Research Article
BibTex RIS Cite

CuO Nanoparçacıkların Kolay ve Amorf Yapıda Sentezi

Year 2019, , 696 - 704, 04.12.2019
https://doi.org/10.36306/konjes.654449

Abstract

Bakır oksit (CuO) nanoparçacıkları, sıvı bir ortamda ark deşarj yöntemi ile başarılı bir şekilde sentezlendi. İki bakır elektrot arasında ark boşalması gerçekleşerek üretimi tamamlanan bakır oksit nanoparçacıkların morfolojisi ve Kristal yapısı ayrıntılı bir şekilde incelenmesi yapıldı. Elektron mikroskobu incelemeleri sonucunda üretilen CuO nanoparçacıkların 10-50 nm aralığında nominal çaplarda düzensiz şekilli olduğu görülmektedir. XRD sonuçları ise sentezlenen parçacıkların herhangi bir safsızlık olmadan sadece CuO piklerini içerdiğini göstermektedir. Sonuçlara göre tek fazlı CuO nanoparçacıkların üretilmesi için ark deşarj yöntemi basit, ucuz ve esnek bir yöntemdir.

References

  • Abaker, M., Umar, A., Baskoutas, S., Kim, S. H., Hwang, S. W., 2011, “Structural and optical properties of CuO layered hexagonal discs synthesized by a low-temperature hydrothermal process”, Journal of Physics D: Applied Physics, 44(15), 155405.
  • Ashkarran, A. A., Mahdavi, S. M., Ahadian, M. M., 2010, “Photocatalytic activity of ZnO nanoparticles prepared via submerged arc discharge method”, Applied Physics A, 100(4), 1097-1102.
  • Bayansal, F., Kahraman, S., Çankaya, G., Çetinkara, H. A., Güder, H. S., Çakmak, H. M., 2011, “Growth of homogenous CuO nano-structured thin films by a simple solution method”, Journal of Alloys and Compounds, 509(5), 2094-2098.
  • Chen, J., Wang, K., Hartman, L., Zhou, W., 2008, “H2S detection by vertically aligned CuO nanowire array sensors”, The Journal of Physical Chemistry C, 112(41), 16017-16021.
  • Eskizeybek, V., Sarı, F., Gülce, H., Gülce, A., Avcı, A., 2012, “Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations”, Applied Catalysis B: Environmental, 119, 197-206.
  • Eskizeybek, V., Demir, O., Avci, A., Chhowalla, M., 2011, “Synthesis and characterization of cadmium hydroxide nanowires by arc discharge method in de-ionized water”, Journal of Nanoparticle Research, 13(10), 4673-4680.
  • Fang, F., Futter, J., Markwitz, A., Kennedy, J., 2009, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method”, Nanotechnology, 20(24), 245502.
  • Hai, Z., Zhu, C., Huang, J., Liu, H., Chen, J., 2010, “Controllable Synthesis of CuO Nanowires and Cu2O Crystals with Shape Evolution via γ-Irradiation”, Inorganic chemistry, 49(16), 7217-7219.
  • Hsieh, C. T., Chen, J. M., Lin, H. H., Shih, H. C., 2003, “Field emission from various CuO nanostructures”, Applied Physics Letters, 83(16), 3383-3385.
  • Huang, H., Kajiura, H., Tsutsui, S., Murakami, Y., Ata, M., 2003, “High-quality double-walled carbon nanotube super bundles grown in a hydrogen-free atmosphere”, The Journal of Physical Chemistry B, 107(34), 8794-8798.
  • Iijima, S., Ichihashi, T., 1993, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363(6430), 603. Joint Committee on Powder Diffraction Standards 1991 Diffraction Data File No. 45-0937 (Newtown Square, PA: International Centre for Diffraction Data (ICDD, formerly JCPDS))
  • Krätschmer, W., Lamb, L. D., Fostiropoulos, K., Huffman, D. R., 1990, “Solid C60: a new form of carbon”, Nature, 347(6291), 354.
  • Lanje, A. S., Sharma, S. J., Pode, R. B., & Ningthoujam, R. S., 2010, “Synthesis and optical characterization of copper oxide nanoparticles”, Adv Appl Sci Res, 1(2), 36-40.
  • Lee, Y. I., Goo, Y. S., Chang, C. H., Lee, K. J., Myung, N. V., Choa, Y. H., 2011, “Tunable Synthesis of Cuprous and Cupric Oxide Nanotubes from Electrodeposited Copper Nanowires”, Journal of nanoscience and nanotechnology, 11(2), 1455-1458.
  • Liu, C., Cong, H. T., Li, F., Tan, P. H., Cheng, H. M., Lu, K., Zhou, B. L., 1999, “Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method”, Carbon, 37(11), 1865-1868.
  • Liu, J., Huang, X., Li, Y., Sulieman, K. M., He, X., Sun, F., 2006, “Self-assembled CuO monocrystalline nanoarchitectures with controlled dimensionality and morphology”, Crystal growth & design, 6(7), 1690-1696.
  • Liu, Q., Ren, W., Li, F., Cong, H., Cheng, H. M., 2007, “Synthesis and high thermal stability of double-walled carbon nanotubes using nickel formate dihydrate as catalyst precursor”, The Journal of Physical Chemistry C, 111(13), 5006-5013.
  • Panuthai, N., Savanglaa, R., Praserthdam, P., Kheawhom, S., 2014, “Characterization of copper–zinc nanoparticles synthesized via submerged arc discharge with successive reduction process”, Japanese Journal of Applied Physics, 53(5S3), 05HA11.
  • Qiu, G., Dharmarathna, S., Zhang, Y., Opembe, N., Huang, H., Suib, S. L., 2011, “Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties”, The Journal of Physical Chemistry C, 116(1), 468-477.
  • Qin, Y., Zhang, F., Chen, Y., Zhou, Y., Li, J., Zhu, A., Yang, J., 2012 “Hierarchically porous CuO hollow spheres fabricated via a one-pot template-free method for high-performance gas sensors”, The Journal of Physical Chemistry C, 116(22), 11994-12000.
  • Sano, N., Wang, H., Alexandrou, I., Chhowalla, M., Teo, K. B. K., Amaratunga, G. A. J., Iimura, K., 2002, “Properties of carbon onions produced by an arc discharge in water”, Journal of Applied Physics, 92(5), 2783-2788.
  • Sano, N., Wang, H., Chhowalla, M., Alexandrou, I., Amaratunga, G. A. J., 2001, “Nanotechnology: Synthesis of carbon'onions' in water”, Nature, 414(6863), 506.
  • Shi, W., Chopra, N., 2011, “Surfactant-free synthesis of novel copper oxide (CuO) nanowire–cobalt oxide (Co 3 O 4) nanoparticle heterostructures and their morphological control”, Journal of Nanoparticle Research, 13(2), 851-868.
  • Shrestha, K. M., Sorensen, C. M., Klabunde, K. J., 2010, “Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region”, The Journal of Physical Chemistry C, 114(34), 14368-14376.
  • Singh, D. P., Ojha, A. K., Srivastava, O. N., 2009, “Synthesis of different Cu (OH) 2 and CuO (nanowires, rectangles, seed-, belt-, and sheetlike) nanostructures by simple wet chemical route”, The Journal of Physical Chemistry C, 113(9), 3409-3418.
  • Tai, Y. L., Yang, Z. G., 2012, “Preparation of stable aqueous conductive ink with silver nanoflakes and its application on paper‐based flexible electronics”, Surface and Interface Analysis, 44(5), 529-534.
  • Tepanov, A. A., Krutyakov, Y. A., Lisichkin, G. V., 2014, “Electric discharge in liquids as technique to obtain high-dispersed materials based on metals of IB group”, Russian Journal of General Chemistry, 84(5), 986-997.
  • Vaseem, M., Umar, A., Kim, S. H., Hahn, Y. B., 2008, “Low-temperature synthesis of flower-shaped CuO nanostructures by solution process: formation mechanism and structural properties”, The Journal of Physical Chemistry C, 112(15), 5729-5735.
  • Wang, S., Huang, Q., Wen, X., Li, X. Y., Yang, S., 2002, “Thermal oxidation of Cu 2 S nanowires: a template method for the fabrication of mesoscopic Cu x O (x= 1, 2) wires”, Physical Chemistry Chemical Physics, 4(14), 3425-3429.
  • Wu, R., Ma, Z., Gu, Z., Yang, Y., 2010, “Preparation and characterization of CuO nanoparticles with different morphology through a simple quick-precipitation method in DMAC–water mixed solvent”, Journal of Alloys and Compounds, 504(1), 45-49.
  • Xu, C., Xu, G., Liu, Y., Wang, G., 2002, “A simple and novel route for the preparation of ZnO nanorods”, Solid State Communications, 122(3-4), 175-179.
  • Xu, H., Wang, W., Zhu, W., Zhou, L., Ruan, M., 2007, “Hierarchical-oriented attachment: from one-dimensional Cu (OH) 2 nanowires to two-dimensional CuO nanoleaves”, Crystal Growth and Design, 7(12), 2720-2724.
  • Yao, W. T., Yu, S. H., Zhou, Y., Jiang, J., Wu, Q. S., Zhang, L., & Jiang, J., 2005, “Formation of uniform CuO nanorods by spontaneous aggregation: Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid− liquid phase arc discharge process”, The Journal of Physical Chemistry B, 109(29), 14011-14016.
  • Zhang, K., Zhang, N., Cai, H., Wang, C., 2012, “A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers”, Microchimica Acta, 176(1-2), 137-142.
  • Zhang, M., Tu, X., Wang, J., Fang, T., Wang, Y., Xu, X., Chen, Y., 2016, “Hydrothermal syntheses of CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu microcrystals using ionic liquids”, Chemical Research in Chinese Universities, 32(4), 530-533.
  • Zhang, X., Zhang, D., Ni, X., Song, J., Zheng, H., 2008, “Synthesis and electrochemical properties of different sizes of the CuO particles”, Journal of Nanoparticle Research, 10(5), 839-844.
  • Zhang, Z. P., Sun, H. P., Shao, X. Q., Li, D., Yu, H., Han, M., 2005, “Three‐Dimensionally Oriented Aggregation of a Few Hundred Nanoparticles into Monocrystalline Architectures”, Advanced Materials, 17(1), 42-47.
  • Zhao, X., Ohkohchi, M., Wang, M., Iijima, S., Ichihashi, T., Ando, Y., 1997, “Preparation of high-grade carbon nanotubes by hydrogen arc discharge”, Carbon, 35(6), 775-781.
  • Zou, Y., Li, Y., Zhang, N., Liu, X., 2011, “Flower-like CuO synthesized by CTAB-assisted hydrothermal method”, Bulletin of Materials Science, 34(4), 967.

FACILE AND TEMPLATE-FREE SYNTHESIS OF CuO NANOPARTICLES

Year 2019, , 696 - 704, 04.12.2019
https://doi.org/10.36306/konjes.654449

Abstract

Copper oxide (CuO) nanoparticles were synthesized successfully by arc discharge method in an aqueous medium. Arc discharge was ignited between two copper electrodes and an exhaustive characterization of morphology and crystalline structure of the drawn up copper oxide nanoparticles were studied. Electron microscopy analyses revealed that the grown CuO nanoparticles are irregularly shaped with nominal diameters in the interval of 10-50 nm. XRD results show the as-synthesized particles contain only CuO peaks without any impurities. The results procure a simple, cheap and responsive method for preparing single-phase CuO nanoparticles.

References

  • Abaker, M., Umar, A., Baskoutas, S., Kim, S. H., Hwang, S. W., 2011, “Structural and optical properties of CuO layered hexagonal discs synthesized by a low-temperature hydrothermal process”, Journal of Physics D: Applied Physics, 44(15), 155405.
  • Ashkarran, A. A., Mahdavi, S. M., Ahadian, M. M., 2010, “Photocatalytic activity of ZnO nanoparticles prepared via submerged arc discharge method”, Applied Physics A, 100(4), 1097-1102.
  • Bayansal, F., Kahraman, S., Çankaya, G., Çetinkara, H. A., Güder, H. S., Çakmak, H. M., 2011, “Growth of homogenous CuO nano-structured thin films by a simple solution method”, Journal of Alloys and Compounds, 509(5), 2094-2098.
  • Chen, J., Wang, K., Hartman, L., Zhou, W., 2008, “H2S detection by vertically aligned CuO nanowire array sensors”, The Journal of Physical Chemistry C, 112(41), 16017-16021.
  • Eskizeybek, V., Sarı, F., Gülce, H., Gülce, A., Avcı, A., 2012, “Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations”, Applied Catalysis B: Environmental, 119, 197-206.
  • Eskizeybek, V., Demir, O., Avci, A., Chhowalla, M., 2011, “Synthesis and characterization of cadmium hydroxide nanowires by arc discharge method in de-ionized water”, Journal of Nanoparticle Research, 13(10), 4673-4680.
  • Fang, F., Futter, J., Markwitz, A., Kennedy, J., 2009, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method”, Nanotechnology, 20(24), 245502.
  • Hai, Z., Zhu, C., Huang, J., Liu, H., Chen, J., 2010, “Controllable Synthesis of CuO Nanowires and Cu2O Crystals with Shape Evolution via γ-Irradiation”, Inorganic chemistry, 49(16), 7217-7219.
  • Hsieh, C. T., Chen, J. M., Lin, H. H., Shih, H. C., 2003, “Field emission from various CuO nanostructures”, Applied Physics Letters, 83(16), 3383-3385.
  • Huang, H., Kajiura, H., Tsutsui, S., Murakami, Y., Ata, M., 2003, “High-quality double-walled carbon nanotube super bundles grown in a hydrogen-free atmosphere”, The Journal of Physical Chemistry B, 107(34), 8794-8798.
  • Iijima, S., Ichihashi, T., 1993, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363(6430), 603. Joint Committee on Powder Diffraction Standards 1991 Diffraction Data File No. 45-0937 (Newtown Square, PA: International Centre for Diffraction Data (ICDD, formerly JCPDS))
  • Krätschmer, W., Lamb, L. D., Fostiropoulos, K., Huffman, D. R., 1990, “Solid C60: a new form of carbon”, Nature, 347(6291), 354.
  • Lanje, A. S., Sharma, S. J., Pode, R. B., & Ningthoujam, R. S., 2010, “Synthesis and optical characterization of copper oxide nanoparticles”, Adv Appl Sci Res, 1(2), 36-40.
  • Lee, Y. I., Goo, Y. S., Chang, C. H., Lee, K. J., Myung, N. V., Choa, Y. H., 2011, “Tunable Synthesis of Cuprous and Cupric Oxide Nanotubes from Electrodeposited Copper Nanowires”, Journal of nanoscience and nanotechnology, 11(2), 1455-1458.
  • Liu, C., Cong, H. T., Li, F., Tan, P. H., Cheng, H. M., Lu, K., Zhou, B. L., 1999, “Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method”, Carbon, 37(11), 1865-1868.
  • Liu, J., Huang, X., Li, Y., Sulieman, K. M., He, X., Sun, F., 2006, “Self-assembled CuO monocrystalline nanoarchitectures with controlled dimensionality and morphology”, Crystal growth & design, 6(7), 1690-1696.
  • Liu, Q., Ren, W., Li, F., Cong, H., Cheng, H. M., 2007, “Synthesis and high thermal stability of double-walled carbon nanotubes using nickel formate dihydrate as catalyst precursor”, The Journal of Physical Chemistry C, 111(13), 5006-5013.
  • Panuthai, N., Savanglaa, R., Praserthdam, P., Kheawhom, S., 2014, “Characterization of copper–zinc nanoparticles synthesized via submerged arc discharge with successive reduction process”, Japanese Journal of Applied Physics, 53(5S3), 05HA11.
  • Qiu, G., Dharmarathna, S., Zhang, Y., Opembe, N., Huang, H., Suib, S. L., 2011, “Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties”, The Journal of Physical Chemistry C, 116(1), 468-477.
  • Qin, Y., Zhang, F., Chen, Y., Zhou, Y., Li, J., Zhu, A., Yang, J., 2012 “Hierarchically porous CuO hollow spheres fabricated via a one-pot template-free method for high-performance gas sensors”, The Journal of Physical Chemistry C, 116(22), 11994-12000.
  • Sano, N., Wang, H., Alexandrou, I., Chhowalla, M., Teo, K. B. K., Amaratunga, G. A. J., Iimura, K., 2002, “Properties of carbon onions produced by an arc discharge in water”, Journal of Applied Physics, 92(5), 2783-2788.
  • Sano, N., Wang, H., Chhowalla, M., Alexandrou, I., Amaratunga, G. A. J., 2001, “Nanotechnology: Synthesis of carbon'onions' in water”, Nature, 414(6863), 506.
  • Shi, W., Chopra, N., 2011, “Surfactant-free synthesis of novel copper oxide (CuO) nanowire–cobalt oxide (Co 3 O 4) nanoparticle heterostructures and their morphological control”, Journal of Nanoparticle Research, 13(2), 851-868.
  • Shrestha, K. M., Sorensen, C. M., Klabunde, K. J., 2010, “Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region”, The Journal of Physical Chemistry C, 114(34), 14368-14376.
  • Singh, D. P., Ojha, A. K., Srivastava, O. N., 2009, “Synthesis of different Cu (OH) 2 and CuO (nanowires, rectangles, seed-, belt-, and sheetlike) nanostructures by simple wet chemical route”, The Journal of Physical Chemistry C, 113(9), 3409-3418.
  • Tai, Y. L., Yang, Z. G., 2012, “Preparation of stable aqueous conductive ink with silver nanoflakes and its application on paper‐based flexible electronics”, Surface and Interface Analysis, 44(5), 529-534.
  • Tepanov, A. A., Krutyakov, Y. A., Lisichkin, G. V., 2014, “Electric discharge in liquids as technique to obtain high-dispersed materials based on metals of IB group”, Russian Journal of General Chemistry, 84(5), 986-997.
  • Vaseem, M., Umar, A., Kim, S. H., Hahn, Y. B., 2008, “Low-temperature synthesis of flower-shaped CuO nanostructures by solution process: formation mechanism and structural properties”, The Journal of Physical Chemistry C, 112(15), 5729-5735.
  • Wang, S., Huang, Q., Wen, X., Li, X. Y., Yang, S., 2002, “Thermal oxidation of Cu 2 S nanowires: a template method for the fabrication of mesoscopic Cu x O (x= 1, 2) wires”, Physical Chemistry Chemical Physics, 4(14), 3425-3429.
  • Wu, R., Ma, Z., Gu, Z., Yang, Y., 2010, “Preparation and characterization of CuO nanoparticles with different morphology through a simple quick-precipitation method in DMAC–water mixed solvent”, Journal of Alloys and Compounds, 504(1), 45-49.
  • Xu, C., Xu, G., Liu, Y., Wang, G., 2002, “A simple and novel route for the preparation of ZnO nanorods”, Solid State Communications, 122(3-4), 175-179.
  • Xu, H., Wang, W., Zhu, W., Zhou, L., Ruan, M., 2007, “Hierarchical-oriented attachment: from one-dimensional Cu (OH) 2 nanowires to two-dimensional CuO nanoleaves”, Crystal Growth and Design, 7(12), 2720-2724.
  • Yao, W. T., Yu, S. H., Zhou, Y., Jiang, J., Wu, Q. S., Zhang, L., & Jiang, J., 2005, “Formation of uniform CuO nanorods by spontaneous aggregation: Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid− liquid phase arc discharge process”, The Journal of Physical Chemistry B, 109(29), 14011-14016.
  • Zhang, K., Zhang, N., Cai, H., Wang, C., 2012, “A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers”, Microchimica Acta, 176(1-2), 137-142.
  • Zhang, M., Tu, X., Wang, J., Fang, T., Wang, Y., Xu, X., Chen, Y., 2016, “Hydrothermal syntheses of CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu microcrystals using ionic liquids”, Chemical Research in Chinese Universities, 32(4), 530-533.
  • Zhang, X., Zhang, D., Ni, X., Song, J., Zheng, H., 2008, “Synthesis and electrochemical properties of different sizes of the CuO particles”, Journal of Nanoparticle Research, 10(5), 839-844.
  • Zhang, Z. P., Sun, H. P., Shao, X. Q., Li, D., Yu, H., Han, M., 2005, “Three‐Dimensionally Oriented Aggregation of a Few Hundred Nanoparticles into Monocrystalline Architectures”, Advanced Materials, 17(1), 42-47.
  • Zhao, X., Ohkohchi, M., Wang, M., Iijima, S., Ichihashi, T., Ando, Y., 1997, “Preparation of high-grade carbon nanotubes by hydrogen arc discharge”, Carbon, 35(6), 775-781.
  • Zou, Y., Li, Y., Zhang, N., Liu, X., 2011, “Flower-like CuO synthesized by CTAB-assisted hydrothermal method”, Bulletin of Materials Science, 34(4), 967.
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Tugay Üstün

Volkan Eskizeybek

Ahmet Avcı This is me

Publication Date December 4, 2019
Submission Date November 1, 2018
Acceptance Date March 22, 2019
Published in Issue Year 2019

Cite

IEEE T. Üstün, V. Eskizeybek, and A. Avcı, “FACILE AND TEMPLATE-FREE SYNTHESIS OF CuO NANOPARTICLES”, KONJES, vol. 7, no. 4, pp. 696–704, 2019, doi: 10.36306/konjes.654449.

Cited By