Research Article
BibTex RIS Cite

PRODUCTION AND STRUCTURAL ANALYSIS OF Ti3AlC2/Ti3C2 INCORPORATED EPOXY COMPOSITES

Year 2019, , 632 - 644, 01.09.2019
https://doi.org/10.36306/konjes.613882

Abstract

Epoxy resins have been extensively used in a
wide range of industrial applications owing to their superior properties like
good electrical insulation, adhesiveness and high mechanical strength. They
have moderate viscosity and curing temperatures lower than 200 °C, thus have
been ideal candidates for protective coatings in electronic, aerospace and
marine industries. In order to combine superior properties of epoxy with
enhanced mechanical strength for bulk, structural applications, various
nanomaterials including clays and graphite have been incorporated into epoxy
resins. However, sufficient level of enhancement in mechanical strength and
thermal resistance could not be provided due to excessive agglomeration of
nanosized particles. Agglomeration limited the wettability of particles by the
monomer, leading to decreased polymerization efficiency at the
polymer-reinforcer interface. In this study, the aluminum layer in Ti3AlC2
(MAX (312); ternary carbides), was chemically etched leaving a layered
structure possessing graphene-like electrical conductivity (Ti3C2)
with good mechanical strength. Both, MAX and MXene were incorporated into epoxy
monomer at identical ratios. The incorporation of Ti3C2
layers resulted in disappearance of (002) peak in XRD analysis. This indicated
the delamination of MXene layers inside epoxy matrix. The glass transition
temperature (Tg) of epoxy shifted from 175 to 180
°C and 183 °C
by 4 wt. % incorporation of MAX and MXene respectively. The microhardness
increased from 18.9
± 1.8 to 27.5 ± 5 when 4 wt. % MXene, and to 20.6 ± 2.9 when 4 wt. % MAX incorporated. This study indicates
that it is possible to produce highly reinforced MXene/epoxy composites and use
them in structural applications while the agglomeration is prevented.

Supporting Institution

TUBITAK 2214

Thanks

Author acknowledges Prof. Dr. Michel W. Barsoum and TUBITAK 2214 (International Research Fellowship) Program. Author also acknowledges Prof. Dr. Giuseppe Palmese for providing DMA analysis equipment.

References

  • Anasori, Babak, Maria R Lukatskaya, and Yury Gogotsi. 2017. '2D metal carbides and nitrides (MXenes) for energy storage', Nature Reviews Materials, 2: 16098.
  • Atif, Rasheed, Islam Shyha, and Fawad Inam. 2016. 'Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites—A review', Polymers, 8: 281.
  • Barsoum, M. W., 2013, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, Wiley-VCH Verlag GmBH & Co., Weinheim, Germany.
  • Choi, Ilbeom. 2013. 'Surface modification of carbon fiber/epoxy composites with randomly oriented aramid fiber felt for adhesion strength enhancement', Composites Part A: Applied Science and Manufacturing, 48: 1-8.
  • Ehrenstein, Gottfried W, Gabriela Riedel, and Pia Trawiel. 2012. Thermal analysis of plastics: theory and practice (Carl Hanser Verlag GmbH Co KG).
  • Ghidiu, Michael, Maria R Lukatskaya, Meng-Qiang Zhao, Yury Gogotsi, and Michel W Barsoum. 2014. 'Conductive two-dimensional titanium carbide ‘clay’with high volumetric capacitance', Nature, 516: 78.
  • Jin, Fan-Long, Xiang Li, and Soo-Jin Park. 2015. 'Synthesis and application of epoxy resins: A review', Journal of Industrial and Engineering Chemistry, 29: 1-11.
  • Kausar, Ayesha, Zanib Anwar, and Bakhtiar Muhammad. 2016. 'Recent developments in epoxy/graphite, epoxy/graphene, and epoxy/graphene nanoplatelet composites: a comparative review', Polymer-Plastics Technology and Engineering, 55: 1192-210.
  • Kaya, Elcin, Metin Tanoğlu, and Salih Okur. 2008. 'Layered clay/epoxy nanocomposites: Thermomechanical, flame retardancy, and optical properties', Journal of applied polymer science, 109: 834-40.
  • Kumar, Abhishek, and Samit Roy. 2018. 'Characterization of mixed mode fracture properties of nanographene reinforced epoxy and Mode I delamination of its carbon fiber composite', Composites Part B: Engineering, 134: 98-105.
  • Laouchedi, Dalila, Boudjema Bezzazi, and Chouaib Aribi. 2017. 'Elaboration and characterization of composite material based on epoxy resin and clay fillers', Journal of applied research and technology, 15: 190-204.
  • Li, Yan, Han Zhang, Harshit Porwal, Zhaohui Huang, Emiliano Bilotti, and Ton Peijs. 2017. 'Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites', Composites Part A: Applied Science and Manufacturing, 95: 229-36.
  • Liu, Shan, Venkata S Chevali, Zhiguang Xu, David Hui, and Hao Wang. 2018. 'A review of extending performance of epoxy resins using carbon nanomaterials', Composites Part B: Engineering, 136: 197-214.
  • Ma, Peng-Cheng, Shan-Yin Mo, Ben-Zhong Tang, and Jang-Kyo Kim. 2010. 'Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites', Carbon, 48: 1824-34.
  • May, Clayton. 1987. Epoxy resins: chemistry and technology (CRC press).
  • Naguib, Michael, Murat Kurtoglu, Volker Presser, Jun Lu, Junjie Niu, Min Heon, Lars Hultman, Yury Gogotsi, and Michel W. Barsoum. 2011. 'Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2', Advanced Materials, 23: 4248-53.
  • Poonpipat, Yanika, Kritsanachai Leelachai, Raymond A Pearson, and Peerapan Dittanet. 2017. 'Fracture behavior of silica nanoparticles reinforced rubber/epoxy composite', Journal of Reinforced Plastics and Composites, 36: 1156-67.
  • Prolongo, SG, BG Meliton, G Del Rosario, and A Ureña. 2013. 'New alignment procedure of magnetite–CNT hybrid nanofillers on epoxy bulk resin with permanent magnets', Composites Part B: Engineering, 46: 166-72.
  • Radovic, Ljubisa R, Alejandro Suarez, Fernando Vallejos-Burgos, and Jorge O Sofo. 2011. 'Oxygen migration on the graphene surface. 2. Thermochemistry of basal-plane diffusion (hopping)', Carbon, 49: 4226-38.
  • Rao, C. N. R., A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj. 2009. 'Graphene: The New Two-Dimensional Nanomaterial', Angewandte Chemie International Edition, 48: 7752-77.
  • Souza, Virgínia S, Otávio Bianchi, Martha FS Lima, and Raquel Santos Mauler. 2014. 'Morphological, thermomechanical and thermal behavior of epoxy/MMT nanocomposites', Journal of Non-Crystalline Solids, 400: 58-66.
  • Sowichai, Kanokwan, Sitthisuntorn Supothina, On-uma Nimittrakoolchai, Takafumi Seto, Yoshio Otani, and Tawatchai Charinpanitkul. 2012. 'Facile method to prepare magnetic multi-walled carbon nanotubes by in situ co-precipitation route', Journal of Industrial and Engineering Chemistry, 18: 1568-71.
  • Srivastava, Shakun, and Anjaney Pandey. 2019. 'Mechanical behavior and thermal stability of ultrasonically synthesized halloysite-epoxy composite', Composites Communications, 11: 39-44.
  • Wang, Fuzhong, Lawrence T Drzal, Yan Qin, and Zhixiong Huang. 2016. 'Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets', Composites Part A: Applied Science and Manufacturing, 87: 10-22.
  • Wang, Xiao, Jie Jin, and Mo Song. 2013. 'An investigation of the mechanism of graphene toughening epoxy', Carbon, 65: 324-33.
  • Xu, Peng, James Loomis, Ben King, and Balaji Panchapakesan. 2012. 'Synergy among binary (MWNT, SLG) nano-carbons in polymer nano-composites: a Raman study', Nanotechnology, 23: 315706.
  • Yousri, Omar M, Mohamed Hazem Abdellatif, and Ghada Bassioni. 2018. 'Effect of Al $$ _ {2}\mathrm {O} _ {3} $$ Nanoparticles on the Mechanical and Physical Properties of Epoxy Composite', Arabian Journal for Science and Engineering, 43: 1511-17.
  • Zabihi, Omid, Mojtaba Ahmadi, Saeid Nikafshar, Karthik Chandrakumar Preyeswary, and Minoo Naebe. 2018. 'A technical review on epoxy-clay nanocomposites: Structure, properties, and their applications in fiber reinforced composites', Composites Part B: Engineering, 135: 1-24.
  • Zaman, Izzuddin, Fethma M Nor, Bukhari Manshoor, Amir Khalid, and Sherif Araby. 2015. 'Influence of interface on Epoxy/clay nanocomposites: 1. Morphology structure', Procedia Manufacturing, 2: 17-22.

Ti3AlC2/Ti3C2 Katkılanmış Epoksi Kompozitlerinin Üretimi

Year 2019, , 632 - 644, 01.09.2019
https://doi.org/10.36306/konjes.613882

Abstract

Epoksi
reçineler, iyi elektrik yalıtımı, yüksek yapışkanlık ve mekanik mukavemet gibi
üstün özellikleri sayesinde endüstride geniş bir uygulama yelpazesinde yaygın
olarak kullanılmaktadır. Orta derecede viskoziteye ve 200 °C' nin altında kür
sıcaklığına sahiptirler. Böylece elektronik, havacılık ve denizcilik
endüstrilerinde koruyucu kaplamalar için ideal adaylardır. Epoksinin üstün
özelliklerini yüksek mekanik mukavemet ile birleştirerek yapısal uygulamalarda
kullanabilmek için killer ve grafit gibi çeşitli nanomalzemeler ile
desteklenmiştir. Bununla birlikte, nano-boyutlu yapıların aşırı topaklanması
nedeniyle mekanik özellikler ve ısıl
dayanımında yeterli artış sağlanamamıştır. Topaklanma
parçacıkların monomer tarafından ıslatılabilirliğini sınırlandırarak polimer
matris ile destek parçacıkları ara yüzünde polimerleşme verimini düşürmüştür.
Bu çalışmada, Ti3AlC2 (MAX 312) yapısında bulunan alüminyum
(Al) tabakası dağlanarak grafen benzeri iletkenliğe sahip 2-boyutlu Ti3C2
tabakaları (MXene) elde edilmiştir. Her iki yapı, MAX ve MXene, eşit
oranlarda epoksi monomerine katkılanarak polimerleştirilmiştir. mL- (çok
tabakalı) MXene katkılanan numunelerin XRD analizlerinde (002) pikinin
kaybolduğu görülmüştür. Bu durum, MXene tabakalarının delamine olduğunun göstergesidir.
Ağ. %4 oranında MAX ve MXene katkılandığında epoksinin cam geçiş sıcaklığı (Tg)
173
°C'den sırasıyla
180 ve 183
°C’ye
yükselmiştir.
Ağ. %4
oranında MXene katkılandığında epoksi mikrosertliği 18,9
± 1,8 HV’den 27,5 ± 5 HV’e, Ağ. %4 oranında MAX
katkılandığında ise 20,6
± 2,9 HV’e yükselmiştir. Bu
çalışma topaklanmanın önlenerek, yüksek katkılı MXene/epoksi kompozitlerinin üretilebileceğini
ve yapısal uygulamalarda kullanılabileceğini göstermektedir.

References

  • Anasori, Babak, Maria R Lukatskaya, and Yury Gogotsi. 2017. '2D metal carbides and nitrides (MXenes) for energy storage', Nature Reviews Materials, 2: 16098.
  • Atif, Rasheed, Islam Shyha, and Fawad Inam. 2016. 'Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites—A review', Polymers, 8: 281.
  • Barsoum, M. W., 2013, MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, Wiley-VCH Verlag GmBH & Co., Weinheim, Germany.
  • Choi, Ilbeom. 2013. 'Surface modification of carbon fiber/epoxy composites with randomly oriented aramid fiber felt for adhesion strength enhancement', Composites Part A: Applied Science and Manufacturing, 48: 1-8.
  • Ehrenstein, Gottfried W, Gabriela Riedel, and Pia Trawiel. 2012. Thermal analysis of plastics: theory and practice (Carl Hanser Verlag GmbH Co KG).
  • Ghidiu, Michael, Maria R Lukatskaya, Meng-Qiang Zhao, Yury Gogotsi, and Michel W Barsoum. 2014. 'Conductive two-dimensional titanium carbide ‘clay’with high volumetric capacitance', Nature, 516: 78.
  • Jin, Fan-Long, Xiang Li, and Soo-Jin Park. 2015. 'Synthesis and application of epoxy resins: A review', Journal of Industrial and Engineering Chemistry, 29: 1-11.
  • Kausar, Ayesha, Zanib Anwar, and Bakhtiar Muhammad. 2016. 'Recent developments in epoxy/graphite, epoxy/graphene, and epoxy/graphene nanoplatelet composites: a comparative review', Polymer-Plastics Technology and Engineering, 55: 1192-210.
  • Kaya, Elcin, Metin Tanoğlu, and Salih Okur. 2008. 'Layered clay/epoxy nanocomposites: Thermomechanical, flame retardancy, and optical properties', Journal of applied polymer science, 109: 834-40.
  • Kumar, Abhishek, and Samit Roy. 2018. 'Characterization of mixed mode fracture properties of nanographene reinforced epoxy and Mode I delamination of its carbon fiber composite', Composites Part B: Engineering, 134: 98-105.
  • Laouchedi, Dalila, Boudjema Bezzazi, and Chouaib Aribi. 2017. 'Elaboration and characterization of composite material based on epoxy resin and clay fillers', Journal of applied research and technology, 15: 190-204.
  • Li, Yan, Han Zhang, Harshit Porwal, Zhaohui Huang, Emiliano Bilotti, and Ton Peijs. 2017. 'Mechanical, electrical and thermal properties of in-situ exfoliated graphene/epoxy nanocomposites', Composites Part A: Applied Science and Manufacturing, 95: 229-36.
  • Liu, Shan, Venkata S Chevali, Zhiguang Xu, David Hui, and Hao Wang. 2018. 'A review of extending performance of epoxy resins using carbon nanomaterials', Composites Part B: Engineering, 136: 197-214.
  • Ma, Peng-Cheng, Shan-Yin Mo, Ben-Zhong Tang, and Jang-Kyo Kim. 2010. 'Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites', Carbon, 48: 1824-34.
  • May, Clayton. 1987. Epoxy resins: chemistry and technology (CRC press).
  • Naguib, Michael, Murat Kurtoglu, Volker Presser, Jun Lu, Junjie Niu, Min Heon, Lars Hultman, Yury Gogotsi, and Michel W. Barsoum. 2011. 'Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2', Advanced Materials, 23: 4248-53.
  • Poonpipat, Yanika, Kritsanachai Leelachai, Raymond A Pearson, and Peerapan Dittanet. 2017. 'Fracture behavior of silica nanoparticles reinforced rubber/epoxy composite', Journal of Reinforced Plastics and Composites, 36: 1156-67.
  • Prolongo, SG, BG Meliton, G Del Rosario, and A Ureña. 2013. 'New alignment procedure of magnetite–CNT hybrid nanofillers on epoxy bulk resin with permanent magnets', Composites Part B: Engineering, 46: 166-72.
  • Radovic, Ljubisa R, Alejandro Suarez, Fernando Vallejos-Burgos, and Jorge O Sofo. 2011. 'Oxygen migration on the graphene surface. 2. Thermochemistry of basal-plane diffusion (hopping)', Carbon, 49: 4226-38.
  • Rao, C. N. R., A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj. 2009. 'Graphene: The New Two-Dimensional Nanomaterial', Angewandte Chemie International Edition, 48: 7752-77.
  • Souza, Virgínia S, Otávio Bianchi, Martha FS Lima, and Raquel Santos Mauler. 2014. 'Morphological, thermomechanical and thermal behavior of epoxy/MMT nanocomposites', Journal of Non-Crystalline Solids, 400: 58-66.
  • Sowichai, Kanokwan, Sitthisuntorn Supothina, On-uma Nimittrakoolchai, Takafumi Seto, Yoshio Otani, and Tawatchai Charinpanitkul. 2012. 'Facile method to prepare magnetic multi-walled carbon nanotubes by in situ co-precipitation route', Journal of Industrial and Engineering Chemistry, 18: 1568-71.
  • Srivastava, Shakun, and Anjaney Pandey. 2019. 'Mechanical behavior and thermal stability of ultrasonically synthesized halloysite-epoxy composite', Composites Communications, 11: 39-44.
  • Wang, Fuzhong, Lawrence T Drzal, Yan Qin, and Zhixiong Huang. 2016. 'Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets', Composites Part A: Applied Science and Manufacturing, 87: 10-22.
  • Wang, Xiao, Jie Jin, and Mo Song. 2013. 'An investigation of the mechanism of graphene toughening epoxy', Carbon, 65: 324-33.
  • Xu, Peng, James Loomis, Ben King, and Balaji Panchapakesan. 2012. 'Synergy among binary (MWNT, SLG) nano-carbons in polymer nano-composites: a Raman study', Nanotechnology, 23: 315706.
  • Yousri, Omar M, Mohamed Hazem Abdellatif, and Ghada Bassioni. 2018. 'Effect of Al $$ _ {2}\mathrm {O} _ {3} $$ Nanoparticles on the Mechanical and Physical Properties of Epoxy Composite', Arabian Journal for Science and Engineering, 43: 1511-17.
  • Zabihi, Omid, Mojtaba Ahmadi, Saeid Nikafshar, Karthik Chandrakumar Preyeswary, and Minoo Naebe. 2018. 'A technical review on epoxy-clay nanocomposites: Structure, properties, and their applications in fiber reinforced composites', Composites Part B: Engineering, 135: 1-24.
  • Zaman, Izzuddin, Fethma M Nor, Bukhari Manshoor, Amir Khalid, and Sherif Araby. 2015. 'Influence of interface on Epoxy/clay nanocomposites: 1. Morphology structure', Procedia Manufacturing, 2: 17-22.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Derya Kapusuz

Publication Date September 1, 2019
Submission Date January 13, 2019
Acceptance Date March 11, 2019
Published in Issue Year 2019

Cite

IEEE D. Kapusuz, “PRODUCTION AND STRUCTURAL ANALYSIS OF Ti3AlC2/Ti3C2 INCORPORATED EPOXY COMPOSITES”, KONJES, vol. 7, no. 3, pp. 632–644, 2019, doi: 10.36306/konjes.613882.