Research Article
BibTex RIS Cite

A COMPARATIVE STUDY OF RELEASE KINETICS BEHAVIOR MODELS AND SHELF LIFE ASSESSMENT OF BACITRACIN ZINC-LOADED PLA COMPOSITES

Year 2023, , 1006 - 1015, 01.12.2023
https://doi.org/10.36306/konjes.1328688

Abstract

Mathematical modeling aims to simplify the complex process of drug release and to gain knowledge about the release mechanisms specific to a given material system. Consequently, a mathematical model focuses primarily on one or two important factors. Drug release aims to maximize the bioactivity of both naturally derived and synthetically derived macromolecules, thus increasing their clinical applicability and improving the overall quality of life. This study focused on fabricating PLA composites with different weight percentages of Bacitracin Zinc (0.5, 1.0, and 2.0) and evaluating their potential as a drug delivery system. To understand the release mechanism of Bacitracin Zinc from the PLA composites, we developed a Franz diffusion kinetic model and a mathematical model for cumulative release kinetics. The Franz diffusion model was utilized to analyze the release behavior of the PLA/Bacitracin Zinc composite structure. The results indicated a sustained release rate, following a Zero Order release kinetics pattern. Furthermore, the shelf life of the composite structure was determined to be 125 days. Python programming was employed to model the release behavior and estimate the shelf life of Bacitracin Zinc (0.5, 1.0, and 2.0) incorporated into the PLA matrix to compare different weight percentages' behavior and shelf life.

References

  • D. Y. Arifin, L. Y. Lee, and C. H. Wang, “Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems,” Advanced Drug Delivery Reviews, vol. 58, no. 12-13, pp. 1274-1325, 2006, doi: 10.1016/j.addr.2006.09.007.
  • O. Pillai and R. Panchagnula, “Polymers in drug delivery,” Current Opinion in Chemical Biology. vol. 5, no. 4, pp. 447-451, 2001, doi: 10.1016/S1367-5931(00)00227-1.
  • M. Chasin and R. Langer, Eds., Biodegradable polymers as drug delivery systems. New York: Marcel Dekker, 1990.
  • J. Siepmann and F. Siepmann, “Mathematical modeling of drug delivery,” International Journal of Pharmaceutics, vol. 364, no. 2, pp. 328-343, 2008, doi: 10.1016/j.ijpharm.2008.09.004.
  • S. B. Lin, K. S. Hwang, S. Y. Tsay, and S. L. Cooper, “Segmental orientation studies of polyether polyurethane block copolymers with different hard segment lengths and distributions,” Colloid Polym. Sci., vol. 263, pp. 128-140, 1985, doi: 10.1007/BF01412787.
  • L. K. Fung and W. M. Saltzman, “Polymeric implants for cancer chemotherapy,” Advanced Drug Delivery Reviews, vol. 26, no. 2-3, pp. 209-230, 1997, doi: 10.1016/S0169-409X(97)00036-7.
  • J. Heller, R. W. Baker, R. M. Gale, and J. O. Rodin, “Controlled drug release by polymer dissolution. I. Partial esters of maleic anhydride copolymers—properties and theory,” J. Appl. Polym. Sci., vol. 22, no. 7, pp. 1991–2009, 1978.
  • J. Heller, “Controlled release of biologically active compounds from bioerodible polymers,” Biomaterials, vol. 1, no. 1, pp. 51-57, 1980, doi: 10.1016/0142-9612(80)90060-5.
  • K. R. Kamath and K. Park, “Biodegradable hydrogels in drug delivery,” Adv. Drug Deliv. Rev., vol. 11, no. 1-2, pp. 59-84, 1993, doi: 10.1016/0169-409X(93)90027-2.
  • U. Edlund and A. C. Albertsson, “Degradable polymer microspheres for controlled drug delivery,”in Degradable Aliphatic Polyesters, Advances in Polymer Science, Springer, Berlin, Heidelberg, vol. 157, pp. 67-112, 2002, doi: 10.1007/3-540-45734-8_3.
  • J. Yao, S. Zhang, W. Li, Z. Du, and Y. Li, “In vitro drug controlled-release behavior of an electrospun modified poly (lactic acid)/bacitracin drug delivery system,” RSC Adv., vol. 6, no. 1, pp. 515–521, 2016.
  • M. A. Repka, S. Prodduturi, M. Munjal, and P. Mididoddi, “Matrix-and reservoir-based transmucosal delivery systems: tailoring delivery solutions,” Am. J. Drug Deliv., vol. 2, pp. 173–192, 2004.
  • D. Cai, B. Zhang, J. Zhu, H. Xu, P. Liu, Z. Wang, J. Li, Z. Yang, X. Ma, and S. Chen, “Enhanced bacitracin production by systematically engineering S-adenosylmethionine supply modules in Bacillus licheniformis,” Front. Bioeng. Biotechnol., vol. 8, pp. 305, 2020.
  • M. Goldraich and J. Kost, “Glucose-sensitive polymeric matrices for controlled drug delivery,” Clin. Mater., vol. 13, no. 1–4, pp. 135–142, 1993.
  • I. Lavon and J. Kost, “Mass transport enhancement by ultrasound in non-degradable polymeric controlled release systems,” J. Control. release, vol. 54, no. 1, pp. 1–7, 1998.
  • L. Singh, V. Kumar, and B. D. Ratner, “Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications,” Biomaterials, vol. 25, no. 13, pp. 2611-2617, 2004, doi: 10.1016/j.biomaterials.2003.09.040.
  • C. E. Astete and C. M. Sabliov, “Synthesis and characterization of PLGA nanoparticles,” Journal of Biomaterials Science, Polymer Edition, vol. 17, no. 3, pp. 247-289, 2006, doi: 10.1163/156856206775997322.
  • Y. Kakizawa, R. Nishio, T. Hirano, Y. Koshi, M. Nukiwa, M. Koiwa, J. Michizoe, and N. Ida, “Controlled release of protein drugs from newly developed amphiphilic polymer-based microparticles composed of nanoparticles,” J. Control. Release, vol. 142, no. 1, pp. 8-13, 2010, doi: 10.1016/j.jconrel.2009.09.024.
  • D. K. Sahana, G. Mittal, V. Bhardwaj, and M. N. V. R. Kumar, “PLGA nanoparticles for oral delivery of hydrophobic drugs: Influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug,” J. Pharm. Sci., vol. 97, no. 4, pp. 1530-1542, 2008, doi: 10.1002/jps.21158.
  • Y. P. Li, Y. Y. Pei, X. Y. Zhang, Z. H. Gu, Z. H. Zhou, W. F. Yuan, J. J. Zhou, J. H. Zhu, and X. J. Gao, “PEGylated PLGA nanoparticles as protein carriers: Synthesis, preparation and biodistribution in rats,” J. Control. Release, vol. 71, no. 2, pp. 203-211, 2001, doi: 10.1016/S0168-3659(01)00218-8.
  • L. Brannon-Peppas, “Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery,” International Journal of Pharmaceutics, vol. 116, no. 1, pp. 1-9, 1995, doi: 10.1016/0378-5173(94)00324-X.
  • T. J. Franz, “Percutaneous absorption. On the relevance of in vitro data,” J. Invest. Dermatol., vol. 64, no. 3, pp. 190-195, 1975, doi: 10.1111/1523-1747.ep12533356.
  • L. Bartosova and J. Bajgar, “Transdermal Drug Delivery In Vitro Using Diffusion Cells,” Curr. Med. Chem., vol. 19, no. 27, pp. 4671-4677, 2012, doi: 10.2174/092986712803306358.
  • B. Godin and E. Touitou, “Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models,” Advanced Drug Delivery Reviews, vol. 59, no. 11, pp. 1152-1161, 2007, doi: 10.1016/j.addr.2007.07.004.
  • J. Yao, S. Zhang, W. Li, Z. Du, and Y. Li, “In vitro drug controlled-release behavior of an electrospun modified poly(lactic acid)/bacitracin drug delivery system,” RSC Adv., vol. 6, no. 1, pp. 515–521, 2015, doi: 10.1039/c5ra22467e.
  • F. Ciftci, N. Duygulu, Y. Yilmazer, Z. Karavelioğlu, R. Çakır Koç, O. Gündüz, and C. B. Ustündag, “Antibacterial and cellular behavior of PLA-based bacitracin and zataria multiflora nanofibers produced by electrospinning method,” Int. J. Polym. Mater. Polym. Biomater., vol. 72, no. 4, pp. 319–334, 2023, doi: 10.1080/00914037.2021.2008391.
  • S. Afzal, K. Barkat, M. U. Ashraf, I. Khalid, Y. Mehmood, N. H. Shah, S. F. Badshah, S. Naeem, S. A. Khan, and M. Kazi, “Formulation and Characterization of Polymeric Cross-Linked Hydrogel Patches for Topical Delivery of Antibiotic for Healing Wound Infections,” Polymers (Basel)., vol. 15, no. 7, pp. 1652, 2023.
  • F. Ciftci, “Release kinetics modelling and in vivo-vitro, shelf-life study of resveratrol added composite transdermal scaffolds,” Int. J. Biol. Macromol., vol. 235, pp. 123769, 2023, doi: 10.1016/j.ijbiomac.2023.123769.
  • Y. Srisuwan and Y. Baimark, “Preparation of biodegradable silk fibroin/alginate blend films for controlled release of antimicrobial drugs,” Adv. Mater. Sci. Eng., vol. 2013, Article ID 412458, 2013, https://doi.org/10.1155/2013/412458.
  • M. Makaremi, H. Yousefi, G. Cavallaro, G. Lazzara, C. B. S. Goh, S. M. Lee, A. Solouk, and P. Pasbakhsh, “Safely dissolvable and healable active packaging films based on alginate and pectin,” Polymers (Basel)., vol. 11, no. 10, pp. 1594, 2019.
  • A. Gokhale, “Achieving zero-order release kinetics using multi-step diffusion-based drug delivery,” Pharm. Technol. Eur., vol. 38, no. 5, 2014.
  • Y. Fu, G. Fodorean, P. Navard, and E. Peuvrel-Disdier, “Study of the partial wetting morphology in polylactide/poly[(butylene adipate)-co-terephthalate]/polyamide ternary blends: case of composite droplets,” Polym. Int., vol. 67, no. 10, pp. 1378–1385, 2018, doi: 10.1002/pi.5651.
  • Q. Bao, J. Shen, R. Jog, C. Zhang, B. Newman, Y. Wang, S. Choi, and D. J. Burgess, “In vitro release testing method development for ophthalmic ointments,” Int. J. Pharm., vol. 526, no. 1-2, pp. 145-156, 2017, doi: 10.1016/j.ijpharm.2017.04.075.
  • B. Baert, J. Boonen, C. Burvenich, N. Roche, F. Stillaert, P. Blondeel, J. van Bocxlaer, and B. de Spiegeleer, “A new discriminative criterion for the development of franz diffusion tests for transdermal pharmaceuticals,” J. Pharm. Pharm. Sci., vol. 13, no. 2, pp. 218-230, 2010, doi: 10.18433/j3ws33.
  • J. F. PJ, K. J. Arun, A. A. Navas, and I. Joseph, “Biomedical applications of polymers—An overview,” Macromolecules, vol. 28, no. 4, pp. 939–944, 2018.
  • F. Cavalieri, A. El Hamassi, E. Chiessi, and G. Paradossi, “Stable polymeric microballoons as multifunctional device for biomedical uses: synthesis and characterization,” Langmuir, vol. 21, no. 19, pp. 8758–8764, 2005.
  • J. C. Middleton and A. J. Tipton, “Synthetic biodegradable polymers as orthopedic devices,” Biomaterials, vol. 21, no. 23, pp. 2335–2346, 2000.
  • R. Waterman, J. Lewis, and K. C. Waterman, “Accelerated stability modeling for peptides: a case study with bacitracin,” AAPS PharmSciTech, vol. 18, no. 5, pp. 1692–1698, 2017.
  • M. Asghari, A. AlizadehDoghikalaey, R. Safari, and A. Arshadi, “The effect of the Z bacitracin on the shelf–life of the silver carp during refrigeration,” Iran. J. food Nutr., vol. 3, pp. 31–38, 2011.
Year 2023, , 1006 - 1015, 01.12.2023
https://doi.org/10.36306/konjes.1328688

Abstract

References

  • D. Y. Arifin, L. Y. Lee, and C. H. Wang, “Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems,” Advanced Drug Delivery Reviews, vol. 58, no. 12-13, pp. 1274-1325, 2006, doi: 10.1016/j.addr.2006.09.007.
  • O. Pillai and R. Panchagnula, “Polymers in drug delivery,” Current Opinion in Chemical Biology. vol. 5, no. 4, pp. 447-451, 2001, doi: 10.1016/S1367-5931(00)00227-1.
  • M. Chasin and R. Langer, Eds., Biodegradable polymers as drug delivery systems. New York: Marcel Dekker, 1990.
  • J. Siepmann and F. Siepmann, “Mathematical modeling of drug delivery,” International Journal of Pharmaceutics, vol. 364, no. 2, pp. 328-343, 2008, doi: 10.1016/j.ijpharm.2008.09.004.
  • S. B. Lin, K. S. Hwang, S. Y. Tsay, and S. L. Cooper, “Segmental orientation studies of polyether polyurethane block copolymers with different hard segment lengths and distributions,” Colloid Polym. Sci., vol. 263, pp. 128-140, 1985, doi: 10.1007/BF01412787.
  • L. K. Fung and W. M. Saltzman, “Polymeric implants for cancer chemotherapy,” Advanced Drug Delivery Reviews, vol. 26, no. 2-3, pp. 209-230, 1997, doi: 10.1016/S0169-409X(97)00036-7.
  • J. Heller, R. W. Baker, R. M. Gale, and J. O. Rodin, “Controlled drug release by polymer dissolution. I. Partial esters of maleic anhydride copolymers—properties and theory,” J. Appl. Polym. Sci., vol. 22, no. 7, pp. 1991–2009, 1978.
  • J. Heller, “Controlled release of biologically active compounds from bioerodible polymers,” Biomaterials, vol. 1, no. 1, pp. 51-57, 1980, doi: 10.1016/0142-9612(80)90060-5.
  • K. R. Kamath and K. Park, “Biodegradable hydrogels in drug delivery,” Adv. Drug Deliv. Rev., vol. 11, no. 1-2, pp. 59-84, 1993, doi: 10.1016/0169-409X(93)90027-2.
  • U. Edlund and A. C. Albertsson, “Degradable polymer microspheres for controlled drug delivery,”in Degradable Aliphatic Polyesters, Advances in Polymer Science, Springer, Berlin, Heidelberg, vol. 157, pp. 67-112, 2002, doi: 10.1007/3-540-45734-8_3.
  • J. Yao, S. Zhang, W. Li, Z. Du, and Y. Li, “In vitro drug controlled-release behavior of an electrospun modified poly (lactic acid)/bacitracin drug delivery system,” RSC Adv., vol. 6, no. 1, pp. 515–521, 2016.
  • M. A. Repka, S. Prodduturi, M. Munjal, and P. Mididoddi, “Matrix-and reservoir-based transmucosal delivery systems: tailoring delivery solutions,” Am. J. Drug Deliv., vol. 2, pp. 173–192, 2004.
  • D. Cai, B. Zhang, J. Zhu, H. Xu, P. Liu, Z. Wang, J. Li, Z. Yang, X. Ma, and S. Chen, “Enhanced bacitracin production by systematically engineering S-adenosylmethionine supply modules in Bacillus licheniformis,” Front. Bioeng. Biotechnol., vol. 8, pp. 305, 2020.
  • M. Goldraich and J. Kost, “Glucose-sensitive polymeric matrices for controlled drug delivery,” Clin. Mater., vol. 13, no. 1–4, pp. 135–142, 1993.
  • I. Lavon and J. Kost, “Mass transport enhancement by ultrasound in non-degradable polymeric controlled release systems,” J. Control. release, vol. 54, no. 1, pp. 1–7, 1998.
  • L. Singh, V. Kumar, and B. D. Ratner, “Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications,” Biomaterials, vol. 25, no. 13, pp. 2611-2617, 2004, doi: 10.1016/j.biomaterials.2003.09.040.
  • C. E. Astete and C. M. Sabliov, “Synthesis and characterization of PLGA nanoparticles,” Journal of Biomaterials Science, Polymer Edition, vol. 17, no. 3, pp. 247-289, 2006, doi: 10.1163/156856206775997322.
  • Y. Kakizawa, R. Nishio, T. Hirano, Y. Koshi, M. Nukiwa, M. Koiwa, J. Michizoe, and N. Ida, “Controlled release of protein drugs from newly developed amphiphilic polymer-based microparticles composed of nanoparticles,” J. Control. Release, vol. 142, no. 1, pp. 8-13, 2010, doi: 10.1016/j.jconrel.2009.09.024.
  • D. K. Sahana, G. Mittal, V. Bhardwaj, and M. N. V. R. Kumar, “PLGA nanoparticles for oral delivery of hydrophobic drugs: Influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug,” J. Pharm. Sci., vol. 97, no. 4, pp. 1530-1542, 2008, doi: 10.1002/jps.21158.
  • Y. P. Li, Y. Y. Pei, X. Y. Zhang, Z. H. Gu, Z. H. Zhou, W. F. Yuan, J. J. Zhou, J. H. Zhu, and X. J. Gao, “PEGylated PLGA nanoparticles as protein carriers: Synthesis, preparation and biodistribution in rats,” J. Control. Release, vol. 71, no. 2, pp. 203-211, 2001, doi: 10.1016/S0168-3659(01)00218-8.
  • L. Brannon-Peppas, “Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery,” International Journal of Pharmaceutics, vol. 116, no. 1, pp. 1-9, 1995, doi: 10.1016/0378-5173(94)00324-X.
  • T. J. Franz, “Percutaneous absorption. On the relevance of in vitro data,” J. Invest. Dermatol., vol. 64, no. 3, pp. 190-195, 1975, doi: 10.1111/1523-1747.ep12533356.
  • L. Bartosova and J. Bajgar, “Transdermal Drug Delivery In Vitro Using Diffusion Cells,” Curr. Med. Chem., vol. 19, no. 27, pp. 4671-4677, 2012, doi: 10.2174/092986712803306358.
  • B. Godin and E. Touitou, “Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models,” Advanced Drug Delivery Reviews, vol. 59, no. 11, pp. 1152-1161, 2007, doi: 10.1016/j.addr.2007.07.004.
  • J. Yao, S. Zhang, W. Li, Z. Du, and Y. Li, “In vitro drug controlled-release behavior of an electrospun modified poly(lactic acid)/bacitracin drug delivery system,” RSC Adv., vol. 6, no. 1, pp. 515–521, 2015, doi: 10.1039/c5ra22467e.
  • F. Ciftci, N. Duygulu, Y. Yilmazer, Z. Karavelioğlu, R. Çakır Koç, O. Gündüz, and C. B. Ustündag, “Antibacterial and cellular behavior of PLA-based bacitracin and zataria multiflora nanofibers produced by electrospinning method,” Int. J. Polym. Mater. Polym. Biomater., vol. 72, no. 4, pp. 319–334, 2023, doi: 10.1080/00914037.2021.2008391.
  • S. Afzal, K. Barkat, M. U. Ashraf, I. Khalid, Y. Mehmood, N. H. Shah, S. F. Badshah, S. Naeem, S. A. Khan, and M. Kazi, “Formulation and Characterization of Polymeric Cross-Linked Hydrogel Patches for Topical Delivery of Antibiotic for Healing Wound Infections,” Polymers (Basel)., vol. 15, no. 7, pp. 1652, 2023.
  • F. Ciftci, “Release kinetics modelling and in vivo-vitro, shelf-life study of resveratrol added composite transdermal scaffolds,” Int. J. Biol. Macromol., vol. 235, pp. 123769, 2023, doi: 10.1016/j.ijbiomac.2023.123769.
  • Y. Srisuwan and Y. Baimark, “Preparation of biodegradable silk fibroin/alginate blend films for controlled release of antimicrobial drugs,” Adv. Mater. Sci. Eng., vol. 2013, Article ID 412458, 2013, https://doi.org/10.1155/2013/412458.
  • M. Makaremi, H. Yousefi, G. Cavallaro, G. Lazzara, C. B. S. Goh, S. M. Lee, A. Solouk, and P. Pasbakhsh, “Safely dissolvable and healable active packaging films based on alginate and pectin,” Polymers (Basel)., vol. 11, no. 10, pp. 1594, 2019.
  • A. Gokhale, “Achieving zero-order release kinetics using multi-step diffusion-based drug delivery,” Pharm. Technol. Eur., vol. 38, no. 5, 2014.
  • Y. Fu, G. Fodorean, P. Navard, and E. Peuvrel-Disdier, “Study of the partial wetting morphology in polylactide/poly[(butylene adipate)-co-terephthalate]/polyamide ternary blends: case of composite droplets,” Polym. Int., vol. 67, no. 10, pp. 1378–1385, 2018, doi: 10.1002/pi.5651.
  • Q. Bao, J. Shen, R. Jog, C. Zhang, B. Newman, Y. Wang, S. Choi, and D. J. Burgess, “In vitro release testing method development for ophthalmic ointments,” Int. J. Pharm., vol. 526, no. 1-2, pp. 145-156, 2017, doi: 10.1016/j.ijpharm.2017.04.075.
  • B. Baert, J. Boonen, C. Burvenich, N. Roche, F. Stillaert, P. Blondeel, J. van Bocxlaer, and B. de Spiegeleer, “A new discriminative criterion for the development of franz diffusion tests for transdermal pharmaceuticals,” J. Pharm. Pharm. Sci., vol. 13, no. 2, pp. 218-230, 2010, doi: 10.18433/j3ws33.
  • J. F. PJ, K. J. Arun, A. A. Navas, and I. Joseph, “Biomedical applications of polymers—An overview,” Macromolecules, vol. 28, no. 4, pp. 939–944, 2018.
  • F. Cavalieri, A. El Hamassi, E. Chiessi, and G. Paradossi, “Stable polymeric microballoons as multifunctional device for biomedical uses: synthesis and characterization,” Langmuir, vol. 21, no. 19, pp. 8758–8764, 2005.
  • J. C. Middleton and A. J. Tipton, “Synthetic biodegradable polymers as orthopedic devices,” Biomaterials, vol. 21, no. 23, pp. 2335–2346, 2000.
  • R. Waterman, J. Lewis, and K. C. Waterman, “Accelerated stability modeling for peptides: a case study with bacitracin,” AAPS PharmSciTech, vol. 18, no. 5, pp. 1692–1698, 2017.
  • M. Asghari, A. AlizadehDoghikalaey, R. Safari, and A. Arshadi, “The effect of the Z bacitracin on the shelf–life of the silver carp during refrigeration,” Iran. J. food Nutr., vol. 3, pp. 31–38, 2011.
There are 39 citations in total.

Details

Primary Language English
Subjects Biomaterial
Journal Section Research Article
Authors

Ali Can Özarslan 0000-0002-4864-0598

Fatih Çiftçi 0000-0002-3062-2404

Publication Date December 1, 2023
Submission Date July 17, 2023
Acceptance Date September 13, 2023
Published in Issue Year 2023

Cite

IEEE A. C. Özarslan and F. Çiftçi, “A COMPARATIVE STUDY OF RELEASE KINETICS BEHAVIOR MODELS AND SHELF LIFE ASSESSMENT OF BACITRACIN ZINC-LOADED PLA COMPOSITES”, KONJES, vol. 11, no. 4, pp. 1006–1015, 2023, doi: 10.36306/konjes.1328688.