Research Article
BibTex RIS Cite

PERFORMANCE EVALUATION OF AFYON GEOTHERMAL POWER PLANT WITH LOW GRADE ENERGY SOURCES

Year 2020, , 448 - 465, 03.09.2020
https://doi.org/10.36306/konjes.627174

Abstract

Exergoeconomic performance evaluation of 2700 kW binary cycle design geothermal power
plant in western Turkey is conducted using actual plant operating data, and potential improvements are
identified. Afyon Geothermal Power Plant is thermodynamically modeled in a computer environment
using current working parameters in a comprehensive way for the use of geothermal energy in electricity
generation. To simulate the plant during thermodynamic conditions with exergoeconomic analysis, the
Engineering Equation Solver (EES) software is used. Geothermal water temperature and mass flow rate
of the plant are 110°C, and 150 kg/s, respectively. Energy and exergy efficiencies of the plant are calculated
as 10.4%, and 29.7%. The potential annual revenue of geothermal electricity is calculated to be 2,880,277
$/yr. The exergetic cost of the electricity from the plant is calculated as 0.0233 $/kWh, respectively.

References

  • Abusoglu A., Kanoglu M., 2008. First and second law analysis of diesel engine powered cogeneration systems. Energy Conversion and Management49(8), 2026-2031.
  • Aksoy N., 2014. Power generation from geothermal resources in Turkey. Renewable Energy68, 595-601. Aspen Plus. Version 8.4, 2015. Aspen Technology Incorporated., Ten Canal Park, Cambridge, MA, USA. www.aspentech.com.
  • Balcilar M., Ozdemir Z.A., Ozdemir H., Shahbaz M., 2018. The renewable energy consumption and growth in the G-7 countries: Evidence from historical decomposition method. Renewable Energy126, 594-604.
  • Bejan A., Tsatsaronis G., Moran M. J., 1996. Thermal design and optimization. John Wiley & Sons.
  • Bina, S. M., Jalilinasrabady, S., & Fujii, H., 2018. Exergoeconomic analysis and optimization of single and double flash cycles for Sabalan geothermal power plant. Geothermics 72, 74-82.
  • DiPippo R., 2007. Ideal thermal efficiency for geothermal binary plants. Geothermics36(3), 276-285.
  • Ergun A., Ozkaymak M., Aksoy Koc G., Ozkan S., Kaya D., 2017. Exergoeconomic analysis of a geothermal organic Rankine cycle power plant using the SPECO method. Environmental Progress & Sustainable Energy 36(3), 936-942.
  • F-Chart Software, EES, engineering equation solver. In: F-Chart Software, 2015. Inter-net Website, www.fchart.com/ees/ees.shtml
  • Heberle F., Hofer M., Ürlings N., Schröder H., Anderlohr T., Brüggemann D., 2017. Techno-economic analysis of a solar thermal retrofit for an air-cooled geothermal Organic Rankine Cycle power plant. Renewable Energy 113, 494-502.
  • Hanbury O., Vasquez V.R., 2018. Life cycle analysis of geothermal energy for power and transportation: A stochastic approach. Renewable Energy115, 371-381.
  • Kanoglu M., 2002. Exergy analysis of a dual-level binary geothermal power plant. Geothermics 31(6), 709- 724.
  • Kanoglu M., Dincer I., 2009. Performance assessment of cogeneration plants. energy conversion and management 50(1), 76-81.
  • Karadas M., Celik H.M., Serpen U., Toksoy M., 2015. Multiple regression analysis of performance parameters of a binary cycle geothermal power plant. Geothermics 54, 68-75.
  • Kasaei M.J., Gandomkar M., Nikoukar J., 2017. Optimal management of renewable energy sources by virtual power plant. Renewable Energy 114, 1180-1188.
  • Kolahi M.R., Nemati A., Yari M., 2018. Performance optimization and improvement of a flash-binary geothermal power plant using zeotropic mixtures with PSO algorithm. Geothermics 74, 45-56.
  • Koroneos C., Polyzakis A., Xydis G., Stylos N., Nanaki E., 2017. Exergy analysis for a proposed binary geothermal power plant in Nisyros Island, Greece. Geothermics 70, 38-46.
  • Rachmat, A., Wibowo, A. S., & Surachman, A., 2018, January. Exergoeconomic analysis and optimization of a combined double flash–binary cycle for Ulubelu geothermal power plant in Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 105, No. 1, p. 012087). IOP Publishing.
  • Sahin C., 2016. Electricity Generation with Organic Rankine Cycle (Orc)In Low Temperature Geothermal Field and Modelling of AfyonGeothermal Electric Production Co., Electrical and Electronics Engineering, M.S. Thesis.
  • Shokati N., Ranjbar F., Yari M., 2015. Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study. Renewable Energy 83, 527-542.
  • Unverdi, M., and Cerci, Y., 2013. Performance analysis of Germencik geothermal power plant. Energy 52, 192-200.
  • Wang J., Wang J., Dai Y., Zhao P., 2015. Thermodynamic analysis and optimization of a flash-binary geothermal power generation system. Geothermics, 55, 69-77.
  • Yari M., 2010. Exergetic analysis of various types of geothermal power plants. Renewable Energy 35(1), 112-121.
  • Yilmaz C., 2017. Thermodynamic and economic investigation of geothermal powered absorption cooling system for buildings. Geothermics70, 239-248.
  • Zare, V., 2015. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Conversion and Management 105, 127–138.

Düşük Enerji Seviyeli Kaynakla Çalışan Afyon Jeotermal Güç Santralinin Performans Değerlendirilmesi

Year 2020, , 448 - 465, 03.09.2020
https://doi.org/10.36306/konjes.627174

Abstract

Türkiye'nin batısındaki 2700 kW'lık binary jeotermal santralinin termoekonomik performans değerlendirmesi
ve mevcut işletme verileri kullanılarak gerçekleştirilmiş ve potansiyel iyileştirmeler tespit edilmiştir.
Afyon Jeotermal Santrali, elektrik üretiminde jeotermal enerjinin kullanımı için mevcut çalışma
parametrelerini kapsamlı bir şekilde kullanarak bilgisayar ortamında termodinamik olarak modellenmiştir.
Santralin modellenmesinde termodinamik koşullar altında ekergoekonomik analiz için Mühendislik
Denklem Çözme (EES) yazılımı kullanılmıştır. Jeotermal suyun sıcaklığı ve kütlesel debisi sırasıyla 110°C
ve 150 kg/s'dir. Santralin enerji ve ekserji verimliliği %10.4 ve %29.7 olarak hesaplanmıştır. Yıllık ortalama
jeotermal elektrik geliri 2,880,277 $/yıl olarak hesaplanmaktadır. Santralden üretilen elektriğin ekserjetik
maliyeti ise 0.0233 $/kWh olarak hesaplanmaktadır.

References

  • Abusoglu A., Kanoglu M., 2008. First and second law analysis of diesel engine powered cogeneration systems. Energy Conversion and Management49(8), 2026-2031.
  • Aksoy N., 2014. Power generation from geothermal resources in Turkey. Renewable Energy68, 595-601. Aspen Plus. Version 8.4, 2015. Aspen Technology Incorporated., Ten Canal Park, Cambridge, MA, USA. www.aspentech.com.
  • Balcilar M., Ozdemir Z.A., Ozdemir H., Shahbaz M., 2018. The renewable energy consumption and growth in the G-7 countries: Evidence from historical decomposition method. Renewable Energy126, 594-604.
  • Bejan A., Tsatsaronis G., Moran M. J., 1996. Thermal design and optimization. John Wiley & Sons.
  • Bina, S. M., Jalilinasrabady, S., & Fujii, H., 2018. Exergoeconomic analysis and optimization of single and double flash cycles for Sabalan geothermal power plant. Geothermics 72, 74-82.
  • DiPippo R., 2007. Ideal thermal efficiency for geothermal binary plants. Geothermics36(3), 276-285.
  • Ergun A., Ozkaymak M., Aksoy Koc G., Ozkan S., Kaya D., 2017. Exergoeconomic analysis of a geothermal organic Rankine cycle power plant using the SPECO method. Environmental Progress & Sustainable Energy 36(3), 936-942.
  • F-Chart Software, EES, engineering equation solver. In: F-Chart Software, 2015. Inter-net Website, www.fchart.com/ees/ees.shtml
  • Heberle F., Hofer M., Ürlings N., Schröder H., Anderlohr T., Brüggemann D., 2017. Techno-economic analysis of a solar thermal retrofit for an air-cooled geothermal Organic Rankine Cycle power plant. Renewable Energy 113, 494-502.
  • Hanbury O., Vasquez V.R., 2018. Life cycle analysis of geothermal energy for power and transportation: A stochastic approach. Renewable Energy115, 371-381.
  • Kanoglu M., 2002. Exergy analysis of a dual-level binary geothermal power plant. Geothermics 31(6), 709- 724.
  • Kanoglu M., Dincer I., 2009. Performance assessment of cogeneration plants. energy conversion and management 50(1), 76-81.
  • Karadas M., Celik H.M., Serpen U., Toksoy M., 2015. Multiple regression analysis of performance parameters of a binary cycle geothermal power plant. Geothermics 54, 68-75.
  • Kasaei M.J., Gandomkar M., Nikoukar J., 2017. Optimal management of renewable energy sources by virtual power plant. Renewable Energy 114, 1180-1188.
  • Kolahi M.R., Nemati A., Yari M., 2018. Performance optimization and improvement of a flash-binary geothermal power plant using zeotropic mixtures with PSO algorithm. Geothermics 74, 45-56.
  • Koroneos C., Polyzakis A., Xydis G., Stylos N., Nanaki E., 2017. Exergy analysis for a proposed binary geothermal power plant in Nisyros Island, Greece. Geothermics 70, 38-46.
  • Rachmat, A., Wibowo, A. S., & Surachman, A., 2018, January. Exergoeconomic analysis and optimization of a combined double flash–binary cycle for Ulubelu geothermal power plant in Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 105, No. 1, p. 012087). IOP Publishing.
  • Sahin C., 2016. Electricity Generation with Organic Rankine Cycle (Orc)In Low Temperature Geothermal Field and Modelling of AfyonGeothermal Electric Production Co., Electrical and Electronics Engineering, M.S. Thesis.
  • Shokati N., Ranjbar F., Yari M., 2015. Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study. Renewable Energy 83, 527-542.
  • Unverdi, M., and Cerci, Y., 2013. Performance analysis of Germencik geothermal power plant. Energy 52, 192-200.
  • Wang J., Wang J., Dai Y., Zhao P., 2015. Thermodynamic analysis and optimization of a flash-binary geothermal power generation system. Geothermics, 55, 69-77.
  • Yari M., 2010. Exergetic analysis of various types of geothermal power plants. Renewable Energy 35(1), 112-121.
  • Yilmaz C., 2017. Thermodynamic and economic investigation of geothermal powered absorption cooling system for buildings. Geothermics70, 239-248.
  • Zare, V., 2015. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Conversion and Management 105, 127–138.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ceyhun Yılmaz 0000-0002-8827-692X

Publication Date September 3, 2020
Submission Date September 30, 2019
Acceptance Date January 13, 2020
Published in Issue Year 2020

Cite

IEEE C. Yılmaz, “PERFORMANCE EVALUATION OF AFYON GEOTHERMAL POWER PLANT WITH LOW GRADE ENERGY SOURCES”, KONJES, vol. 8, no. 3, pp. 448–465, 2020, doi: 10.36306/konjes.627174.