Research Article
BibTex RIS Cite

SOLAR-POWERED UAV: A NOVEL APPROACH TO CONCEPTUAL DESIGN

Year 2024, , 396 - 409, 01.06.2024
https://doi.org/10.36306/konjes.1402465

Abstract

The increasing environmental impact of fossil fuel usage has propelled a sense of urgency to address depletion concerns and environmental consequences. This article explores the potential of solar-powered unmanned aerial vehicles (UAVs) as a sustainable alternative in the aviation sector. Originating from advancements in photovoltaic (PV) technology, the integration of solar cells onto aircraft structures has led to innovations in electric aircraft, with a focus on UAVs. The study searchs the conceptual design methodology, emphasizing the complex interplay of factors such as aerodynamics, structural analysis, and performance requirements in solar UAV design. The selection and analysis of solar cells, energy storage systems, and their integration into the UAV are detailed. The study further discusses the crucial aspects of solar irradiation, weight analysis, and aerodynamic parameters in the design process. The proposed UAV design incorporates monocrystalline silicon solar cells, lithium batteries, and Maximum Power Point Tracking (MPPT) technology. A constraint analysis aids in optimizing power-to-weight ratios, thrust-to-weight ratios, and wing loading. The article concludes with a detailed weight estimation, aerodynamic parameters, and a conceptual design that envisions a solar-powered UAV capable of sustained flight. The outlined approach provides insights for future enhancements in solar-powered UAV technology, addressing challenges and contributing to the evolution of eco-friendly aviation solutions.

References

  • “The Energy Report | Publications | WWF”, World Wildlife Fund. [Online]. Available: https://www.worldwildlife.org/publications/the-energy-report [Accessed Oct. 18, 2023]
  • R. Boucher, “History of solar flight”, içinde 20th Joint Propulsion Conference, Cincinnati,OH,U.S.A.: American Institute of Aeronautics and Astronautics, June 1984. doi: 10.2514/6.1984-1429.
  • W. Ni, Y. Bi, D. Wu, ve X. Ma, “Energy-optimal trajectory planning for solar-powered aircraft using soft actor-critic”, Chin. J. Aeronaut., c. 35, sy 10, ss. 337-353, Oct. 2022, doi: 10.1016/j.cja.2021.11.009.
  • W. Jamshed, K. S. Nisar, R. W. Ibrahim, F. Shahzad, ve M. R. Eid, “Thermal expansion optimization in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar thermal application”, J. Mater. Res. Technol., c. 14, ss. 985-1006, Sept. 2021, doi: 10.1016/j.jmrt.2021.06.031.
  • K. Milidonis, A. Eliades, V. Grigoriev, ve M. J. Blanco, “Unmanned Aerial Vehicles (UAVs) in the planning, operation and maintenance of concentrating solar thermal systems: A review”, Sol. Energy, c. 254, ss. 182-194, Nis. 2023, doi: 10.1016/j.solener.2023.03.005.
  • J. Ge ve L. Liu, “Electromagnetic interference modeling and elimination for a solar/hydrogen hybrid powered small-scale UAV”, Chin. J. Aeronaut., c. 36, sy 10, ss. 293-308, Oct. 2023, doi: 10.1016/j.cja.2023.03.044.
  • K. L. B. Cook, “The Silent Force Multiplier: The History and Role of UAVs in Warfare”, içinde 2007 IEEE Aerospace Conference, Mar. 2007, ss. 1-7. doi: 10.1109/AERO.2007.352737.
  • P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, ve I. Moscholios, “A compilation of UAV applications for precision agriculture”, Comput. Netw., c. 172, s. 107148, May. 2020, doi: 10.1016/j.comnet.2020.107148.
  • Y. Chu, C. Ho, Y. Lee, ve B. Li, “Development of a Solar-Powered Unmanned Aerial Vehicle for Extended Flight Endurance”, Drones, c. 5, sy 2, Art. sy 2, June 2021, doi: 10.3390/drones5020044.
  • P. Panagiotou, I. Tsavlidis, ve K. Yakinthos, “Conceptual design of a hybrid solar MALE UAV”, Aerosp. Sci. Technol., c. 53, ss. 207-219, June 2016, doi: 10.1016/j.ast.2016.03.023.
  • “Aircraft Design: A Conceptual Approach, Sixth Edition | AIAA Education Series” [E-book]. https://arc.aiaa.org/doi/book/10.2514/4.104909
  • J. Roskam, Airplane Design, Part II : Preliminary Configuration Design and Integration of the Propulsion System. Lawrence: DARcorporation, 1999. [Online]. Available: https://www.biblio.com/book/airplane-design-part-ii-preliminary-configuration/d/1568943846 [Accessed Oct. 30, 2023]
  • A. Noth, R. Siegwart, ve W. Engel, “Design of Solar Powered Airplanes for Continuous Flight”, Env. Res, Oca. 2007.
  • G. Romeo, G. Frulla, ve E. Cestino, “Design of a High-Altitude Long-Endurance Solar-Powered Unmanned Air Vehicle for Multi-Payload and Operations”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., c. 221, sy 2, ss. 199-216, Şub. 2007, doi: 10.1243/09544100JAERO119.
  • S. Jashnani, T. R. Nada, M. Ishfaq, A. Khamker, ve P. Shaholia, “Sizing and preliminary hardware testing of solar powered UAV”, Egypt. J. Remote Sens. Space Sci., c. 16, sy 2, ss. 189-198, Ara. 2013, doi: 10.1016/j.ejrs.2013.05.002.
  • “Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL”. [Online]. Available: https://www.nrel.gov/pv/cell-efficiency.html [Accessed Oct. 30, 2023].
  • “Solar Impulse - Around the World to Promote Clean Technologies”. [Online]. Available: https://aroundtheworld.solarimpulse.com/adventure [Accessed Oct. 30 2023].
  • “Getting to Grips with Aircraft Performance - February 2002 | SKYbrary Aviation Safety”. [Online]. Available: https://skybrary.aero/bookshelf/getting-grips-aircraft-performance-february-2002 [Accessed Oct. 30, 2023].
  • S. Afroze vd., “Emerging and Recycling of Li-Ion Batteries to Aid in Energy Storage, A Review”, Recycling, c. 8, sy 3, Art. sy 3, June 2023, doi: 10.3390/recycling8030048.
  • C. Xiao, B. Wang, D. Zhao, ve C. Wang, “Comprehensive Investigation on Lithium Batteries for Electric and Hybrid-Electric Unmanned Aerial Vehicle Applications”, Therm. Sci. Eng. Prog., c. 38, s. 101677, Feb. 2023, doi: 10.1016/j.tsep.2023.101677.
  • H. Suryoatmojo vd., “Design of MPPT Based Fuzzy Logic for Solar-Powered Unmanned Aerial Vehicle Application”, içinde 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST), Tem. 2018, ss. 1-4. doi: 10.1109/ICEAST.2018.8434430.
  • “Solar radiation over Turkey and its analysis: International Journal of Remote Sensing: Vol 32, No 21”. [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/01431161.2010.508056 [Accessed Oct. 30, 2023].
  • S. Gudmundsson, “Chapter 3 - Initial Sizing”, içinde General Aviation Aircraft Design (Second Edition), S. Gudmundsson, Ed., Butterworth-Heinemann, 2022, ss. 57-91. doi: 10.1016/B978-0-12-818465-3.00027-6.
  • XFLR5. [CD-ROM]. Available: https://www.xflr5.tech/xflr5.html [Accessed Oct. 30, 2023].
Year 2024, , 396 - 409, 01.06.2024
https://doi.org/10.36306/konjes.1402465

Abstract

References

  • “The Energy Report | Publications | WWF”, World Wildlife Fund. [Online]. Available: https://www.worldwildlife.org/publications/the-energy-report [Accessed Oct. 18, 2023]
  • R. Boucher, “History of solar flight”, içinde 20th Joint Propulsion Conference, Cincinnati,OH,U.S.A.: American Institute of Aeronautics and Astronautics, June 1984. doi: 10.2514/6.1984-1429.
  • W. Ni, Y. Bi, D. Wu, ve X. Ma, “Energy-optimal trajectory planning for solar-powered aircraft using soft actor-critic”, Chin. J. Aeronaut., c. 35, sy 10, ss. 337-353, Oct. 2022, doi: 10.1016/j.cja.2021.11.009.
  • W. Jamshed, K. S. Nisar, R. W. Ibrahim, F. Shahzad, ve M. R. Eid, “Thermal expansion optimization in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar thermal application”, J. Mater. Res. Technol., c. 14, ss. 985-1006, Sept. 2021, doi: 10.1016/j.jmrt.2021.06.031.
  • K. Milidonis, A. Eliades, V. Grigoriev, ve M. J. Blanco, “Unmanned Aerial Vehicles (UAVs) in the planning, operation and maintenance of concentrating solar thermal systems: A review”, Sol. Energy, c. 254, ss. 182-194, Nis. 2023, doi: 10.1016/j.solener.2023.03.005.
  • J. Ge ve L. Liu, “Electromagnetic interference modeling and elimination for a solar/hydrogen hybrid powered small-scale UAV”, Chin. J. Aeronaut., c. 36, sy 10, ss. 293-308, Oct. 2023, doi: 10.1016/j.cja.2023.03.044.
  • K. L. B. Cook, “The Silent Force Multiplier: The History and Role of UAVs in Warfare”, içinde 2007 IEEE Aerospace Conference, Mar. 2007, ss. 1-7. doi: 10.1109/AERO.2007.352737.
  • P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, ve I. Moscholios, “A compilation of UAV applications for precision agriculture”, Comput. Netw., c. 172, s. 107148, May. 2020, doi: 10.1016/j.comnet.2020.107148.
  • Y. Chu, C. Ho, Y. Lee, ve B. Li, “Development of a Solar-Powered Unmanned Aerial Vehicle for Extended Flight Endurance”, Drones, c. 5, sy 2, Art. sy 2, June 2021, doi: 10.3390/drones5020044.
  • P. Panagiotou, I. Tsavlidis, ve K. Yakinthos, “Conceptual design of a hybrid solar MALE UAV”, Aerosp. Sci. Technol., c. 53, ss. 207-219, June 2016, doi: 10.1016/j.ast.2016.03.023.
  • “Aircraft Design: A Conceptual Approach, Sixth Edition | AIAA Education Series” [E-book]. https://arc.aiaa.org/doi/book/10.2514/4.104909
  • J. Roskam, Airplane Design, Part II : Preliminary Configuration Design and Integration of the Propulsion System. Lawrence: DARcorporation, 1999. [Online]. Available: https://www.biblio.com/book/airplane-design-part-ii-preliminary-configuration/d/1568943846 [Accessed Oct. 30, 2023]
  • A. Noth, R. Siegwart, ve W. Engel, “Design of Solar Powered Airplanes for Continuous Flight”, Env. Res, Oca. 2007.
  • G. Romeo, G. Frulla, ve E. Cestino, “Design of a High-Altitude Long-Endurance Solar-Powered Unmanned Air Vehicle for Multi-Payload and Operations”, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., c. 221, sy 2, ss. 199-216, Şub. 2007, doi: 10.1243/09544100JAERO119.
  • S. Jashnani, T. R. Nada, M. Ishfaq, A. Khamker, ve P. Shaholia, “Sizing and preliminary hardware testing of solar powered UAV”, Egypt. J. Remote Sens. Space Sci., c. 16, sy 2, ss. 189-198, Ara. 2013, doi: 10.1016/j.ejrs.2013.05.002.
  • “Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL”. [Online]. Available: https://www.nrel.gov/pv/cell-efficiency.html [Accessed Oct. 30, 2023].
  • “Solar Impulse - Around the World to Promote Clean Technologies”. [Online]. Available: https://aroundtheworld.solarimpulse.com/adventure [Accessed Oct. 30 2023].
  • “Getting to Grips with Aircraft Performance - February 2002 | SKYbrary Aviation Safety”. [Online]. Available: https://skybrary.aero/bookshelf/getting-grips-aircraft-performance-february-2002 [Accessed Oct. 30, 2023].
  • S. Afroze vd., “Emerging and Recycling of Li-Ion Batteries to Aid in Energy Storage, A Review”, Recycling, c. 8, sy 3, Art. sy 3, June 2023, doi: 10.3390/recycling8030048.
  • C. Xiao, B. Wang, D. Zhao, ve C. Wang, “Comprehensive Investigation on Lithium Batteries for Electric and Hybrid-Electric Unmanned Aerial Vehicle Applications”, Therm. Sci. Eng. Prog., c. 38, s. 101677, Feb. 2023, doi: 10.1016/j.tsep.2023.101677.
  • H. Suryoatmojo vd., “Design of MPPT Based Fuzzy Logic for Solar-Powered Unmanned Aerial Vehicle Application”, içinde 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST), Tem. 2018, ss. 1-4. doi: 10.1109/ICEAST.2018.8434430.
  • “Solar radiation over Turkey and its analysis: International Journal of Remote Sensing: Vol 32, No 21”. [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/01431161.2010.508056 [Accessed Oct. 30, 2023].
  • S. Gudmundsson, “Chapter 3 - Initial Sizing”, içinde General Aviation Aircraft Design (Second Edition), S. Gudmundsson, Ed., Butterworth-Heinemann, 2022, ss. 57-91. doi: 10.1016/B978-0-12-818465-3.00027-6.
  • XFLR5. [CD-ROM]. Available: https://www.xflr5.tech/xflr5.html [Accessed Oct. 30, 2023].
There are 24 citations in total.

Details

Primary Language English
Subjects Solar Energy Systems, Satellite, Space Vehicle and Missile Design and Testing, Aerospace Engineering (Other)
Journal Section Research Article
Authors

Caner İlhan 0009-0008-6515-9465

Zeynep Çalık 0009-0008-5849-9445

Publication Date June 1, 2024
Submission Date December 12, 2023
Acceptance Date March 6, 2024
Published in Issue Year 2024

Cite

IEEE C. İlhan and Z. Çalık, “SOLAR-POWERED UAV: A NOVEL APPROACH TO CONCEPTUAL DESIGN”, KONJES, vol. 12, no. 2, pp. 396–409, 2024, doi: 10.36306/konjes.1402465.