Research Article
BibTex RIS Cite

SOLVING THE CLASSIFICATION PROBLEM OF CIRCULAR METAL OBJECTS WITH ENGRAVED CHARACTERS BY IMAGE PROCESSING METHODS

Year 2020, , 32 - 50, 05.03.2020
https://doi.org/10.36306/konjes.585000

Abstract

In this study, two different solution ways have been developed for the problem of classification of industrial small circular metal objects on the surfaces of engraved metal. It is the first proposed solution to perform the pattern matching with XOR operator by extract the character region of the circular metal objects as a pre-process, making the model of the Daugman’s Rubber Sheet Model (DRSM) and performing feature extraction. As a result, obtained that average processing time is 69,72 milliseconds and 0,9398 accuracy rate in the first proposed solution. The second solution is the optical character recognition (OCR) on the circular metal objects that to be realized character region detection and character segmentation as a result of the Maximal Stabil Extremal Region (MSER) and Stroke Width Transform (SWT) algorithms. Character recognition realized by using the model of Convolutional Neural Network (CNN) class which is a deep machine learning approach of artificial intelligence. The character recognition problem of the circular metal objects provided at the same time solved the problem of object classification. As a result, obtained that average processing time is 1,596 second and 0,9719 accuracy rate in the second proposed solution.

References

  • Bala, A. and Tajinder, K., 2016, Local texton XOR patterns: A new feature descriptor for content-based image retrieval, Engineering Science and Technology, an International Journal, 19 (1), 101-112.
  • Bell, A. J. and Sejnowski, T. J., 1997, The Independent Components of Natural Scenes are Edge Filters, Vision Research, 37 (23), 3327-3338
  • Canny, J., 1986, A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (6), 679-698.
  • Chapelle, O., Haffner, P. and Vapnik, V. N., 1999, Support vector machines for histogram-based image classification, Ieee Transactions on Neural Networks, 10 (5), 1055-1064.
  • Chawla, S. and Oberoi, A., 2011, A Robust Algorithm for Iris Segmentation and Normalization using Hough Transform, Global Journal of Business Management and Information Technology, 69-76.
  • Clausi, D. A. and Jernigan, T. E., 2000, Designing Gabor filters for optimal texture separability, Pattern Recognition, 33 (11), 1835-1849.
  • Cohen, G., Afshar, S., Tapson, J. and van Schaik, A., 2017, EMNIST: an extension of MNIST to handwritten letters, Internaltional Joint Conference On Neural Networks (IJCONN), 2921-2926.
  • Connell, S. D. and Jain, A. K., 2001, Template-based online character recognition, Pattern Recognition, 34 (1), 1-14.
  • Dalal, N. and Triggs, B., 2005, Histograms of Oriented Gradients for Human Detection, Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, 1 (1), 886-893.
  • Daugman, J., 1997, Neural image processing strategies applied in real-time pattern recognition, Real-Time Imaging, 3 (3), 157-171.
  • Daugman, J., 2003, The importance of being random statistical principles of iris recognition, Pattern Recognition, 36, 279-291.
  • Donoser, M. and Bischof, H., 2006, Efficient Maximally Stable Extremal Region (MSER) Tracking, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, 553-560.
  • Epshtein, B., Ofek, E. and Wexler, Y., 2010, Detecting Text in Natural Scenes with Stroke Width Transform, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2963-2970.
  • Fukushima, K., 1980, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biological Cybernetics, 36 (4), 193–202.
  • Gabor, D., 1946, Theory of communication. Part 3: Frequency compression and expansion, Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering, 93 (26), 445-457.
  • Gonzalez, A., Bergasa, L. M., Yebes, J. J. and Bronte, S., 2012, Text Location in Complex Images, 21st International Conference on Pattern Recognition (ICPR 2012), 617-620.
  • Hanif, S. M. and Prevost, L., 2009, Text Detection and Localization in Complex Scene Images using Constrained AdaBoost Algorithm, 10th International Conference on Document Analysis and Recognition, 1-5.
  • Havlicek, J. P., Havlicek, J. W. and Bovik, A. C., 1997, The analytic image, Proceedings of International Conference on Image Processing, 446-449.
  • He, K., Gkioxari, G., Dollar, P. and Girshick, R., 2017, Mask R-CNN, Proceedings of the IEEE International Conference on Computer Vision, 1, 2980-2988.
  • Heikkila, M., Pietikainen, M. and Schmid, C., 2009, Description of interest regions with local binary patterns, Pattern Recognition, 42 (3), 425-436.
  • Hinton, G. E., Osindero, S. and Teh, Y. W., 2006, A Fast Learning Algorithm for Deep Belief Nets, Neural Computation, 18 (7), 1527-1554.
  • Hough, P. V. C., 1962, General Purpose Visual Input for a Computer, Brookhaven National Laboratory, Upton, N. Y, 99, 323-334.
  • Huizhong, C., Tsai, S. S., Schroth, G., Chen, D. M., Grzeszczuk, R. and Girod, B., 2011, Robust text detection in natural images with edge-enhanced maximally stable extremal regions, Proceedings - International Conference on Image Processing, ICIP, 2609-2612.
  • Jailin Reshma, A., Jenushma James, J., Kavya, M. and Saravanan, M., 2016, An overview of character recognition focused on offline handwriting, ARPN Journal of Engineering and Applied Sciences, 11 (15), 9372-9378.
  • Keysers, D., Deselaers, T., Gollan, C. and Ney, H., 2007, Deformation models for image recognition, IEEE Trans Pattern Anal Mach Intell, 29 (8), 1422-1435.
  • Kingma, D. P. and Ba, J. L., 2015, Adam: A method for stochastic gradient descent, ICLR: International Conference on Learning Representations.
  • Krizhevsky, A., Sutskever, I. and Hinton, G. E., 2012, ImageNet Classification with Deep Convolutional Neural Networks, ImageNet Classification with Deep Convolutional Neural Networks, 1097-1105.
  • Kocer, H. E. and Cevik, K., 2011, Artificial neural networks based vehicle license plate recognition, Procedia Computer Science, 3, 1033-1037.
  • Lam, W. C. Y. and Yuen, S. Y., 1996, Efficient technique for circle detection using hypothesis filtering and Hough transform, Iee Proceedings-Vision Image and Signal Processing, 143 (5), 292-300.
  • LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86 (11), 2278-2324.
  • LeCun, Y., Bengio, Y. and Hinton, G., 2015, Deep learning, Nature, 521 (7553), 436-444.
  • Lee, H., Grosse, R., Ranganath, R. and Ng, A. Y., 2009, Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations, Proceedings of the 26th Annual International Conference on Machine Learning - ICML '09, 609-616.
  • Lee, T. S., 1996, Image representation using 2D gabor wavelets, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (10), 959-971.
  • Li, Y. and Lu, H., 2012, Scene Text Detection via Stroke Width, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 681-684.
  • Long, J., Shelhamer, E. and Darrell, T., 2015, Fully Convolutional Networks for Semantic Segmentation. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 3431-3440.
  • Ma, J., Shao, W., Ye, H., Wang, L., Wang, H., Zheng, Y. and Xue, X., 2018, Arbitrary-Oriented Scene Text Detection via Rotation Proposals, IEEE Transactions on Multimedia, 20 (11), 3111-3122.
  • Ma, L., Wang, Y. and Tan, T., 2002, Iris recognition based on multichannel Gabor filtering. Proceedings of the International Conference on Asian Conference on Computer Vision: 279--283.
  • Marr, D. and Hildreth, E., 1980, Theory of Edge-Detection, Proceedings of the Royal Society Series B-Biological Sciences, 207 (1167), 187-217.
  • Matas, J., Chum, O., Urban, M. and Pajdla, T., 2004, Robust wide-baseline stereo from maximally stable extremal regions, Image and Vision Computing, 22 (10), 761-767.
  • Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T. and Gool, L. V., 2005, A Comparison of Affine Region Detectors, International Journal of Computer Vision, 65 (1-2), 43-72.
  • Müller, K. R., Mika, S., Ratsch, G., Tsuda, K. and Scholkopf, B., 2001, An Introduction to Kernel-Based Learning Algorithms, Ieee Transactions on Neural Networks, 12, 181-201.
  • Neumann, L. and Matas, J., 2012, Real-Time Scene Text Localization and Recognition, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 3538-3545.
  • Ojala, T., Pietikainen, M. and Harwood, D., 1996, A comparative study of texture measures with classification based on feature distributions, Pattern Recognition, 29 (11), 51-59.
  • Oppenheim, A. V., Lim, J. S. and Curtis, S. R., 1983, Signal Synthesis and Reconstruction from Partial Fourier-Domain Information, Journal of the Optical Society of America, 73 (11), 1413-1420.
  • Pratt, W. K., 2001, Digital Image Processing: PIKS Inside, John Wiley and Sons, Inc., New York, NY, USA, 3rd edition, 590-595.
  • Qian, S., Liu, H., Liu, C., Wu, S. and Wong, H. S., 2018, Adaptive activation functions in convolutional neural networks, Neurocomputing, 272, 204-212.
  • Redmon, J. and Farhadi, A., 2017, YOLO9000: Better, Faster, Stronger, 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 6517-6525.
  • Redmon, J. and Farhadi, A., 2019, YOLOv3: An Incremental Improvement, CoRR.
  • Salembier, P. and Garrido, L., 2000, Connected operators based on region-tree pruning strategies. Proceedings 15th International Conference on Pattern Recognition. ICPR-2000: 367-370.
  • Schapire, R. E. and Singer, Y., 1999, Improved boosting algorithms using confidence-rated predictions, Machine Learning, 37 (3), 297-336.
  • Scott T. Acton, P. Havlicek and Alan Conrad Bovik, 2001, Oriented Texture Completion by AM–FM Reaction-Diffusion, IEEE TRANSACTIONS ON IMAGE PROCESSING, 10 (6), 885-896.
  • Shivakumara, P., Phan, T. Q. and Tan, C. L., 2011, A Laplacian Approach to Multi-Oriented Text Detection in Video, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2), 412-419.
  • Subrahmanyam, M., Wu, Q. M. J., Maheshwari, R. P. and Balasubramanian, R., 2013, Modified color motif co-occurrence matrix for image indexing and retrieval, Computers & Electrical Engineering, 39 (3), 762-774.
  • Tan, T. N., 1995, Texture edge detection by modelling visual cortical channels, Pattern Recognition, 28 (9), 1283-1298.
  • Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E. and Liang, Z., 2019, Apple detection during different growth stages in orchards using the improved YOLO-V3 model, Computers and Electronics in Agriculture, 157, 417-426.
  • Tisse, C., Martin, L., Torres, L. and Robert, M., 2002, Person identification technique using human iris recognition, Proceedings of Vision Interface, 294-299.
  • Turner, M. R., 1986, Texture-Discrimination by Gabor Functions, Biological Cybernetics, 55 (2-3), 71-82.
  • Xie., E., Zang., Y., Shao., S., Yu., G., Yao., C. and Li., G., 2018, Scene Text Detection with Supervised Pyramid Context Network, CoRR.
  • Ylajaaski, A. and Kiryati, N., 1994, Adaptive Termination of Voting in the Probabilistic Circular Hough Transform, IEEE Transactions on Pattern Analysis and Machine Intelligence, 16 (9), 911-915.
  • Zhang, B., Gao, Y., Zhao, S. and Liu, J., 2010, Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor, IEEE Trans Image Process, 19 (2), 533-544.
  • Zhao, X., Lin, K. H., Fu, Y., Hu, Y., Liu, Y. and Huang, T. S., 2011, Text from corners: a novel approach to detect text and caption in videos, IEEE Trans Image Process, 20 (3), 790-799.
  • Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W. and Liang, J., 2017, EAST: An efficient and accurate scene text detector, 2642-2651.

Oyma Karakterlere Sahip Dairesel Metal Cisimlerin Sınıflandırma Probleminin Görüntü İşleme Yöntemleri İle Çözümü

Year 2020, , 32 - 50, 05.03.2020
https://doi.org/10.36306/konjes.585000

Abstract

Bu çalışmada, endüstriyel üretim olan dairesel küçük çaplı metal cisimlerin yüzeyleri üzerine oyma işlemi gerçekleştirilmiş karakterlere göre sınıflandırılması problemi için 2 farklı çözüm yolu geliştirilmiştir. Dairesel metal cisimlerin görsellerinin ön aşama olarak karakter bölgesinin çıkartılıp, Daugman’s Rubber Sheet (DRSM) modeli haline getirilmesi ve özellik çıkarımı gerçekleştirilerek, XOR operatörü ile şablon eşleştirme gerçekleştirilmesi önerilen ilk çözüm yoludur. İlk önerilen yöntemin sonucunda, ortalama işlem süresi 69,72 milisaniye ve 0,9398 doğruluk oranı başarım parametreleri olarak elde edilmiştir. İkinci çözüm yolu, dairesel metal cisimler üzerindeki karakterlerin Maximally Stabil Extremal Region (MSER) ve Stroke Width Transform (SWT) algoritmaları sonucu karakter bölgesi tespiti ve karakter segmentasyonu gerçekleştirilerek yapay zekanın derin öğrenme yaklaşımlarından Convolution Neural Network (CNN) sınıfı tasarlanan model ile karakter tanınması gerçekleştirilmiştir. Karakter tanınması sağlanan dairesel metal cisimlerin aynı zamanda nesne sınıflandırma problemi çözülmüştür. İkinci olarak önerilen yöntemde ise, ortalama işlem süresi 1,596 saniye ve 0,919 doğruluk oranı başarım parametreleri olarak elde edilmiştir.

References

  • Bala, A. and Tajinder, K., 2016, Local texton XOR patterns: A new feature descriptor for content-based image retrieval, Engineering Science and Technology, an International Journal, 19 (1), 101-112.
  • Bell, A. J. and Sejnowski, T. J., 1997, The Independent Components of Natural Scenes are Edge Filters, Vision Research, 37 (23), 3327-3338
  • Canny, J., 1986, A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (6), 679-698.
  • Chapelle, O., Haffner, P. and Vapnik, V. N., 1999, Support vector machines for histogram-based image classification, Ieee Transactions on Neural Networks, 10 (5), 1055-1064.
  • Chawla, S. and Oberoi, A., 2011, A Robust Algorithm for Iris Segmentation and Normalization using Hough Transform, Global Journal of Business Management and Information Technology, 69-76.
  • Clausi, D. A. and Jernigan, T. E., 2000, Designing Gabor filters for optimal texture separability, Pattern Recognition, 33 (11), 1835-1849.
  • Cohen, G., Afshar, S., Tapson, J. and van Schaik, A., 2017, EMNIST: an extension of MNIST to handwritten letters, Internaltional Joint Conference On Neural Networks (IJCONN), 2921-2926.
  • Connell, S. D. and Jain, A. K., 2001, Template-based online character recognition, Pattern Recognition, 34 (1), 1-14.
  • Dalal, N. and Triggs, B., 2005, Histograms of Oriented Gradients for Human Detection, Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, 1 (1), 886-893.
  • Daugman, J., 1997, Neural image processing strategies applied in real-time pattern recognition, Real-Time Imaging, 3 (3), 157-171.
  • Daugman, J., 2003, The importance of being random statistical principles of iris recognition, Pattern Recognition, 36, 279-291.
  • Donoser, M. and Bischof, H., 2006, Efficient Maximally Stable Extremal Region (MSER) Tracking, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, 553-560.
  • Epshtein, B., Ofek, E. and Wexler, Y., 2010, Detecting Text in Natural Scenes with Stroke Width Transform, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2963-2970.
  • Fukushima, K., 1980, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biological Cybernetics, 36 (4), 193–202.
  • Gabor, D., 1946, Theory of communication. Part 3: Frequency compression and expansion, Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering, 93 (26), 445-457.
  • Gonzalez, A., Bergasa, L. M., Yebes, J. J. and Bronte, S., 2012, Text Location in Complex Images, 21st International Conference on Pattern Recognition (ICPR 2012), 617-620.
  • Hanif, S. M. and Prevost, L., 2009, Text Detection and Localization in Complex Scene Images using Constrained AdaBoost Algorithm, 10th International Conference on Document Analysis and Recognition, 1-5.
  • Havlicek, J. P., Havlicek, J. W. and Bovik, A. C., 1997, The analytic image, Proceedings of International Conference on Image Processing, 446-449.
  • He, K., Gkioxari, G., Dollar, P. and Girshick, R., 2017, Mask R-CNN, Proceedings of the IEEE International Conference on Computer Vision, 1, 2980-2988.
  • Heikkila, M., Pietikainen, M. and Schmid, C., 2009, Description of interest regions with local binary patterns, Pattern Recognition, 42 (3), 425-436.
  • Hinton, G. E., Osindero, S. and Teh, Y. W., 2006, A Fast Learning Algorithm for Deep Belief Nets, Neural Computation, 18 (7), 1527-1554.
  • Hough, P. V. C., 1962, General Purpose Visual Input for a Computer, Brookhaven National Laboratory, Upton, N. Y, 99, 323-334.
  • Huizhong, C., Tsai, S. S., Schroth, G., Chen, D. M., Grzeszczuk, R. and Girod, B., 2011, Robust text detection in natural images with edge-enhanced maximally stable extremal regions, Proceedings - International Conference on Image Processing, ICIP, 2609-2612.
  • Jailin Reshma, A., Jenushma James, J., Kavya, M. and Saravanan, M., 2016, An overview of character recognition focused on offline handwriting, ARPN Journal of Engineering and Applied Sciences, 11 (15), 9372-9378.
  • Keysers, D., Deselaers, T., Gollan, C. and Ney, H., 2007, Deformation models for image recognition, IEEE Trans Pattern Anal Mach Intell, 29 (8), 1422-1435.
  • Kingma, D. P. and Ba, J. L., 2015, Adam: A method for stochastic gradient descent, ICLR: International Conference on Learning Representations.
  • Krizhevsky, A., Sutskever, I. and Hinton, G. E., 2012, ImageNet Classification with Deep Convolutional Neural Networks, ImageNet Classification with Deep Convolutional Neural Networks, 1097-1105.
  • Kocer, H. E. and Cevik, K., 2011, Artificial neural networks based vehicle license plate recognition, Procedia Computer Science, 3, 1033-1037.
  • Lam, W. C. Y. and Yuen, S. Y., 1996, Efficient technique for circle detection using hypothesis filtering and Hough transform, Iee Proceedings-Vision Image and Signal Processing, 143 (5), 292-300.
  • LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86 (11), 2278-2324.
  • LeCun, Y., Bengio, Y. and Hinton, G., 2015, Deep learning, Nature, 521 (7553), 436-444.
  • Lee, H., Grosse, R., Ranganath, R. and Ng, A. Y., 2009, Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations, Proceedings of the 26th Annual International Conference on Machine Learning - ICML '09, 609-616.
  • Lee, T. S., 1996, Image representation using 2D gabor wavelets, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (10), 959-971.
  • Li, Y. and Lu, H., 2012, Scene Text Detection via Stroke Width, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 681-684.
  • Long, J., Shelhamer, E. and Darrell, T., 2015, Fully Convolutional Networks for Semantic Segmentation. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 3431-3440.
  • Ma, J., Shao, W., Ye, H., Wang, L., Wang, H., Zheng, Y. and Xue, X., 2018, Arbitrary-Oriented Scene Text Detection via Rotation Proposals, IEEE Transactions on Multimedia, 20 (11), 3111-3122.
  • Ma, L., Wang, Y. and Tan, T., 2002, Iris recognition based on multichannel Gabor filtering. Proceedings of the International Conference on Asian Conference on Computer Vision: 279--283.
  • Marr, D. and Hildreth, E., 1980, Theory of Edge-Detection, Proceedings of the Royal Society Series B-Biological Sciences, 207 (1167), 187-217.
  • Matas, J., Chum, O., Urban, M. and Pajdla, T., 2004, Robust wide-baseline stereo from maximally stable extremal regions, Image and Vision Computing, 22 (10), 761-767.
  • Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T. and Gool, L. V., 2005, A Comparison of Affine Region Detectors, International Journal of Computer Vision, 65 (1-2), 43-72.
  • Müller, K. R., Mika, S., Ratsch, G., Tsuda, K. and Scholkopf, B., 2001, An Introduction to Kernel-Based Learning Algorithms, Ieee Transactions on Neural Networks, 12, 181-201.
  • Neumann, L. and Matas, J., 2012, Real-Time Scene Text Localization and Recognition, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 3538-3545.
  • Ojala, T., Pietikainen, M. and Harwood, D., 1996, A comparative study of texture measures with classification based on feature distributions, Pattern Recognition, 29 (11), 51-59.
  • Oppenheim, A. V., Lim, J. S. and Curtis, S. R., 1983, Signal Synthesis and Reconstruction from Partial Fourier-Domain Information, Journal of the Optical Society of America, 73 (11), 1413-1420.
  • Pratt, W. K., 2001, Digital Image Processing: PIKS Inside, John Wiley and Sons, Inc., New York, NY, USA, 3rd edition, 590-595.
  • Qian, S., Liu, H., Liu, C., Wu, S. and Wong, H. S., 2018, Adaptive activation functions in convolutional neural networks, Neurocomputing, 272, 204-212.
  • Redmon, J. and Farhadi, A., 2017, YOLO9000: Better, Faster, Stronger, 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 6517-6525.
  • Redmon, J. and Farhadi, A., 2019, YOLOv3: An Incremental Improvement, CoRR.
  • Salembier, P. and Garrido, L., 2000, Connected operators based on region-tree pruning strategies. Proceedings 15th International Conference on Pattern Recognition. ICPR-2000: 367-370.
  • Schapire, R. E. and Singer, Y., 1999, Improved boosting algorithms using confidence-rated predictions, Machine Learning, 37 (3), 297-336.
  • Scott T. Acton, P. Havlicek and Alan Conrad Bovik, 2001, Oriented Texture Completion by AM–FM Reaction-Diffusion, IEEE TRANSACTIONS ON IMAGE PROCESSING, 10 (6), 885-896.
  • Shivakumara, P., Phan, T. Q. and Tan, C. L., 2011, A Laplacian Approach to Multi-Oriented Text Detection in Video, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2), 412-419.
  • Subrahmanyam, M., Wu, Q. M. J., Maheshwari, R. P. and Balasubramanian, R., 2013, Modified color motif co-occurrence matrix for image indexing and retrieval, Computers & Electrical Engineering, 39 (3), 762-774.
  • Tan, T. N., 1995, Texture edge detection by modelling visual cortical channels, Pattern Recognition, 28 (9), 1283-1298.
  • Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E. and Liang, Z., 2019, Apple detection during different growth stages in orchards using the improved YOLO-V3 model, Computers and Electronics in Agriculture, 157, 417-426.
  • Tisse, C., Martin, L., Torres, L. and Robert, M., 2002, Person identification technique using human iris recognition, Proceedings of Vision Interface, 294-299.
  • Turner, M. R., 1986, Texture-Discrimination by Gabor Functions, Biological Cybernetics, 55 (2-3), 71-82.
  • Xie., E., Zang., Y., Shao., S., Yu., G., Yao., C. and Li., G., 2018, Scene Text Detection with Supervised Pyramid Context Network, CoRR.
  • Ylajaaski, A. and Kiryati, N., 1994, Adaptive Termination of Voting in the Probabilistic Circular Hough Transform, IEEE Transactions on Pattern Analysis and Machine Intelligence, 16 (9), 911-915.
  • Zhang, B., Gao, Y., Zhao, S. and Liu, J., 2010, Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor, IEEE Trans Image Process, 19 (2), 533-544.
  • Zhao, X., Lin, K. H., Fu, Y., Hu, Y., Liu, Y. and Huang, T. S., 2011, Text from corners: a novel approach to detect text and caption in videos, IEEE Trans Image Process, 20 (3), 790-799.
  • Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W. and Liang, J., 2017, EAST: An efficient and accurate scene text detector, 2642-2651.
There are 62 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Hasan Erdinç Koçer 0000-0002-0799-2140

Mahmut Sami Yasak

Publication Date March 5, 2020
Submission Date July 1, 2019
Acceptance Date August 6, 2019
Published in Issue Year 2020

Cite

IEEE H. E. Koçer and M. S. Yasak, “SOLVING THE CLASSIFICATION PROBLEM OF CIRCULAR METAL OBJECTS WITH ENGRAVED CHARACTERS BY IMAGE PROCESSING METHODS”, KONJES, vol. 8, no. 1, pp. 32–50, 2020, doi: 10.36306/konjes.585000.