Research Article
BibTex RIS Cite

A CASE STUDY: COST-BENEFIT AND RISK ANALYSES OF GABION WALL FOR ROCKFALL PROTECTION METHOD IN BOZKIR, TURKEY

Year 2024, , 865 - 885, 01.12.2024
https://doi.org/10.36306/konjes.1510650

Abstract

The construction of residential buildings, highways, and dams in the areas under the risk of rockfall constitutes a significant threat to life and property safety. Previously, the easiest solution for rockfall protection was to move the settlements in the regions under rockfall risk to another location although it was expensive. Another method is removing the rocks by hand, machine, or using explosives, since it is dangerous. Nowadays, various rock improvement methods of constructing barriers exist due to the developing technology and facilities. In the study, to resist the rockfall, a case study on analysis of a gabion wall in the Dereköy neighborhood of Bozkır District in Konya was presented. In the preliminary design stage, mapping studies, rock kinematic analyses, and the possible rockfall scenarios in the study area were carried out to determine the current conditions of the land before the construction works. The rockfall analysis shows that the rocks on the slope will reveal energy of 400-500 kJ, and the splash heights may vary between 30-150 cm. As a result of this data, a 420m-length and 3m-height gabion wall was constructed. The gabion wall, which has a 10000-kJ energy damping capacity, eliminates the risk of rockfall for 150 houses in the region. A huge cost-benefit has been achieved by constructing a gabion wall instead of other methods (expropriation of 150 houses or the surface coating with steel mesh) as a precaution against the hazard of rockfall in the study area.

References

  • Y. Gong, A. Yao, Y. Li, Y. Li, Y. Li, and Y. Sun, “Model test study on sliding-toppling composite deformation evolution of anti-dip layered rock slope,” Bulletin of Engineering Geology and the Environment, vol. 82, no. 5, p. 194, May 2023, doi: 10.1007/s10064-023-03213-4.
  • K. Ma and G. Liu, “Three-Dimensional Discontinuous Deformation Analysis of Failure Mechanisms and Movement Characteristics of Slope Rockfalls,” Rock Mech Rock Eng, vol. 55, no. 1, pp. 275–296, Jan. 2022, doi: 10.1007/s00603-021-02656-z.
  • İ. Keskin, “Evaluation of rock falls in an urban area: the case of Boğaziçi (Erzincan/Turkey),” Environ Earth Sci, vol. 70, no. 4, pp. 1619–1628, Oct. 2013, doi: 10.1007/s12665-013-2247-9.
  • A. Omran, K. Fahmida, D. Schröder, M. O. Arnous, A. E. El-Rayes, and V. Hochschild, “GIS-based rockfall hazard zones modeling along the coastal Gulf of Aqaba Region, Egypt,” Earth Sci Inform, vol. 14, no. 2, pp. 691–709, Jun. 2021, doi: 10.1007/s12145-021-00580-y.
  • T. Birien and F. Gauthier, “Assessing the relationship between weather conditions and rockfall using terrestrial laser scanning to improve risk management,” Natural Hazards and Earth System Sciences, vol. 23, no. 1, pp. 343–360, Jan. 2023, doi: 10.5194/nhess-23-343-2023.
  • F. T. Jeremias, J. M. Olarte, A. B. Pinho, I. M. R. Duarte, H. Saroglou, and M. C. Torres Suárez, “Mudrocks as Soft Rocks: Properties and Characteristics,” in Soft Rock Mechanics and Engineering, Cham: Springer International Publishing, 2020, pp. 37–107. doi: 10.1007/978-3-030-29477-9_4.
  • V. K. Kudapa, U. Bhan, N. P. Nayak, L. Goswami, S. Ganguly, and S. Kumar, “Geoscientific Factors Affecting Weathering and Erosion of Surface Exposure and Rock Types,” in Weathering and Erosion Processes in the Natural Environment, Wiley, 2023, pp. 343–358. doi: 10.1002/9781394157365.ch14.
  • İ. Keskin and A. Polat, “Kinematic Analysis and Rockfall Assessment of Rock Slope at the UNESCO World Heritage city (Safranbolu/Turkey),” Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 46, no. 1, pp. 367–384, Feb. 2022, doi: 10.1007/s40996-021-00803-8.
  • N. Mirhadi and R. Macciotta, “Quantitative correlation between rock fall and weather seasonality to predict changes in rock fall hazard with climate change,” Landslides, vol. 20, no. 10, pp. 2227–2241, Oct. 2023, doi: 10.1007/s10346-023-02105-8.
  • N. Liu, Y. Yang, N. Li, S. Liang, H. Liu, and C. Li, “The stability issue of fractured rock mass slope under the influences of freeze–thaw cycle,” Sci Rep, vol. 14, no. 1, p. 5674, Mar. 2024, doi: 10.1038/s41598-024-56346-1.
  • S. Mineo, “Comparing rockfall hazard and risk assessment procedures along roads for different planning purposes,” J Mt Sci, vol. 17, no. 3, pp. 653–669, Mar. 2020, doi: 10.1007/s11629-019-5766-3.
  • J. I. Tanoli et al., “Modified ‘Rockfall Hazard Rating System for Pakistan (RHRSP)’: An Application for Hazard and Risk Assessment along the Karakoram Highway, Northwest Pakistan,” Applied Sciences, vol. 12, no. 8, p. 3778, Apr. 2022, doi: 10.3390/app12083778.
  • N. E. San, T. Topal, and M. K. Akin, “Rockfall Hazard Assessment Around Ankara Citadel (Turkey) Using Rockfall Analyses and Hazard Rating System,” Geotechnical and Geological Engineering, vol. 38, no. 4, pp. 3831–3851, Aug. 2020, doi: 10.1007/s10706-020-01261-1.
  • H. Fattahi and H. Ghaedi, “Accurate Prediction and Modeling of Overbreak Phenomenon in Tunnel Excavation Using Rock Engineering System Method,” International Journal of Geomechanics, vol. 24, no. 6, Jun. 2024, doi: 10.1061/IJGNAI.GMENG-9531.
  • H. Mohammadi and A. Azad, “Prediction of ground settlement and the corresponding risk induced by tunneling: An application of rock engineering system paradigm,” Tunnelling and Underground Space Technology, vol. 110, p. 103828, Apr. 2021, doi: 10.1016/j.tust.2021.103828.
  • G. F. Andriani and M. Parise, “Applying rock mass classifications to carbonate rocks for engineering purposes with a new approach using the rock engineering system,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 9, no. 2, pp. 364–369, Apr. 2017, doi: 10.1016/j.jrmge.2016.12.001.
  • M. Hasanipanah, D. Jahed Armaghani, M. Monjezi, and S. Shams, “Risk assessment and prediction of rock fragmentation produced by blasting operation: a rock engineering system,” Environ Earth Sci, vol. 75, no. 9, p. 808, May 2016, doi: 10.1007/s12665-016-5503-y.
  • R. Agliata, A. Bortone, and L. Mollo, “Indicator-based approach for the assessment of intrinsic physical vulnerability of the built environment to hydro-meteorological hazards: Review of indicators and example of parameters selection for a sample area,” International Journal of Disaster Risk Reduction, vol. 58, p. 102199, May 2021, doi: 10.1016/j.ijdrr.2021.102199.
  • D. Giordan, M. Cignetti, D. Godone, D. Bertolo, and M. Paganone, “Definition of an Operative Methodology for the Management of Rockfalls along with the Road Network,” Sustainability, vol. 13, no. 14, p. 7669, Jul. 2021, doi: 10.3390/su13147669.
  • G. Torsello, G. Vallero, L. Milan, M. Barbero, and M. Castelli, “A Quick QGIS-Based Procedure to Preliminarily Define Time-Independent Rockfall Risk: The Case Study of Sorba Valley, Italy,” Geosciences (Basel), vol. 12, no. 8, p. 305, Aug. 2022, doi: 10.3390/geosciences12080305.
  • A. Hekmatnejad, E. Rojas, C. Saavedra, and B. Crespin, “Presentation of the Universal Discontinuity index (UDi) system and its application to predict the geometry of over-excavation along a tunnel at New El Teniente mine,” Eng Geol, vol. 311, p. 106901, Dec. 2022, doi: 10.1016/j.enggeo.2022.106901.
  • M. Azarafza, H. Akgün, A. Ghazifard, and E. Asghari-Kaljahi, “Key-block based analytical stability method for discontinuous rock slope subjected to toppling failure,” Comput Geotech, vol. 124, p. 103620, Aug. 2020, doi: 10.1016/j.compgeo.2020.103620.
  • H. Zhu, M. Azarafza, and H. Akgün, “Deep learning-based key-block classification framework for discontinuous rock slopes,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 14, no. 4, pp. 1131–1139, Aug. 2022, doi: 10.1016/j.jrmge.2022.06.007.
  • M. Wang, J. Zhou, J. Chen, N. Jiang, P. Zhang, and H. Li, “Automatic identification of rock discontinuity and stability analysis of tunnel rock blocks using terrestrial laser scanning,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 15, no. 7, pp. 1810–1825, Jul. 2023, doi: 10.1016/j.jrmge.2022.12.015.
  • Z. Deng et al., “Model test and numerical simulation on the dynamic stability of the bedding rock slope under frequent microseisms,” Earthquake Engineering and Engineering Vibration, vol. 19, no. 4, pp. 919–935, Oct. 2020, doi: 10.1007/s11803-020-0604-8.
  • Y. Yang, Y. Xia, H. Zheng, and Z. Liu, “Investigation of rock slope stability using a 3D nonlinear strength-reduction numerical manifold method,” Eng Geol, vol. 292, p. 106285, Oct. 2021, doi: 10.1016/j.enggeo.2021.106285.
  • T. K. Mebrahtu, T. Heinze, S. Wohnlich, and M. Alber, “Slope stability analysis of deep-seated landslides using limit equilibrium and finite element methods in Debre Sina area, Ethiopia,” Bulletin of Engineering Geology and the Environment, vol. 81, no. 10, p. 403, Oct. 2022, doi: 10.1007/s10064-022-02906-6.
  • M. Azarafza et al., “Application of the modified Q-slope classification system for sedimentary rock slope stability assessment in Iran,” Eng Geol, vol. 264, p. 105349, Jan. 2020, doi: 10.1016/j.enggeo.2019.105349.
  • M. Azarafza, M. K. Koçkar, and H.-H. Zhu, “Correlations of SMR-Qslope Data in Stability Classification of Discontinuous Rock Slope: A Modified Relationship Considering the Iranian Data,” Geotechnical and Geological Engineering, vol. 40, no. 4, pp. 1751–1764, Apr. 2022, doi: 10.1007/s10706-021-01991-w.
  • M. Shariati and D. Fereidooni, “Rock slope stability evaluation using kinematic and kinetic methods along the Kamyaran-Marivan road, west of Iran,” J Mt Sci, vol. 18, no. 3, pp. 779–793, Mar. 2021, doi: 10.1007/s11629-020-6438-z.
  • A. Jaiswal, A. K. Verma, and T. N. Singh, “Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 16, no. 1, pp. 167–182, Jan. 2024, doi: 10.1016/j.jrmge.2023.02.021.
  • G. Berhane, M. Kebede, and N. Alfarrah, “Landslide susceptibility mapping and rock slope stability assessment using frequency ratio and kinematic analysis in the mountains of Mgulat area, Northern Ethiopia,” Bulletin of Engineering Geology and the Environment, vol. 80, no. 1, pp. 285–301, Jan. 2021, doi: 10.1007/s10064-020-01905-9.
  • C. Kıncal and M. Y. Koca, “A Proposed Method for Drawing the Great Circle Representing Dip Angle and Strike Changes,” Environmental and Engineering Geoscience, vol. 15, no. 3, pp. 145–165, Aug. 2009, doi: 10.2113/gseegeosci.15.3.145.
  • P. H. S. W. Kulatilake, L. Wang, H. Tang, and Y. Liang, “Evaluation of rock slope stability for Yujian River dam site by kinematic and block theory analyses,” Comput Geotech, vol. 38, no. 6, pp. 846–860, Sep. 2011, doi: 10.1016/j.compgeo.2011.05.004.
  • F. G. Bell, Engineering Geology and Geotechnics. Newness-Butterworths, London: Butterworth & Co Ltd., 1980.
  • G. Habibagahi, R. Shahgholian, and S. M. S. Sahraeian, “Stochastic Analysis of Rock Slope Stability: Application of Fuzzy Sets Theory,” Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 45, no. 2, pp. 851–863, Jun. 2021, doi: 10.1007/s40996-020-00525-3.
  • F. Zhang, T. Yang, L. Li, J. Bu, T. Wang, and P. Xiao, “Assessment of the rock slope stability of Fushun West Open-pit Mine,” Arabian Journal of Geosciences, vol. 14, no. 15, p. 1459, Aug. 2021, doi: 10.1007/s12517-021-07815-8.
  • L. Sun, G. Grasselli, Q. Liu, X. Tang, and A. Abdelaziz, “The role of discontinuities in rock slope stability: Insights from a combined finite-discrete element simulation,” Comput Geotech, vol. 147, p. 104788, Jul. 2022, doi: 10.1016/j.compgeo.2022.104788.
  • Z.-W. Li, X.-L. Yang, and T.-Z. Li, “Static and seismic stability assessment of 3D slopes with cracks,” Eng Geol, vol. 265, p. 105450, Feb. 2020, doi: 10.1016/j.enggeo.2019.105450.
  • Z. Zhang, X. Fu, Q. Sheng, Y. Du, Y. Zhou, and J. Huang, “Stability of Cracking Deposit Slope Considering Parameter Deterioration Subjected to Rainfall,” International Journal of Geomechanics, vol. 21, no. 7, Jul. 2021, doi: 10.1061/(ASCE)GM.1943-5622.0002045.
  • D. Park, “Stability Evaluation of Rock Slopes with Cracks Using Limit Analysis,” Rock Mech Rock Eng, vol. 56, no. 7, pp. 4779–4797, Jul. 2023, doi: 10.1007/s00603-023-03281-8.
  • M. Ramli, T. J. r. Karasu, and E. T. Dawood, “The stability of gabion walls for earth retaining structures,” Alexandria Engineering Journal, vol. 52, no. 4, pp. 705–710, Dec. 2013, doi: 10.1016/j.aej.2013.07.005.
  • N. H. Maerz, A. M. Youssef, B. Pradhan, and A. Bulkhi, “Remediation and mitigation strategies for rock fall hazards along the highways of Fayfa Mountain, Jazan Region, Kingdom of Saudi Arabia,” Arabian Journal of Geosciences, vol. 8, no. 5, pp. 2633–2651, May 2015, doi: 10.1007/s12517-014-1423-x.
  • G. C. Chikute and I. P. Sonar, “Gabion Wall: Eco-friendly and Cost-Efficient Retaining Wall,” in Advances in Sustainable Construction Materials, vol. 124, S. Biswas, S. Metya, S. Kumar, and P. Samui, Eds., Springer Nature Singapore Pte Ltd, 2021, pp. 229–249. doi: 10.1007/978-981-33-4590-4_22.
  • ASTM A975-11, “Standard Specification for Double–Twisted Hexagonal Mesh Gabions and Revet Mattresses (Metallic-Coated Steel Wire or Metallic-Coated Steel Wire With Poly(Vinyl Chloride) (PVC) Coating),” in Book of Standards Volume: 01.06, ASTM International, West Conshohocken, PA, 2016.
  • J. Perera, A. C. Y. Yong, Z. Z. Abdul Majeed, and N. Lam, “Large scale experimental investigation of a reinforced concrete rockfall protection wall with a gabion cushion cover,” in 8th International Conference on Advances in Experimental Structural Engineering, Canterbury, New Zealand, May 2020.
  • [47] S. Lambert, A. Heymann, P. Gotteland, and F. Nicot, “Real-scale investigation of the kinematic response of a rockfall protection embankment,” Natural Hazards and Earth System Sciences, vol. 14, no. 5, pp. 1269–1281, May 2014, doi: 10.5194/nhess-14-1269-2014.
  • S. Lambert, F. Bourrier, P. Gotteland, and F. Nicot, “An experimental investigation of the response of slender protective structures to rockfall impacts,” Canadian Geotechnical Journal, vol. 57, no. 8, pp. 1215–1231, Aug. 2019, doi: 10.1139/cgj-2019-0147.
  • Z. Angın and O. Ş. Karahasan, “Evaluation of the Performance of Gabion Walls as a High-Energy Rockfall Protection System Using 3D Numerical Analysis: A Case Study,” Applied Sciences, vol. 14, no. 6, p. 2360, Mar. 2024, doi: 10.3390/app14062360.
  • J. S. Perera and N. Lam, “Rockfall protection wall that can withstand multiple strikes without needing to be repaired,” Int J Impact Eng, vol. 173, p. 104476, Mar. 2023, doi: 10.1016/j.ijimpeng.2022.104476.
  • J. S. Perera, N. Lam, M. M. Disfani, and E. Gad, “Experimental and Analytical Investigation of a RC Wall with a Gabion Cushion Subjected to Boulder Impact,” Int J Impact Eng, vol. 151, p. 103823, May 2021, doi: 10.1016/j.ijimpeng.2021.103823.
  • P. Jelušič, G. Vlastelica, and B. Žlender, “Sustainable Retaining Wall Solution as a Mitigation Strategy on Steep Slopes in Soft Rock Mass,” Geosciences (Basel), vol. 14, no. 4, p. 90, Mar. 2024, doi: 10.3390/geosciences14040090.
  • A. K. Singh, J. Kundu, K. Sarkar, H. K. Verma, and P. K. Singh, “Impact of rock block characteristics on rockfall hazard and its implications for rockfall protection strategies along Himalayan highways: a case study,” Bulletin of Engineering Geology and the Environment, vol. 80, no. 7, pp. 5347–5368, Jul. 2021, doi: 10.1007/s10064-021-02288-1.
  • N. Jiang, H. Li, and J. Zhou, “Quantitative hazard analysis and mitigation measures of rockfall in a high-frequency rockfall region,” Bulletin of Engineering Geology and the Environment, vol. 80, no. 4, pp. 3439–3456, Apr. 2021, doi: 10.1007/s10064-021-02137-1.
  • M. Mantovani, G. Bossi, A. P. Dykes, A. Pasuto, M. Soldati, and S. Devoto, “Coupling long-term GNSS monitoring and numerical modelling of lateral spreading for hazard assessment purposes,” Eng Geol, vol. 296, p. 106466, Jan. 2022, doi: 10.1016/j.enggeo.2021.106466.
  • W. Frenelus, H. Peng, and J. Zhang, “Creep Behavior of Rocks and Its Application to the Long-Term Stability of Deep Rock Tunnels,” Applied Sciences, vol. 12, no. 17, p. 8451, Aug. 2022, doi: 10.3390/app12178451.
  • J. Xie et al., “Predicting the sliding behavior of rotational landslides based on the tilting measurement of the slope surface,” Eng Geol, vol. 269, p. 105554, May 2020, doi: 10.1016/j.enggeo.2020.105554.
  • J. Du et al., “Force and energy equilibrium-based analytical method for progressive failure analysis of translational rockslides: formulation and comparative study,” Landslides, vol. 20, no. 2, pp. 475–488, Feb. 2023, doi: 10.1007/s10346-022-01980-x.
  • S. Duan, W. Jin, J. Sun, and W. Wang, “Trajectory Analysis of the Rockfall Based on the Effect of Rotating Angular Velocity,” Geotechnical and Geological Engineering, vol. 40, no. 1, pp. 121–131, Jan. 2022, doi: 10.1007/s10706-021-01863-3.
  • K. Holm and M. Jakob, “Long rockfall runout, Pascua Lama, Chile,” Canadian Geotechnical Journal, vol. 46, no. 2, pp. 225–230, Feb. 2009, doi: 10.1139/T08-116.
  • A. M. Ritchie, “Evaluation Rock Fall and its Control,” in Stability of rock slopes, vol. 17, Highway Research Board, 1963, pp. 13–28.
  • K. Ulamış and R. Kılıç, “Combined instability assessment and rockfall hazard in volcanic rocks (Keçiören, Ankara),” Arabian Journal of Geosciences, vol. 13, no. 10, p. 349, May 2020, doi: 10.1007/s12517-020-05338-2.
  • A. M. Youssef, B. Pradhan, M. Al-Kathery, G. D. Bathrellos, and H. D. Skilodimou, “Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation,” Journal of African Earth Sciences, vol. 101, pp. 309–321, Jan. 2015, doi: 10.1016/j.jafrearsci.2014.09.021.
  • JRA, “Manual for Slope Protection,” 1984.
  • JICA, “The Study on Risk Management for Sediment-Related Disaster on Selected National Highways in the Republic of the Philippines,” Japan International Cooperation Agency, Department of Public Works & Highways. Final Report Guide III, Japan, 2007.
  • M. Marchelli, V. De Biagi, and D. Peila, “Reliability-based design of rockfall passive systems height,” International Journal of Rock Mechanics and Mining Sciences, vol. 139, p. 104664, Mar. 2021, doi: 10.1016/j.ijrmms.2021.104664.
  • Turkish State Meteorological Service, “Extreme Maximum, Minimum and Average Temperatures Measured in Long Period (°C),” Cities & Holiday Resorts. Accessed: Aug. 16, 2024. [Online]. Available: https://www.mgm.gov.tr/eng/forecast-cities.aspx
  • MTA, “1/500.000 Ölçekli Jeoloji Haritaları,” Maden Tetkik ve Arama Genel Müdürlüğü. Accessed: Sep. 03, 2024. [Online]. Available: https://www.mta.gov.tr/v3.0/hizmetler/500bas
  • RocScience, “ROCFALL-computer program for risk analysis of falling rocks on steep slopes,” 2012, RocScience, Toronto: 4.
  • Rocscience, “DIPS 5.0 – Graphical and statistical analysis of orientation data,” 1999, RocScience, Canada.
  • RocScience, “RocFall user’s guide, Risk analysis of falling rocks on steep slopes,” 2002, RocScience.
  • ASTM D7012-23, “Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures,” in Book of Standards Volume: 04.09, 2023.
  • ASTM D3967-16, “Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens,” in Book of Standards Volume: 04.08, 2023.
  • E. T. Brown, “Rock characterization testing and monitoring,” 1981. [Online]. Available: https://api.semanticscholar.org/CorpusID:109677088
  • N. Sivakugan, B. M. Das, J. Lovisa, and C. R. Patra, “Determination of c and φ of rocks from indirect tensile strength and uniaxial compression tests,” International Journal of Geotechnical Engineering, vol. 8, no. 1, pp. 59–65, Jan. 2014, doi: 10.1179/1938636213Z.00000000053.
  • B. Keskin, G. Bacak, M. E. Bilir, and M. Geniş, “Investigation of rockfall potential of Zonguldak-Kilimli roadway (Turkey),” Arabian Journal of Geosciences, vol. 13, no. 16, p. 805, Aug. 2020, doi: 10.1007/s12517-020-05815-8.
  • M. P. Kakavas, K. G. Nikolakopoulos, A. Kyriou, and I. Koukouvelas, “The Influence of the DSM Spatial Resolution in Rockfall Simulation and Validation with In Situ Data,” Geosciences (Basel), vol. 13, no. 2, p. 57, Feb. 2023, doi: 10.3390/geosciences13020057.
  • M. Spadari, A. Giacomini, O. Buzzi, S. Fityus, and G. P. Giani, “In situ rockfall testing in New South Wales, Australia,” International Journal of Rock Mechanics and Mining Sciences, vol. 49, pp. 84–93, Jan. 2012, doi: 10.1016/j.ijrmms.2011.11.013.
  • A. Giacomini, O. Buzzi, B. Renard, and G. P. Giani, “Experimental studies on fragmentation of rock falls on impact with rock surfaces,” International Journal of Rock Mechanics and Mining Sciences, vol. 46, no. 4, pp. 708–715, Jun. 2009, doi: 10.1016/j.ijrmms.2008.09.007.
  • G. P. Giani, A. Giacomini, M. Migliazza, and A. Segalini, “Experimental and Theoretical Studies to Improve Rock Fall Analysis and Protection Work Design,” Rock Mech Rock Eng, vol. 37, no. 5, pp. 369–389, Nov. 2004, doi: 10.1007/s00603-004-0027-2.
  • L. K. A. Dorren, “A review of rockfall mechanics and modelling approaches,” Progress in Physical Geography: Earth and Environment, vol. 27, no. 1, pp. 69–87, Mar. 2003, doi: 10.1191/0309133303pp359ra.
  • M. E. Robotham, H. Wang, and G. Walton, “Assessment of risk from rockfall from active and abandoned quarry slopes,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 32, no. 5, pp. 25–33, Jul. 1995, doi: 10.1016/0148-9062(95)93408-H.
  • A. Azzoni and M. H. de Freitas, “Experimentally gained parameters, decisive for rock fall analysis,” Rock Mech Rock Eng, vol. 28, no. 2, pp. 111–124, Apr. 1995, doi: 10.1007/BF01020064.
  • Z.-M. Ji, Z.-J. Chen, Q.-H. Niu, T.-H. Wang, T.-J. Wang, and T.-L. Chen, “A calculation model of the normal coefficient of restitution based on multi-factor interaction experiments,” Landslides, vol. 18, no. 4, pp. 1531–1553, Apr. 2021, doi: 10.1007/s10346-020-01556-7.
  • Z.-M. Ji, Z.-J. Chen, Q.-H. Niu, T.-J. Wang, H. Song, and T.-H. Wang, “Laboratory study on the influencing factors and their control for the coefficient of restitution during rockfall impacts,” Landslides, vol. 16, no. 10, pp. 1939–1963, Oct. 2019, doi: 10.1007/s10346-019-01183-x.
  • Y. Wang, W. Jiang, S. Cheng, P. Song, and C. Mao, “Effects of the impact angle on the coefficient of restitution in rockfall analysis based on a medium-scale laboratory test,” Natural Hazards and Earth System Sciences, vol. 18, no. 11, pp. 3045–3061, Nov. 2018, doi: 10.5194/nhess-18-3045-2018.
  • J. Tang, X. Zhou, K. Liang, Y. Lai, G. Zhou, and J. Tan, “Experimental study on the coefficient of restitution for the rotational sphere rockfall,” Environ Earth Sci, vol. 80, no. 11, p. 419, Jun. 2021, doi: 10.1007/s12665-021-09684-6.
  • K. T. Chau, R. H. C. Wong, and J. J. Wu, “Coefficient of restitution and rotational motions of rockfall impacts,” International Journal of Rock Mechanics and Mining Sciences, vol. 39, no. 1, pp. 69–77, Jan. 2002, doi: 10.1016/S1365-1609(02)00016-3.
  • P. W. Mayne, B. R. Christopher, and J. T. DeJong, “Subsurface Investigations-Geotechnical Site Characterization: Reference Manual,” No. FHWA-NHI-01-031. United States. Federal Highway Administration, 2002. [Online]. Available: https://api.semanticscholar.org/CorpusID:48064955
  • K. Alambra, “Limestone Calculator.” Accessed: Sep. 18, 2024. [Online]. Available: https://www.omnicalculator.com/construction/limestone.
Year 2024, , 865 - 885, 01.12.2024
https://doi.org/10.36306/konjes.1510650

Abstract

References

  • Y. Gong, A. Yao, Y. Li, Y. Li, Y. Li, and Y. Sun, “Model test study on sliding-toppling composite deformation evolution of anti-dip layered rock slope,” Bulletin of Engineering Geology and the Environment, vol. 82, no. 5, p. 194, May 2023, doi: 10.1007/s10064-023-03213-4.
  • K. Ma and G. Liu, “Three-Dimensional Discontinuous Deformation Analysis of Failure Mechanisms and Movement Characteristics of Slope Rockfalls,” Rock Mech Rock Eng, vol. 55, no. 1, pp. 275–296, Jan. 2022, doi: 10.1007/s00603-021-02656-z.
  • İ. Keskin, “Evaluation of rock falls in an urban area: the case of Boğaziçi (Erzincan/Turkey),” Environ Earth Sci, vol. 70, no. 4, pp. 1619–1628, Oct. 2013, doi: 10.1007/s12665-013-2247-9.
  • A. Omran, K. Fahmida, D. Schröder, M. O. Arnous, A. E. El-Rayes, and V. Hochschild, “GIS-based rockfall hazard zones modeling along the coastal Gulf of Aqaba Region, Egypt,” Earth Sci Inform, vol. 14, no. 2, pp. 691–709, Jun. 2021, doi: 10.1007/s12145-021-00580-y.
  • T. Birien and F. Gauthier, “Assessing the relationship between weather conditions and rockfall using terrestrial laser scanning to improve risk management,” Natural Hazards and Earth System Sciences, vol. 23, no. 1, pp. 343–360, Jan. 2023, doi: 10.5194/nhess-23-343-2023.
  • F. T. Jeremias, J. M. Olarte, A. B. Pinho, I. M. R. Duarte, H. Saroglou, and M. C. Torres Suárez, “Mudrocks as Soft Rocks: Properties and Characteristics,” in Soft Rock Mechanics and Engineering, Cham: Springer International Publishing, 2020, pp. 37–107. doi: 10.1007/978-3-030-29477-9_4.
  • V. K. Kudapa, U. Bhan, N. P. Nayak, L. Goswami, S. Ganguly, and S. Kumar, “Geoscientific Factors Affecting Weathering and Erosion of Surface Exposure and Rock Types,” in Weathering and Erosion Processes in the Natural Environment, Wiley, 2023, pp. 343–358. doi: 10.1002/9781394157365.ch14.
  • İ. Keskin and A. Polat, “Kinematic Analysis and Rockfall Assessment of Rock Slope at the UNESCO World Heritage city (Safranbolu/Turkey),” Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 46, no. 1, pp. 367–384, Feb. 2022, doi: 10.1007/s40996-021-00803-8.
  • N. Mirhadi and R. Macciotta, “Quantitative correlation between rock fall and weather seasonality to predict changes in rock fall hazard with climate change,” Landslides, vol. 20, no. 10, pp. 2227–2241, Oct. 2023, doi: 10.1007/s10346-023-02105-8.
  • N. Liu, Y. Yang, N. Li, S. Liang, H. Liu, and C. Li, “The stability issue of fractured rock mass slope under the influences of freeze–thaw cycle,” Sci Rep, vol. 14, no. 1, p. 5674, Mar. 2024, doi: 10.1038/s41598-024-56346-1.
  • S. Mineo, “Comparing rockfall hazard and risk assessment procedures along roads for different planning purposes,” J Mt Sci, vol. 17, no. 3, pp. 653–669, Mar. 2020, doi: 10.1007/s11629-019-5766-3.
  • J. I. Tanoli et al., “Modified ‘Rockfall Hazard Rating System for Pakistan (RHRSP)’: An Application for Hazard and Risk Assessment along the Karakoram Highway, Northwest Pakistan,” Applied Sciences, vol. 12, no. 8, p. 3778, Apr. 2022, doi: 10.3390/app12083778.
  • N. E. San, T. Topal, and M. K. Akin, “Rockfall Hazard Assessment Around Ankara Citadel (Turkey) Using Rockfall Analyses and Hazard Rating System,” Geotechnical and Geological Engineering, vol. 38, no. 4, pp. 3831–3851, Aug. 2020, doi: 10.1007/s10706-020-01261-1.
  • H. Fattahi and H. Ghaedi, “Accurate Prediction and Modeling of Overbreak Phenomenon in Tunnel Excavation Using Rock Engineering System Method,” International Journal of Geomechanics, vol. 24, no. 6, Jun. 2024, doi: 10.1061/IJGNAI.GMENG-9531.
  • H. Mohammadi and A. Azad, “Prediction of ground settlement and the corresponding risk induced by tunneling: An application of rock engineering system paradigm,” Tunnelling and Underground Space Technology, vol. 110, p. 103828, Apr. 2021, doi: 10.1016/j.tust.2021.103828.
  • G. F. Andriani and M. Parise, “Applying rock mass classifications to carbonate rocks for engineering purposes with a new approach using the rock engineering system,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 9, no. 2, pp. 364–369, Apr. 2017, doi: 10.1016/j.jrmge.2016.12.001.
  • M. Hasanipanah, D. Jahed Armaghani, M. Monjezi, and S. Shams, “Risk assessment and prediction of rock fragmentation produced by blasting operation: a rock engineering system,” Environ Earth Sci, vol. 75, no. 9, p. 808, May 2016, doi: 10.1007/s12665-016-5503-y.
  • R. Agliata, A. Bortone, and L. Mollo, “Indicator-based approach for the assessment of intrinsic physical vulnerability of the built environment to hydro-meteorological hazards: Review of indicators and example of parameters selection for a sample area,” International Journal of Disaster Risk Reduction, vol. 58, p. 102199, May 2021, doi: 10.1016/j.ijdrr.2021.102199.
  • D. Giordan, M. Cignetti, D. Godone, D. Bertolo, and M. Paganone, “Definition of an Operative Methodology for the Management of Rockfalls along with the Road Network,” Sustainability, vol. 13, no. 14, p. 7669, Jul. 2021, doi: 10.3390/su13147669.
  • G. Torsello, G. Vallero, L. Milan, M. Barbero, and M. Castelli, “A Quick QGIS-Based Procedure to Preliminarily Define Time-Independent Rockfall Risk: The Case Study of Sorba Valley, Italy,” Geosciences (Basel), vol. 12, no. 8, p. 305, Aug. 2022, doi: 10.3390/geosciences12080305.
  • A. Hekmatnejad, E. Rojas, C. Saavedra, and B. Crespin, “Presentation of the Universal Discontinuity index (UDi) system and its application to predict the geometry of over-excavation along a tunnel at New El Teniente mine,” Eng Geol, vol. 311, p. 106901, Dec. 2022, doi: 10.1016/j.enggeo.2022.106901.
  • M. Azarafza, H. Akgün, A. Ghazifard, and E. Asghari-Kaljahi, “Key-block based analytical stability method for discontinuous rock slope subjected to toppling failure,” Comput Geotech, vol. 124, p. 103620, Aug. 2020, doi: 10.1016/j.compgeo.2020.103620.
  • H. Zhu, M. Azarafza, and H. Akgün, “Deep learning-based key-block classification framework for discontinuous rock slopes,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 14, no. 4, pp. 1131–1139, Aug. 2022, doi: 10.1016/j.jrmge.2022.06.007.
  • M. Wang, J. Zhou, J. Chen, N. Jiang, P. Zhang, and H. Li, “Automatic identification of rock discontinuity and stability analysis of tunnel rock blocks using terrestrial laser scanning,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 15, no. 7, pp. 1810–1825, Jul. 2023, doi: 10.1016/j.jrmge.2022.12.015.
  • Z. Deng et al., “Model test and numerical simulation on the dynamic stability of the bedding rock slope under frequent microseisms,” Earthquake Engineering and Engineering Vibration, vol. 19, no. 4, pp. 919–935, Oct. 2020, doi: 10.1007/s11803-020-0604-8.
  • Y. Yang, Y. Xia, H. Zheng, and Z. Liu, “Investigation of rock slope stability using a 3D nonlinear strength-reduction numerical manifold method,” Eng Geol, vol. 292, p. 106285, Oct. 2021, doi: 10.1016/j.enggeo.2021.106285.
  • T. K. Mebrahtu, T. Heinze, S. Wohnlich, and M. Alber, “Slope stability analysis of deep-seated landslides using limit equilibrium and finite element methods in Debre Sina area, Ethiopia,” Bulletin of Engineering Geology and the Environment, vol. 81, no. 10, p. 403, Oct. 2022, doi: 10.1007/s10064-022-02906-6.
  • M. Azarafza et al., “Application of the modified Q-slope classification system for sedimentary rock slope stability assessment in Iran,” Eng Geol, vol. 264, p. 105349, Jan. 2020, doi: 10.1016/j.enggeo.2019.105349.
  • M. Azarafza, M. K. Koçkar, and H.-H. Zhu, “Correlations of SMR-Qslope Data in Stability Classification of Discontinuous Rock Slope: A Modified Relationship Considering the Iranian Data,” Geotechnical and Geological Engineering, vol. 40, no. 4, pp. 1751–1764, Apr. 2022, doi: 10.1007/s10706-021-01991-w.
  • M. Shariati and D. Fereidooni, “Rock slope stability evaluation using kinematic and kinetic methods along the Kamyaran-Marivan road, west of Iran,” J Mt Sci, vol. 18, no. 3, pp. 779–793, Mar. 2021, doi: 10.1007/s11629-020-6438-z.
  • A. Jaiswal, A. K. Verma, and T. N. Singh, “Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 16, no. 1, pp. 167–182, Jan. 2024, doi: 10.1016/j.jrmge.2023.02.021.
  • G. Berhane, M. Kebede, and N. Alfarrah, “Landslide susceptibility mapping and rock slope stability assessment using frequency ratio and kinematic analysis in the mountains of Mgulat area, Northern Ethiopia,” Bulletin of Engineering Geology and the Environment, vol. 80, no. 1, pp. 285–301, Jan. 2021, doi: 10.1007/s10064-020-01905-9.
  • C. Kıncal and M. Y. Koca, “A Proposed Method for Drawing the Great Circle Representing Dip Angle and Strike Changes,” Environmental and Engineering Geoscience, vol. 15, no. 3, pp. 145–165, Aug. 2009, doi: 10.2113/gseegeosci.15.3.145.
  • P. H. S. W. Kulatilake, L. Wang, H. Tang, and Y. Liang, “Evaluation of rock slope stability for Yujian River dam site by kinematic and block theory analyses,” Comput Geotech, vol. 38, no. 6, pp. 846–860, Sep. 2011, doi: 10.1016/j.compgeo.2011.05.004.
  • F. G. Bell, Engineering Geology and Geotechnics. Newness-Butterworths, London: Butterworth & Co Ltd., 1980.
  • G. Habibagahi, R. Shahgholian, and S. M. S. Sahraeian, “Stochastic Analysis of Rock Slope Stability: Application of Fuzzy Sets Theory,” Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 45, no. 2, pp. 851–863, Jun. 2021, doi: 10.1007/s40996-020-00525-3.
  • F. Zhang, T. Yang, L. Li, J. Bu, T. Wang, and P. Xiao, “Assessment of the rock slope stability of Fushun West Open-pit Mine,” Arabian Journal of Geosciences, vol. 14, no. 15, p. 1459, Aug. 2021, doi: 10.1007/s12517-021-07815-8.
  • L. Sun, G. Grasselli, Q. Liu, X. Tang, and A. Abdelaziz, “The role of discontinuities in rock slope stability: Insights from a combined finite-discrete element simulation,” Comput Geotech, vol. 147, p. 104788, Jul. 2022, doi: 10.1016/j.compgeo.2022.104788.
  • Z.-W. Li, X.-L. Yang, and T.-Z. Li, “Static and seismic stability assessment of 3D slopes with cracks,” Eng Geol, vol. 265, p. 105450, Feb. 2020, doi: 10.1016/j.enggeo.2019.105450.
  • Z. Zhang, X. Fu, Q. Sheng, Y. Du, Y. Zhou, and J. Huang, “Stability of Cracking Deposit Slope Considering Parameter Deterioration Subjected to Rainfall,” International Journal of Geomechanics, vol. 21, no. 7, Jul. 2021, doi: 10.1061/(ASCE)GM.1943-5622.0002045.
  • D. Park, “Stability Evaluation of Rock Slopes with Cracks Using Limit Analysis,” Rock Mech Rock Eng, vol. 56, no. 7, pp. 4779–4797, Jul. 2023, doi: 10.1007/s00603-023-03281-8.
  • M. Ramli, T. J. r. Karasu, and E. T. Dawood, “The stability of gabion walls for earth retaining structures,” Alexandria Engineering Journal, vol. 52, no. 4, pp. 705–710, Dec. 2013, doi: 10.1016/j.aej.2013.07.005.
  • N. H. Maerz, A. M. Youssef, B. Pradhan, and A. Bulkhi, “Remediation and mitigation strategies for rock fall hazards along the highways of Fayfa Mountain, Jazan Region, Kingdom of Saudi Arabia,” Arabian Journal of Geosciences, vol. 8, no. 5, pp. 2633–2651, May 2015, doi: 10.1007/s12517-014-1423-x.
  • G. C. Chikute and I. P. Sonar, “Gabion Wall: Eco-friendly and Cost-Efficient Retaining Wall,” in Advances in Sustainable Construction Materials, vol. 124, S. Biswas, S. Metya, S. Kumar, and P. Samui, Eds., Springer Nature Singapore Pte Ltd, 2021, pp. 229–249. doi: 10.1007/978-981-33-4590-4_22.
  • ASTM A975-11, “Standard Specification for Double–Twisted Hexagonal Mesh Gabions and Revet Mattresses (Metallic-Coated Steel Wire or Metallic-Coated Steel Wire With Poly(Vinyl Chloride) (PVC) Coating),” in Book of Standards Volume: 01.06, ASTM International, West Conshohocken, PA, 2016.
  • J. Perera, A. C. Y. Yong, Z. Z. Abdul Majeed, and N. Lam, “Large scale experimental investigation of a reinforced concrete rockfall protection wall with a gabion cushion cover,” in 8th International Conference on Advances in Experimental Structural Engineering, Canterbury, New Zealand, May 2020.
  • [47] S. Lambert, A. Heymann, P. Gotteland, and F. Nicot, “Real-scale investigation of the kinematic response of a rockfall protection embankment,” Natural Hazards and Earth System Sciences, vol. 14, no. 5, pp. 1269–1281, May 2014, doi: 10.5194/nhess-14-1269-2014.
  • S. Lambert, F. Bourrier, P. Gotteland, and F. Nicot, “An experimental investigation of the response of slender protective structures to rockfall impacts,” Canadian Geotechnical Journal, vol. 57, no. 8, pp. 1215–1231, Aug. 2019, doi: 10.1139/cgj-2019-0147.
  • Z. Angın and O. Ş. Karahasan, “Evaluation of the Performance of Gabion Walls as a High-Energy Rockfall Protection System Using 3D Numerical Analysis: A Case Study,” Applied Sciences, vol. 14, no. 6, p. 2360, Mar. 2024, doi: 10.3390/app14062360.
  • J. S. Perera and N. Lam, “Rockfall protection wall that can withstand multiple strikes without needing to be repaired,” Int J Impact Eng, vol. 173, p. 104476, Mar. 2023, doi: 10.1016/j.ijimpeng.2022.104476.
  • J. S. Perera, N. Lam, M. M. Disfani, and E. Gad, “Experimental and Analytical Investigation of a RC Wall with a Gabion Cushion Subjected to Boulder Impact,” Int J Impact Eng, vol. 151, p. 103823, May 2021, doi: 10.1016/j.ijimpeng.2021.103823.
  • P. Jelušič, G. Vlastelica, and B. Žlender, “Sustainable Retaining Wall Solution as a Mitigation Strategy on Steep Slopes in Soft Rock Mass,” Geosciences (Basel), vol. 14, no. 4, p. 90, Mar. 2024, doi: 10.3390/geosciences14040090.
  • A. K. Singh, J. Kundu, K. Sarkar, H. K. Verma, and P. K. Singh, “Impact of rock block characteristics on rockfall hazard and its implications for rockfall protection strategies along Himalayan highways: a case study,” Bulletin of Engineering Geology and the Environment, vol. 80, no. 7, pp. 5347–5368, Jul. 2021, doi: 10.1007/s10064-021-02288-1.
  • N. Jiang, H. Li, and J. Zhou, “Quantitative hazard analysis and mitigation measures of rockfall in a high-frequency rockfall region,” Bulletin of Engineering Geology and the Environment, vol. 80, no. 4, pp. 3439–3456, Apr. 2021, doi: 10.1007/s10064-021-02137-1.
  • M. Mantovani, G. Bossi, A. P. Dykes, A. Pasuto, M. Soldati, and S. Devoto, “Coupling long-term GNSS monitoring and numerical modelling of lateral spreading for hazard assessment purposes,” Eng Geol, vol. 296, p. 106466, Jan. 2022, doi: 10.1016/j.enggeo.2021.106466.
  • W. Frenelus, H. Peng, and J. Zhang, “Creep Behavior of Rocks and Its Application to the Long-Term Stability of Deep Rock Tunnels,” Applied Sciences, vol. 12, no. 17, p. 8451, Aug. 2022, doi: 10.3390/app12178451.
  • J. Xie et al., “Predicting the sliding behavior of rotational landslides based on the tilting measurement of the slope surface,” Eng Geol, vol. 269, p. 105554, May 2020, doi: 10.1016/j.enggeo.2020.105554.
  • J. Du et al., “Force and energy equilibrium-based analytical method for progressive failure analysis of translational rockslides: formulation and comparative study,” Landslides, vol. 20, no. 2, pp. 475–488, Feb. 2023, doi: 10.1007/s10346-022-01980-x.
  • S. Duan, W. Jin, J. Sun, and W. Wang, “Trajectory Analysis of the Rockfall Based on the Effect of Rotating Angular Velocity,” Geotechnical and Geological Engineering, vol. 40, no. 1, pp. 121–131, Jan. 2022, doi: 10.1007/s10706-021-01863-3.
  • K. Holm and M. Jakob, “Long rockfall runout, Pascua Lama, Chile,” Canadian Geotechnical Journal, vol. 46, no. 2, pp. 225–230, Feb. 2009, doi: 10.1139/T08-116.
  • A. M. Ritchie, “Evaluation Rock Fall and its Control,” in Stability of rock slopes, vol. 17, Highway Research Board, 1963, pp. 13–28.
  • K. Ulamış and R. Kılıç, “Combined instability assessment and rockfall hazard in volcanic rocks (Keçiören, Ankara),” Arabian Journal of Geosciences, vol. 13, no. 10, p. 349, May 2020, doi: 10.1007/s12517-020-05338-2.
  • A. M. Youssef, B. Pradhan, M. Al-Kathery, G. D. Bathrellos, and H. D. Skilodimou, “Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation,” Journal of African Earth Sciences, vol. 101, pp. 309–321, Jan. 2015, doi: 10.1016/j.jafrearsci.2014.09.021.
  • JRA, “Manual for Slope Protection,” 1984.
  • JICA, “The Study on Risk Management for Sediment-Related Disaster on Selected National Highways in the Republic of the Philippines,” Japan International Cooperation Agency, Department of Public Works & Highways. Final Report Guide III, Japan, 2007.
  • M. Marchelli, V. De Biagi, and D. Peila, “Reliability-based design of rockfall passive systems height,” International Journal of Rock Mechanics and Mining Sciences, vol. 139, p. 104664, Mar. 2021, doi: 10.1016/j.ijrmms.2021.104664.
  • Turkish State Meteorological Service, “Extreme Maximum, Minimum and Average Temperatures Measured in Long Period (°C),” Cities & Holiday Resorts. Accessed: Aug. 16, 2024. [Online]. Available: https://www.mgm.gov.tr/eng/forecast-cities.aspx
  • MTA, “1/500.000 Ölçekli Jeoloji Haritaları,” Maden Tetkik ve Arama Genel Müdürlüğü. Accessed: Sep. 03, 2024. [Online]. Available: https://www.mta.gov.tr/v3.0/hizmetler/500bas
  • RocScience, “ROCFALL-computer program for risk analysis of falling rocks on steep slopes,” 2012, RocScience, Toronto: 4.
  • Rocscience, “DIPS 5.0 – Graphical and statistical analysis of orientation data,” 1999, RocScience, Canada.
  • RocScience, “RocFall user’s guide, Risk analysis of falling rocks on steep slopes,” 2002, RocScience.
  • ASTM D7012-23, “Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures,” in Book of Standards Volume: 04.09, 2023.
  • ASTM D3967-16, “Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens,” in Book of Standards Volume: 04.08, 2023.
  • E. T. Brown, “Rock characterization testing and monitoring,” 1981. [Online]. Available: https://api.semanticscholar.org/CorpusID:109677088
  • N. Sivakugan, B. M. Das, J. Lovisa, and C. R. Patra, “Determination of c and φ of rocks from indirect tensile strength and uniaxial compression tests,” International Journal of Geotechnical Engineering, vol. 8, no. 1, pp. 59–65, Jan. 2014, doi: 10.1179/1938636213Z.00000000053.
  • B. Keskin, G. Bacak, M. E. Bilir, and M. Geniş, “Investigation of rockfall potential of Zonguldak-Kilimli roadway (Turkey),” Arabian Journal of Geosciences, vol. 13, no. 16, p. 805, Aug. 2020, doi: 10.1007/s12517-020-05815-8.
  • M. P. Kakavas, K. G. Nikolakopoulos, A. Kyriou, and I. Koukouvelas, “The Influence of the DSM Spatial Resolution in Rockfall Simulation and Validation with In Situ Data,” Geosciences (Basel), vol. 13, no. 2, p. 57, Feb. 2023, doi: 10.3390/geosciences13020057.
  • M. Spadari, A. Giacomini, O. Buzzi, S. Fityus, and G. P. Giani, “In situ rockfall testing in New South Wales, Australia,” International Journal of Rock Mechanics and Mining Sciences, vol. 49, pp. 84–93, Jan. 2012, doi: 10.1016/j.ijrmms.2011.11.013.
  • A. Giacomini, O. Buzzi, B. Renard, and G. P. Giani, “Experimental studies on fragmentation of rock falls on impact with rock surfaces,” International Journal of Rock Mechanics and Mining Sciences, vol. 46, no. 4, pp. 708–715, Jun. 2009, doi: 10.1016/j.ijrmms.2008.09.007.
  • G. P. Giani, A. Giacomini, M. Migliazza, and A. Segalini, “Experimental and Theoretical Studies to Improve Rock Fall Analysis and Protection Work Design,” Rock Mech Rock Eng, vol. 37, no. 5, pp. 369–389, Nov. 2004, doi: 10.1007/s00603-004-0027-2.
  • L. K. A. Dorren, “A review of rockfall mechanics and modelling approaches,” Progress in Physical Geography: Earth and Environment, vol. 27, no. 1, pp. 69–87, Mar. 2003, doi: 10.1191/0309133303pp359ra.
  • M. E. Robotham, H. Wang, and G. Walton, “Assessment of risk from rockfall from active and abandoned quarry slopes,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 32, no. 5, pp. 25–33, Jul. 1995, doi: 10.1016/0148-9062(95)93408-H.
  • A. Azzoni and M. H. de Freitas, “Experimentally gained parameters, decisive for rock fall analysis,” Rock Mech Rock Eng, vol. 28, no. 2, pp. 111–124, Apr. 1995, doi: 10.1007/BF01020064.
  • Z.-M. Ji, Z.-J. Chen, Q.-H. Niu, T.-H. Wang, T.-J. Wang, and T.-L. Chen, “A calculation model of the normal coefficient of restitution based on multi-factor interaction experiments,” Landslides, vol. 18, no. 4, pp. 1531–1553, Apr. 2021, doi: 10.1007/s10346-020-01556-7.
  • Z.-M. Ji, Z.-J. Chen, Q.-H. Niu, T.-J. Wang, H. Song, and T.-H. Wang, “Laboratory study on the influencing factors and their control for the coefficient of restitution during rockfall impacts,” Landslides, vol. 16, no. 10, pp. 1939–1963, Oct. 2019, doi: 10.1007/s10346-019-01183-x.
  • Y. Wang, W. Jiang, S. Cheng, P. Song, and C. Mao, “Effects of the impact angle on the coefficient of restitution in rockfall analysis based on a medium-scale laboratory test,” Natural Hazards and Earth System Sciences, vol. 18, no. 11, pp. 3045–3061, Nov. 2018, doi: 10.5194/nhess-18-3045-2018.
  • J. Tang, X. Zhou, K. Liang, Y. Lai, G. Zhou, and J. Tan, “Experimental study on the coefficient of restitution for the rotational sphere rockfall,” Environ Earth Sci, vol. 80, no. 11, p. 419, Jun. 2021, doi: 10.1007/s12665-021-09684-6.
  • K. T. Chau, R. H. C. Wong, and J. J. Wu, “Coefficient of restitution and rotational motions of rockfall impacts,” International Journal of Rock Mechanics and Mining Sciences, vol. 39, no. 1, pp. 69–77, Jan. 2002, doi: 10.1016/S1365-1609(02)00016-3.
  • P. W. Mayne, B. R. Christopher, and J. T. DeJong, “Subsurface Investigations-Geotechnical Site Characterization: Reference Manual,” No. FHWA-NHI-01-031. United States. Federal Highway Administration, 2002. [Online]. Available: https://api.semanticscholar.org/CorpusID:48064955
  • K. Alambra, “Limestone Calculator.” Accessed: Sep. 18, 2024. [Online]. Available: https://www.omnicalculator.com/construction/limestone.
There are 90 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Research Article
Authors

Bekir Fidan 0000-0001-6097-6281

Yavuz Yenginar 0000-0002-6916-4068

Murat Olgun 0000-0001-7856-8227

Publication Date December 1, 2024
Submission Date July 4, 2024
Acceptance Date September 24, 2024
Published in Issue Year 2024

Cite

IEEE B. Fidan, Y. Yenginar, and M. Olgun, “A CASE STUDY: COST-BENEFIT AND RISK ANALYSES OF GABION WALL FOR ROCKFALL PROTECTION METHOD IN BOZKIR, TURKEY”, KONJES, vol. 12, no. 4, pp. 865–885, 2024, doi: 10.36306/konjes.1510650.