ray Protection Properties of Bismuth-Silicate Glasses against Some Diagnostic Nuclear Medicine Radioisotopes: A Comprehensive Study". (2021). Materials, 14(21), 6668.
  • [32] O. Ağar, "Investigation on Gamma Radiation Shielding Behaviour of CdO–WO3–TeO2 Glasses from 0.015 to 10 MeV", Cumhuriyet Science Journal, 39(4), 983-990, 2018.
  • [33] V.Ghazanfari, M. Talebi, J. Khorsandi, R. Abdolahi, "Effects of water based Al2O3, TiO2, and CuO nanofluids as the coolant on solid and annular fuels for a typical VVER-1000 core", Progress in Nuclear Energy, 91, 285–294, 2016.
  • [34] E. Zarifi, G. Jahanfarnia, F. Veysi, "Thermal–hydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach", Annals of Nuclear Energy, vol. 51, p. 203-212, 2013.
  • [35] H. Saadati, K. Hadad, A. Rabiee, A.H. Kamalinia, "Evaluation of nanofluid coolant effects on VVER-1000/V-446 reactor using 3-D full core coupled neutronic and thermohydraulics analysis", Annals of Nuclear Energy, vol. 152, 107995, 2021.

INVESTIGATION OF THE USE OF CALCIUM CARBONATE AS NANOPARTICLES IN NUCLEAR REACTORS

Year 2023, , 1 - 9, 01.03.2023
https://doi.org/10.36306/konjes.1139083

Abstract

In this study, calcium carbonate (CaCO3) was considered as nanoparticle. In the first part of the study, half-value layer (HVL) and mean free path (MFP) values, which are radiation shielding parameters, were investigated in determined energy ranges by Phy-X open access software. At increasing energy levels, the HVL value reached approximately 10 cm, while the MFP value reached approximately 17 cm. In the second part of the study, the reactor core geometry was modeled with the MCNP code and then the relative power distribution values were determined. COBRA code input was prepared with the determined relative power distribution values and thermal analyzes were made. These analyzes were performed for three different nanoparticle ratios. As a result of the analysis, the temperature value at the end of the channel was 613 K when only water was used as a coolant, while the temperature value at the end of the channel was 611.19 K when 0.03% nanoparticles were used. Although the coolant temperature increased with the nanoparticle ratio, it was observed that the temperature decreased when only water was used.

References

  • [1] S. B. Baştürk, “An Investigation on the Flexural and Thermo-mechanical Properties of CaCO 3” Epoxy Composites, vol. 18, no.2 ,p. 161–167, 2022.
  • [2] S., Leblebici, G. Işık, “The Effects of Calcium Carbonate (Caco3) Application At Different Concentrations on Seed Germination of Different Varieties of Carthamus Tinctorius L. (Asteraceae)”, Anadolu University Journal Of Science And Technology –C Life Sciences and Biotechnology, vol. 7, no.1, p.1–1, 2018.
  • [3] A. Şenlikci, M. Doğu, E. Eren, E. Çetinkaya, S. Karadağ, “Pressure calcimeter as a simple method for measuring the CaCO3 content of soil and comparison with Scheibler calcimeter”, Toprak Dergisi, vol. Special Issue, p. 24–28, 2015.
  • [4] E. Wondu, Z. Lule, J. Kim, “Polyisocyanate-based water-soluble polyurethane/CaCO3 composites for gunpowder storage”, Polymer Testing, vol. 99, 107211, 2021.
  • [5] A.E. Abd El-Hakim, A.E.M. Fettouh , A.A.A. Haroun, A.G.M. Rabie, G.A.M. Ali, M.Y.M. Abdelrahim, "Improving the mechanical and thermal properties of chlorinated poly(vinyl chloride) by incorporating modified CaCO3 nanoparticles as a filler" , Turkish Journal of Chemistry, vol. 43, no.3, p. 750–759, 2019.
  • [6] H.B. Kaybal, H. Ulus, A. Avci, "Influence of Nano-CaCO3 Particles on Shear Strength of Epoxy Resin Adhesives", Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, vol. 9, no.3, p. 29–35, 2017.
  • [7] H. B.Kaybal, "Tabakalararası kayma mukavemeti ve kırılma tokluğu üzerine deneysel bir çalışma: CaCO3 nanoparçacıkları ile iyileştirilmiş karbon fiber takviyeli epoksi kompozitler", Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 2, p. 777–783, 2021.
  • [8] E. F. Şükür, "Dry Sliding Friction And Wear Properties Of Caco3 Nanoparticle Filled Epoxy/Carbon Fiber Composites", Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol.9, no. 2, p. 1108–1117. 2020.
  • [9] J.A. Abdalla, B.S. Thomas, R.A. Hawileh, J. Yang, B.B. Jindal, E. Ariyachandra,"Influence of nano-TiO2, nano-Fe2O3, nanoclay and nano-CaCO3 on the properties of cement/geopolymer concrete", Cleaner Materials, vol. 4(March), 100061, 2022.
  • [10] M. Al-Samhan, F. Al-Attar, "Comparative analysis of the mechanical, thermal and barrier properties of polypropylene incorporated with CaCO3 and nano CaCO3", Surfaces and Interfaces, vol. 31(May), 102055, 2022.
  • [11] A. Misra, M. Shukla, M.K. Shukla, D. Srivastava, A.K. Nagpal, "Nano CaCO3 modified multifunctional epoxy nanocomposites: A study on flexural and structural properties", Materials Today: Proceedings, vol. 47, p. 3295–3300, 2021.
  • [12] A. M. Yarahmadi, G. Shafabakhsh, A. Asakereh, "Laboratory investigation of the effect of nano Caco3 on rutting and fatigue of stone mastic asphalt mixtures", Construction and Building Materials, 317, 126127, 2022.
  • [13] C. Luan, Y. Zhou, Y. Liu, Z. Ren, J. Wang, L. Yuan, S. Du, Z. Zhou, Y. Huang, "Effects of nano-SiO2, nano-CaCO3 and nano-TiO2 on properties and microstructure of the high content calcium silicate phase cement (HCSC)", Construction and Building Materials, vol. 314(PA), 125377, 2022.
  • [14] T. Alomayri, "Performance evaluation of basalt fiber-reinforced geopolymer composites with various contents of nano CaCO3", Ceramics International, vol. 47(21), 29949–29959, 2021.
  • [15] K. Cui, D. Lau, Y. Zhang, J. Chang, "Mechanical properties and mechanism of nano-CaCO3 enhanced sulphoaluminate cement-based reactive powder concrete", Construction and Building Materials, vol. 309, 125099, 2021.
  • [16] M. Sun, J. Zhu, T. Sun, Y. Chen, X. Li, W. Yin, J. Han, "Multiple effects of nano-CaCO3 and modified polyvinyl alcohol fiber on flexure–tension-resistant performance of engineered cementitious composites", Construction and Building Materials, vol. 303, 124426, 2021.
  • [17] A. Acir, S. Uzun, Y. Genç, Ş. Asal, "Thermal Analysis Of The Vver-1000 Reactor With Thorium Fuel And Coolant Containing Al2o3, Cuo, And Tio2 Nanoparticles", Heat Transfer Research, vol. 52(4), 79-93, 2021.
  • [18] Y.Genc, S. Uzun, A. Acir, "Evaluation of the al/, cu/, si/, ag/water nanofluid effects on heat transfer characteristics in vver-1200 loaded with plutonium-thorium-based fuel". Heat Transfer Research, vol. 52(16), 1–12, 2021.
  • [19] E. Şakar, Ö. F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, "Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry", Radiation Physics and Chemistry, vol. 166, 2020.
  • [20] J.F. Briesmeister "A General Monte Carlo N-Particle Transport Code", LA-13709M, Los Alamos National Laboratory, MCNP, 2020.
  • [21] B.J. Webb, "COBRA-IV PC: A Personal Computer Version of CobraIV-I For Thermal-Hydraulic Analysis of Rod Bundle Nuclear Fuel Elements and Cores". U.S. Department of Energy under Contract DE-AC06-76RLO 1830, 1988.
  • [22] C. Aksoy, S. Dizman, B. Çakir, T. E. Koparan, E. Tiraşoğlu, "The Radiation Shielding Properties of the Low Temperature Alloys". Afyon Kocatepe University Journal of Sciences and Engineering, vol. 21(5), 1022–1026, 2021.
  • [23] Z. Aygun, N. Yarbasi, M. Aygun, "Spectroscopic and radiation shielding features of Nemrut, Pasinler, Sarıkamıs and Ikizdere obsidians in Turkey: Experimental and theoretical study", Ceramics International, vol. 47, no. 24, p. 34207-34217, 2021.
  • [24] Z. Aygun, M. Aygun, "A study on usability of Ahlat ignimbrites and pumice as radiation shielding materials, by using EpiXS code", International Journal of Environmental Science and Technology, vol. 19, p. 5675–5688, 2022.
  • [25] Z. Aygun, M. Aygun, "Radiation Shielding Potentials of Rene Alloys by Phy-X/PSD Code", ACTA PHYSICA POLONICA A, vol. 141, no. 5, p. 507-515, 2022.
  • [26] H. Knipe, F. Macori, "Half-value layer". Reference article, Radiopaedia.org. (accessed on 05 Sep 2022) https://doi.org/10.53347/rID-22271.
  • [27] M. Şekerci, H. Özdoğan, A. Kaplan, "An Investigation on Gamma-Ray Shielding Propertiesof Zr-Based Bulk Metallic Glasses", HNPS Advances in Nuclear Physics, vol. 27, p. 48–55, 2019.
  • [28] M.H. Rahimi, G. Jahanfarnia, "Thermal-Hydraulic Core Analysis Of The VVER-1000 Reactorusing A Porous Media Approach", Journal Of Fluids And Structures, vol.51, p. 85-96, 2014.
  • [29] N.E.Todreas, M.S. Kazimi, "Nuclear Systems II Elements of Thermal Hydraulic Design", Taylor & Francis, New York, 2001.
  • [30] O.E. Özkan, "Investigation of the Radiation Shielding Properties of Black Pine Wood Impregnated with Boric Acid", Kastamonu Univ., Journal of Forestry Faculty, 20(2), 200-207, 2020.
  • [31] G, ALMisned Zakaly, SAM Issa, A. Ene, G. Kilic, O. Bawazeer, A. Almatar, D. Shamsi, E. Rabaa, Z. Sideig, HO. Tekin, "Gamma-Ray Protection Properties of Bismuth-Silicate Glasses against Some Diagnostic Nuclear Medicine Radioisotopes: A Comprehensive Study". (2021). Materials, 14(21), 6668.
  • [32] O. Ağar, "Investigation on Gamma Radiation Shielding Behaviour of CdO–WO3–TeO2 Glasses from 0.015 to 10 MeV", Cumhuriyet Science Journal, 39(4), 983-990, 2018.
  • [33] V.Ghazanfari, M. Talebi, J. Khorsandi, R. Abdolahi, "Effects of water based Al2O3, TiO2, and CuO nanofluids as the coolant on solid and annular fuels for a typical VVER-1000 core", Progress in Nuclear Energy, 91, 285–294, 2016.
  • [34] E. Zarifi, G. Jahanfarnia, F. Veysi, "Thermal–hydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach", Annals of Nuclear Energy, vol. 51, p. 203-212, 2013.
  • [35] H. Saadati, K. Hadad, A. Rabiee, A.H. Kamalinia, "Evaluation of nanofluid coolant effects on VVER-1000/V-446 reactor using 3-D full core coupled neutronic and thermohydraulics analysis", Annals of Nuclear Energy, vol. 152, 107995, 2021.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Sinem Uzun 0000-0002-2814-1062

Yasin Genç 0000-0002-2786-4824

Adem Acır 0000-0002-9856-3623

Publication Date March 1, 2023
Submission Date July 1, 2022
Acceptance Date October 31, 2022
Published in Issue Year 2023

Cite

IEEE S. Uzun, Y. Genç, and A. Acır, “INVESTIGATION OF THE USE OF CALCIUM CARBONATE AS NANOPARTICLES IN NUCLEAR REACTORS”, KONJES, vol. 11, no. 1, pp. 1–9, 2023, doi: 10.36306/konjes.1139083.