Conference Paper
BibTex RIS Cite

KABLO İLE SÜRÜLEN DÜZLEMSEL PARALEL BİR ROBOTUN İLERİ KİNEMATİK ÇÖZÜMÜ VE KONTROLÜ

Year 2019, , 862 - 874, 30.12.2019
https://doi.org/10.36306/konjes.622283

Abstract

Bu çalışmada, dört kablo ile sürülen, üç serbestlik dereceli düzlemsel bir
paralel robotun hassas konum ve yönelim denetimi yapılmıştır. Kablo ile sürülen
robotun geri beslemeli denetimi için gerekli olan durum değişkenleri, robotun
ileri kinematik denklemlerinin çözülmesi ile elde edilmiştir. İleri kinematik
denklemlerinin çözüm doğruluğunu artırmak ve yakınsama zamanını azaltmak için
Yapay Sinir Ağları (YSA) ve Newton-Raphson yönteminin karma şekilde kullanıldığı
bir yöntem kullanılmıştır.  Bu karma
yöntemde ilk olarak YSA ile bir başlangıç ileri kinematik çözüm elde
edilmektedir. Elde edilen bu çözüm Newton-Raphson yönteminde başlangıç koşulu
olarak kullanılarak, hem çözüme hızlı yakınsama sağlanmakta hem de sayısal
çözümün doğruluğu artırılmaktadır. Ayrıca karma yöntem Newton-Raphson
yönteminde başlangıç koşullarının kötü seçiminden meydana gelebilecek
ıraksamaların önüne geçmektedir. Yapılan benzetim çalışmalarında, karma yöntem
ile elde edilen ileri kinematik denklemlerinin gerçek zamanlı çözümleri robotun
konumunu ve yönelimini denetlemek için tasarlanan kayan kipli denetleyicice
geri besleme sinyali olarak kullanılmıştır. Elde edilen sonuçlar, birlikte kullanılan
yöntemlerin kablo ile sürülen düzlemsel paralel robotun hassas denetiminde
başarı sağlandığını göstermektedir.  

Supporting Institution

Karadeniz Teknik Üniversitesi

Project Number

FBA-2018-7415

Thanks

Bu çalışma Karadeniz Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince FBA-2018-7415 numaralı proje kapsamında desteklenmiştir. Destekleri için Karadeniz Teknik Üniversitesi’ne teşekkür ederiz.

References

  • Bayani, H., Masouleh, M. T., Kalhor A., 2016, “An experimental study on the vision-based control and identification of planar cable-driven parallel robots”, Robotics and Autonomous Systems, Cilt 75, ss. 187-202.
  • Bosscher, P., Williams II, R. L., Bryson, L. S., Castro-Lacouture, D., 2007, “Cable-suspended robotic contour crafting system”, Automation in construction, Cilt 17, Sayı 1, ss. 45-55.
  • Flannery, B. P., Press, W. H., Teukolsky, S. A., Vetterling, W., 1992, Numerical recipes in C. Press Syndicate of the University of Cambridge, New York.
  • Ghasemi, A., Eghtesad, M., Farid, M., 2010, “Neural network solution for forward kinematics problem of cable robots”, Journal of Intelligent & Robotic Systems, Cilt 60, No 2, ss. 201-215.
  • Gosselin, C., 2014, “Cable-driven parallel mechanisms: state of the art and perspectives”, Mechanical Engineering Reviews, Cilt 1, Sayı 1, ss. DSM0004-DSM0004.
  • Jeong, J. W., Kim, S. H., Kwak, Y. K., 1999, “Kinematics and workspace analysis of a parallel wire mechanism for measuring a robot pose”, Mechanism and Machine Theory, Cilt 34, Sayı 6, ss. 825-841.
  • Khosravi, M. A., Taghirad, H. D., 2014, “Robust PID control of fully-constrained cable driven parallel robots”, Mechatronics, Cilt 24, Sayı 2, ss. 87-97.
  • Lv, W., Tao, L., Hu, Y., 2017, “On the real-time calculation of the forward kinematics of a suspended cable–driven parallel mechanism with 6-degree-of-freedom wave compensation”, Advances in Mechanical Engineering, Cilt 9, No 6. ss. 1687814017706264.
  • Lv, W., Tao, L., Ji, Z., 2017, “Sliding mode control of cable-driven redundancy parallel robot with 6 DOF based on cable-length sensor feedback”, Mathematical Problems in Engineering.
  • Lytle, A. M., Saidi, K. S., Bostelman, R. V., Stone, W. C., Scott, N. A., 2004, “Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: experiences with the NIST RoboCrane.” Automation in Construction, Cilt 13, No 1, ss. 101-118,.
  • Merlet, J. P., 2006, Parallel robots, Cilt 128, Springer Science & Business Media.
  • Oh, S. R. ve Agrawal, S. K., 2004, “Nonlinear sliding mode control and feasible workspace analysis for a cable suspended robot with input constraints and disturbances”, Proceedings of the 2004 American Control Conference, Boston, Cilt 5, ss. 4631-4636.
  • Parikh, P. J. ve Lam, S. S., 2005, “A hybrid strategy to solve the forward kinematics problem in parallel manipulators.” IEEE Transactions on Robotics, Cilt 21 No 1, ss. 18-25.
  • Pott, A., 2010, “An algorithm for real-time forward kinematics of cable-driven parallel robots”, Advances in Robot Kinematics: Motion in Man and Machine, Editör: Lenarcic J., Stanisic M., Springer, Dordrecht, ss. 529-538.
  • Pott, A., Schmidt, V., 2015, “On the forward kinematics of cable-driven parallel robots”, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, ss. 3182-3187.
  • Sancak C., Yamaç F., İtik M., 2018, "Kablo ile Sürülen Düzlemsel Paralel Bir Robotun Tasarımı ve Kontrolü", TOK2018 Otomatik Kontrol Ulusal Toplantısı, Kayseri, ,s.367-371.
  • Schmidt, V., Müller, B., Pott, A., 2014, “Solving the forward kinematics of cable-driven parallel robots with neural networks and interval arithmetic”, Computational Kinematics, Cilt 15, Editör: Thomas F., Perez Gracia A., Mechanisms and Machine Science, Springer, Dordrecht, ss. 103-110.
  • Shen, Y., Osumi H. ve Arai, T., 1994, “Manipulability measures for multi-wire driven parallel mechanisms”, Proceedings of 1994 IEEE International Conference on Industrial Technology-ICIT'94, Guangzhou, ss. 550-554.
  • Vadia, J., 2003, Planar cable direct driven robot: Hardware implementation, Doktora Tezi, Ohio Universitesi.
  • Williams, R. L., Gallina, P., Vadia, J., 2003, “Planar Translational Cable‐Direct‐Driven Robots”, Journal of Field Robotics, Cilt 20, No 3, ss. 107-120.

Forward Kinematics and Control of a Planar Cable Driven Parallel Robot

Year 2019, , 862 - 874, 30.12.2019
https://doi.org/10.36306/konjes.622283

Abstract

In
this study, precise position and orientation control of a planar parallel
robot, driven by four cables, with three degrees of freedom was performed. The
state variables required for the feedback control of the cable-driven robot
were obtained by solving the forward kinematic equations of the robot. In order
to increase the accuracy of the solution of forward kinematic equations and to
reduce the convergence time, a method which is used in combination with
Artificial Neural Networks (ANNs) and Newton-Raphson method has been used. In
this mixed method, an initial forward kinematics solution is obtained by ANNs.
This solution is then used as the initial condition in the Newton-Raphson
method, providing fast convergence and increased accuracy of the numerical
solution. Furthermore, the hybrid method prevents divergences in the
Newton-Raphson method which may be caused by the poorly selected initial
conditions. In the simulations, the real-time solutions of the forward
kinematic equations obtained by the hybrid method were used as feedback signals
to the sliding-mode controller designed to control the position and orientation
of the robot. The results show that the methods used in combination have been
succesful in precise control of the pose of cable driven parallel robot. 

Project Number

FBA-2018-7415

References

  • Bayani, H., Masouleh, M. T., Kalhor A., 2016, “An experimental study on the vision-based control and identification of planar cable-driven parallel robots”, Robotics and Autonomous Systems, Cilt 75, ss. 187-202.
  • Bosscher, P., Williams II, R. L., Bryson, L. S., Castro-Lacouture, D., 2007, “Cable-suspended robotic contour crafting system”, Automation in construction, Cilt 17, Sayı 1, ss. 45-55.
  • Flannery, B. P., Press, W. H., Teukolsky, S. A., Vetterling, W., 1992, Numerical recipes in C. Press Syndicate of the University of Cambridge, New York.
  • Ghasemi, A., Eghtesad, M., Farid, M., 2010, “Neural network solution for forward kinematics problem of cable robots”, Journal of Intelligent & Robotic Systems, Cilt 60, No 2, ss. 201-215.
  • Gosselin, C., 2014, “Cable-driven parallel mechanisms: state of the art and perspectives”, Mechanical Engineering Reviews, Cilt 1, Sayı 1, ss. DSM0004-DSM0004.
  • Jeong, J. W., Kim, S. H., Kwak, Y. K., 1999, “Kinematics and workspace analysis of a parallel wire mechanism for measuring a robot pose”, Mechanism and Machine Theory, Cilt 34, Sayı 6, ss. 825-841.
  • Khosravi, M. A., Taghirad, H. D., 2014, “Robust PID control of fully-constrained cable driven parallel robots”, Mechatronics, Cilt 24, Sayı 2, ss. 87-97.
  • Lv, W., Tao, L., Hu, Y., 2017, “On the real-time calculation of the forward kinematics of a suspended cable–driven parallel mechanism with 6-degree-of-freedom wave compensation”, Advances in Mechanical Engineering, Cilt 9, No 6. ss. 1687814017706264.
  • Lv, W., Tao, L., Ji, Z., 2017, “Sliding mode control of cable-driven redundancy parallel robot with 6 DOF based on cable-length sensor feedback”, Mathematical Problems in Engineering.
  • Lytle, A. M., Saidi, K. S., Bostelman, R. V., Stone, W. C., Scott, N. A., 2004, “Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: experiences with the NIST RoboCrane.” Automation in Construction, Cilt 13, No 1, ss. 101-118,.
  • Merlet, J. P., 2006, Parallel robots, Cilt 128, Springer Science & Business Media.
  • Oh, S. R. ve Agrawal, S. K., 2004, “Nonlinear sliding mode control and feasible workspace analysis for a cable suspended robot with input constraints and disturbances”, Proceedings of the 2004 American Control Conference, Boston, Cilt 5, ss. 4631-4636.
  • Parikh, P. J. ve Lam, S. S., 2005, “A hybrid strategy to solve the forward kinematics problem in parallel manipulators.” IEEE Transactions on Robotics, Cilt 21 No 1, ss. 18-25.
  • Pott, A., 2010, “An algorithm for real-time forward kinematics of cable-driven parallel robots”, Advances in Robot Kinematics: Motion in Man and Machine, Editör: Lenarcic J., Stanisic M., Springer, Dordrecht, ss. 529-538.
  • Pott, A., Schmidt, V., 2015, “On the forward kinematics of cable-driven parallel robots”, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, ss. 3182-3187.
  • Sancak C., Yamaç F., İtik M., 2018, "Kablo ile Sürülen Düzlemsel Paralel Bir Robotun Tasarımı ve Kontrolü", TOK2018 Otomatik Kontrol Ulusal Toplantısı, Kayseri, ,s.367-371.
  • Schmidt, V., Müller, B., Pott, A., 2014, “Solving the forward kinematics of cable-driven parallel robots with neural networks and interval arithmetic”, Computational Kinematics, Cilt 15, Editör: Thomas F., Perez Gracia A., Mechanisms and Machine Science, Springer, Dordrecht, ss. 103-110.
  • Shen, Y., Osumi H. ve Arai, T., 1994, “Manipulability measures for multi-wire driven parallel mechanisms”, Proceedings of 1994 IEEE International Conference on Industrial Technology-ICIT'94, Guangzhou, ss. 550-554.
  • Vadia, J., 2003, Planar cable direct driven robot: Hardware implementation, Doktora Tezi, Ohio Universitesi.
  • Williams, R. L., Gallina, P., Vadia, J., 2003, “Planar Translational Cable‐Direct‐Driven Robots”, Journal of Field Robotics, Cilt 20, No 3, ss. 107-120.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Caner Sancak This is me 0000-0003-0795-0204

Fatma Yamaç

Mehmet İtik

Project Number FBA-2018-7415
Publication Date December 30, 2019
Submission Date September 19, 2019
Acceptance Date November 1, 2019
Published in Issue Year 2019

Cite

IEEE C. Sancak, F. Yamaç, and M. İtik, “KABLO İLE SÜRÜLEN DÜZLEMSEL PARALEL BİR ROBOTUN İLERİ KİNEMATİK ÇÖZÜMÜ VE KONTROLÜ”, KONJES, vol. 7, pp. 862–874, 2019, doi: 10.36306/konjes.622283.