Investigation of Moment Carrying Characteristics of Muscles in Elbow Flexion Movement
Year 2019,
, 924 - 932, 30.12.2019
Mehmet Parlak
,
İbrahim Uzmay
Abstract
Determining of muscle forces bring great insight into understanding
central nervous system as well as analyzing loads acting on the bones and the joints.
Due to difficulties on measurement of muscle forces without invasive
techniques, it is necessary to develop biomechanical models to predict the muscle
forces. The elbow joint is frequently used in daily life. Therefore predicting
the muscle forces and the reaction forces that are related to elbow joints are
very important issues. In this study the muscle forces and the joint reaction
forces have been predicted to carry the load for flexion movement during 120o.
Three flexor muscles named biceps brachii, brachialis and brachioradialis have
been considered to carry the load. The elbow joint has been modelled as one
degree of freedom system. Because the model has one degree of freedom and it
includes three muscles as actuator, the problem is an indeterminate type. To
solve this problem, an optimization method has been used and the results have
been presented.
References
- Abdel-Malek, K., Yang, J., Marler, T., Beck, S., Mathai, A., Zhou, X., Patrick, A., Arora, J., 2006, “Towards a new generation of virtual humans”, Int. J. Huyman Factors Modelling and Simulation, Cilt 1, No 1, ss. 2-39.
- Ackermann, M., Schiehlen,W., 2009, “Physiological methods to solve the force-sharing problem in biomechanics. In: Bottasso, C.L. (ed.) Multibody Dynamics”, Computational Methods and Applications, Cilt 12, ss. 1–23.
- Brand, R.A., Pedersen, D.R., Friedrich, J.A., 1986, “The sensitivity of muscle force predictions to changes in physiologic cross-sectional area”, Journal of Biomechanics, Cilt 19, No 8, ss. 589–596.
- Dubowsky, S. R., 2008, Multibody computational biomechanical model of the upper body, Doktora Tezi, The State University of New Jersey, New Jersey.
- Erdemir, A., McLean, S., Herzog, W., van den Bogert, A., 2007, “Model-based estimation of muscle forces exerted during movements”, Clinical Biomechanics, Cilt 22, No 2, ss. 131–154.
- Jensen, R.H., Davy, D.T., 1975, “An investigation of muscle lines of action about the hip: A centroid line approach vs the straight line approach”, Journal of Biomechanics, Cilt 8, No 2, ss. 103-110.
- Raikova, R., 1996, “A model of the flexion-extension motion in the elbow joint—some problems concerning muscle forces modeling and computations”. Journal of Biomechanics, Cilt 29, No 6, ss. 763–772.
- Raikova, R.T., Prilutsky, B.I., 2001, “Sensitivity of predicted muscle forces to parameters of the optimization based human leg model revealed by analytical and numerical analyses”, Journal of Biomechanics, Cilt 34, No 10, ss. 1243–1255.
- Redl, C., Gfoehler,M., Pandy, M.G., 2007, “Sensitivity of muscle force estimates to variations in muscle-tendon properties”, Human Movement Science, Cilt 26, No 2, ss. 306–319.
- Robertson, D.G.E., Caldwell, G.E., Hamill, J., Kamen, G., Whittlesey, S.N., 2004, “Research Methods in Biomechanics” Human Kinetics, Champain.
- Silva, M.P.T., Ambrósio, J.A.C., 2004, “Human motion analysis using multibody dynamics and optimization tools”, Technical Report IDMEC/CPM—2004/001, Lisbon.
- Strobach, D., Kecskemethy, A., Auer, E., Luther, W., Steinwender, G., Zwick, B., 2007, “A sensitivity analysis of origin and insertion points of Hill muscle models with respect to gait dynamics. In: Bottasso, C.L., Masarati, P., Trainelli, L. (eds.) Proceedings of Multibody Dynamics 2007”, ECCOMAS Thematic Conference on Advances in Computational Multibody Dynamics, Milano, Italy.
- Tsirakos, D., Baltzopoulos, V., Bartlett, R., 1997, “Inverse optimization: functional and physiological considerations related to the force-sharing problem”, Critical Reviews in Biomedical Engineering, Cilt 25, No 4-5, ss. 371–407.
- Venture, G., Yamane, K., Nakamura, Y., 2006, “Identification of human musculo-tendon subject specific dynamics using musculo-skeletal computations and non linear least square”, In: Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, , ss. 211–216.
- Winters, J.M., Stark, L., 1987, “Muscle models: what is gained and what is lost by varying model complexity”, Biological Cybernetics, Cilt 55, No 6, ss. 403–420.
- Winter, D.A., 2005, “Biomechanics and Motor Control of Human Movement”, Wiley, New Jersey.
- Yamaguchi, G.T., 2001, “Dynamic Modeling of Musculoskeletal Motion: a Vectorized Approach for Biomechanical Analysis in Three Dimensions”. Dordrecht, Kluwer.
- Zajac, F.E., Winters, J.M., 1990, “Modeling musculoskeletal movement systems: joint and body segmental dynamics, musculoskeletal actuation, and neuromuscular control”. In:
- Winters, J.M., Woo, S.L.-Y. (eds.) Multiple Muscle Systems: Biomechanics and Movement Organizations, ss. 121–148. Springer, NewYork.
DİRSEK FLEKSİYON HAREKETİNDE KASLARIN MOMENT TAŞIMA KARAKTERİSTİKLERİNİN İNCELENMESİ
Year 2019,
, 924 - 932, 30.12.2019
Mehmet Parlak
,
İbrahim Uzmay
Abstract
Kas kuvvetlerinin belirlenmesi kemiklere ve
eklemlere etkiyen yükleri analiz etmenin yanı sıra sinir sisteminin anlaşılması
açısından da önemli bir bakış açısı kazandırır. Kas kuvvetlerini insan vücuduna
hasar vermeden, doğrudan ölçmek mümkün olmadığı için bu kuvvetleri elde etmede
biyomekanik modellere ihtiyaç duyulmaktadır. Dirsek günlük hayatta en sık
kullanılan eklemlerin başında geldiği için bununla ilgili kas kuvvetlerini ve
reaksiyon kuvvetlerini bulmak da biyomekanik çalışmalar için önem arz
etmektedir. Bu çalışmada 120o lik bükülme (flexion) hareketi boyunca
belirli bir yükü taşımak için gerekli kas aktivasyonları ve kasların moment
taşıma paylaşımları belirlenmiştir. Bunun için bükme (flexor) kas grubunda olan
biceps brachii, brachialis ve brachioradialis kasları dikkate alınmıştır.
Dirsek eklemi tek serbestlik dereceli olarak modellenmiştir. Böylece model tek
serbestlik derecesine sahiptir ve üç adet tahrik elemanı mevcut olduğundan
problem belirsizdir. Bu problemi çözmek için optimizasyon metodu
kullanılmıştır. Optimizasyon hedef fonksiyonu olarak kasların aktivasyon
derecelerinin kareleri dikkate alınmıştır. Sonuç olarak kasların momenti
paylaşırken her andaki moment kollarının, aktivasyon derecelerinin ve maksimum
kuvvet taşıma kapasitelerinin belirleyici olduğu görülmüştür.
References
- Abdel-Malek, K., Yang, J., Marler, T., Beck, S., Mathai, A., Zhou, X., Patrick, A., Arora, J., 2006, “Towards a new generation of virtual humans”, Int. J. Huyman Factors Modelling and Simulation, Cilt 1, No 1, ss. 2-39.
- Ackermann, M., Schiehlen,W., 2009, “Physiological methods to solve the force-sharing problem in biomechanics. In: Bottasso, C.L. (ed.) Multibody Dynamics”, Computational Methods and Applications, Cilt 12, ss. 1–23.
- Brand, R.A., Pedersen, D.R., Friedrich, J.A., 1986, “The sensitivity of muscle force predictions to changes in physiologic cross-sectional area”, Journal of Biomechanics, Cilt 19, No 8, ss. 589–596.
- Dubowsky, S. R., 2008, Multibody computational biomechanical model of the upper body, Doktora Tezi, The State University of New Jersey, New Jersey.
- Erdemir, A., McLean, S., Herzog, W., van den Bogert, A., 2007, “Model-based estimation of muscle forces exerted during movements”, Clinical Biomechanics, Cilt 22, No 2, ss. 131–154.
- Jensen, R.H., Davy, D.T., 1975, “An investigation of muscle lines of action about the hip: A centroid line approach vs the straight line approach”, Journal of Biomechanics, Cilt 8, No 2, ss. 103-110.
- Raikova, R., 1996, “A model of the flexion-extension motion in the elbow joint—some problems concerning muscle forces modeling and computations”. Journal of Biomechanics, Cilt 29, No 6, ss. 763–772.
- Raikova, R.T., Prilutsky, B.I., 2001, “Sensitivity of predicted muscle forces to parameters of the optimization based human leg model revealed by analytical and numerical analyses”, Journal of Biomechanics, Cilt 34, No 10, ss. 1243–1255.
- Redl, C., Gfoehler,M., Pandy, M.G., 2007, “Sensitivity of muscle force estimates to variations in muscle-tendon properties”, Human Movement Science, Cilt 26, No 2, ss. 306–319.
- Robertson, D.G.E., Caldwell, G.E., Hamill, J., Kamen, G., Whittlesey, S.N., 2004, “Research Methods in Biomechanics” Human Kinetics, Champain.
- Silva, M.P.T., Ambrósio, J.A.C., 2004, “Human motion analysis using multibody dynamics and optimization tools”, Technical Report IDMEC/CPM—2004/001, Lisbon.
- Strobach, D., Kecskemethy, A., Auer, E., Luther, W., Steinwender, G., Zwick, B., 2007, “A sensitivity analysis of origin and insertion points of Hill muscle models with respect to gait dynamics. In: Bottasso, C.L., Masarati, P., Trainelli, L. (eds.) Proceedings of Multibody Dynamics 2007”, ECCOMAS Thematic Conference on Advances in Computational Multibody Dynamics, Milano, Italy.
- Tsirakos, D., Baltzopoulos, V., Bartlett, R., 1997, “Inverse optimization: functional and physiological considerations related to the force-sharing problem”, Critical Reviews in Biomedical Engineering, Cilt 25, No 4-5, ss. 371–407.
- Venture, G., Yamane, K., Nakamura, Y., 2006, “Identification of human musculo-tendon subject specific dynamics using musculo-skeletal computations and non linear least square”, In: Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, , ss. 211–216.
- Winters, J.M., Stark, L., 1987, “Muscle models: what is gained and what is lost by varying model complexity”, Biological Cybernetics, Cilt 55, No 6, ss. 403–420.
- Winter, D.A., 2005, “Biomechanics and Motor Control of Human Movement”, Wiley, New Jersey.
- Yamaguchi, G.T., 2001, “Dynamic Modeling of Musculoskeletal Motion: a Vectorized Approach for Biomechanical Analysis in Three Dimensions”. Dordrecht, Kluwer.
- Zajac, F.E., Winters, J.M., 1990, “Modeling musculoskeletal movement systems: joint and body segmental dynamics, musculoskeletal actuation, and neuromuscular control”. In:
- Winters, J.M., Woo, S.L.-Y. (eds.) Multiple Muscle Systems: Biomechanics and Movement Organizations, ss. 121–148. Springer, NewYork.