Research Article
BibTex RIS Cite

Packaged cogeneration Systems For Energy Productıon In The Residential Buildings – A Case Study In Konya

Year 2019, , 749 - 767, 04.12.2019
https://doi.org/10.36306/konjes.654923

Abstract

Cogeneration (CHP-Combined Heat and Power) is a modular system where heat and electricity are produced jointly. These units, building types with small capacity, utilise natural gas to generate electricity to be consumed in the buildings. They also generate waste heat during electricity production, which is exploited for heating and domestic hot water needs. CO and NOx emissions of these environmentally friendly systems are negligible as compared to conventional counterparts. In addition, there is no dust and sulphur emissions arouse through these systems.
In this study, the performance evaluation of a micro cogeneration system for residential sector in Konya city has been conducted. The micro-cogeneration system, having 71 kWe of electrical and 115 kWt of thermal capacity, was implemented in a housing project with 137 flats. The corresponding findings from the system operation show that 18.480 kWh of electricity was generated per month against 6.998 m³/month of natural gas consumption. Moreover, the electricity withdrawn from the network decreased 51% with the introduction of micro-cogeneration system. While the average hourly power production of the micro cogeneration unit was 48 kW in winter season, it was 30.54 kW per hour in summer season. According to the analysis results, it was observed that the total system efficiency of 87% was attained. Corresponding economic indicators reveal that an average economic return of $22.10 per flat was obtained. In addition, the sleep mode of cogeneration unit was observed to be 44% higher in summer season. Overall, the aim of this study is to shed light on the applicability of this system in residential sector in Turkey.

References

  • Alahäivälä, A., Heß, T., Cao, S., & Lehtonen, M., 2015, “Analyzing the optimal coordination of a residential micro-CHP system with a power sink.” Applied Energy, 149, 326-337.
  • Arteconi, A., Hewitt, N. J., & Polonara, F., 2012, “State of the art of thermal storage for demand-side management.”, Applied Energy, 93, 371-389.
  • Asaee, S. R., Ugursal, V. I., & Beausoleil-Morrison, I., 2015, “Techno-economic evaluation of internal combustion engine based cogeneration system retrofits in Canadian houses–A preliminary study.”, Applied Energy, 140, 171-183.
  • Badami, M., Chicco, G., Portoraro, A., & Romaniello, M., 2018, “Micro-multigeneration prospects for residential applications in Italy.”, Energy Conversion and Management, 166, 23-36.
  • Barbieri, E. S., Spina, P. R., & Venturini, M., 2012, “Analysis of innovative micro-CHP systems to meet household energy demands.”, Applied Energy, 97, 723-733.
  • Bianchi, M., De Pascale, A., & Melino, F., 2013, “Performance analysis of an integrated CHP system with thermal and Electric Energy Storage for residential application.”, Applied Energy, 112, 928-938.
  • Cioccolanti, L., Savoretti, A., Renzi, M., Caresana, F., & Comodi, G., 2015, “Design and test of a single effect thermal desalination plant using waste heat from m-CHP units.”, Applied Thermal Engineering, 82, 18-29.
  • Fuentes-Cortés, L. F., Ávila-Hernández, A., Serna-González, M., & Ponce-Ortega, J. M., 2015, “Optimal design of CHP systems for housing complexes involving weather and electric market variations.”. Applied Thermal Engineering, 90, 895-906.
  • Horlock, J. H., 1997, “Cogeneration-Combined Heat and Power (CHP): Thermodynamics and Economics.”
  • İmal, M., Kısakesen, T., & Kaya, A., 2016, “Enerji Ekonomisi Açısından Kojenerasyon ve Trijenerasyon Teknolojilerinin Isıtma-Soğutma Kapasitelerinin Analizi.”, Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 19(2), 9-19.
  • Kannan, R., & Strachan, N., 2009, “Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches.”. Applied Energy, 86(4), 416-428.
  • Kanoğlu, M., " Jeotermal elektrik üretim sistemleri ve kojenerasyon.”, Ulusal Tesisat Mühendisliği Kongresi, 2005. Kojenerasyon nedir?, http://www.yegem.com/bilgidetay/1250/kojenerasyon-nedir, ziyaret tarihi: 16 Ekim 2018. Kojenerasyon sistemlerinde gaz jeneratörü, http://gesenerji.com/istatistik/imaj/kojenerasyon.PNG, ziyaret tarihi: 22 Mart 2019.
  • Merkel, E., McKenna, R., & Fichtner, W., 2015, “Optimisation of the capacity and the dispatch of decentralised micro-CHP systems: A case study for the UK.”, Applied Energy, 140, 120-134.
  • Mongibello, L., Bianco, N., Caliano, M., & Graditi, G., 2016, “Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization.”, Applied energy, 184, 55-67.
  • Noussan, M., Abdin, G. C., Poggio, A., & Roberto, R., 2014, “Biomass-fired CHP and heat storage system simulations in existing district heating systems.”, Applied Thermal Engineering, 71(2), 729-735.
  • Onovwiona, H. I., & Ugursal, V. I., 2006, “Residential cogeneration systems: review of the current technology.”, Renewable and sustainable energy reviews, 10(5), 389-431.
  • Özil, E., Şişbot, S., Özpınar, A., & Olgun, B., 2012, “Santral Ekonomisi”, Elektrik Enerjisi Teknolojileri ve Enerji Verimliliği, Cilt 3, Türkiye Elektrik Sanayi Birliği (TESAB) Ticari İşletmesi, 331-334.
  • Pilavachi, P. A., Roumpeas, C. P., Minett, S., & Afgan, N. H., 2006, “Multi-criteria evaluation for CHP system options.”, Energy Conversion and Management, 47(20), 3519-3529.
  • Possidente, R., Roselli, C., Sasso, M., & Sibilio, S., 2006, “Experimental analysis of micro-cogeneration units based on reciprocating internal combustion engine.”, Energy and Buildings, 38(12), 1417-1422.
  • Pravadalıoğlu, S., Komisyonu, E. M. O. İ. Ş. E., & Şti, Ü. T. E. M. L. (2011). Yerinde Enerji Üretimi-Kojenerasyon Sistemleri. EMO. Rahim, M., & Gündüz, D., 2013, “Gaz Türbinli Bir Isil-Güç (Kojenerasyon) Çevrim Santralinin Enerji Ve Ekserji Analizi: Ankara Şartlarinda Uygulama.”, TÜBAV Bilim Dergisi, 6(2), 19-27.
  • Ren, H., & Gao, W., 2010, “Economic and environmental evaluation of micro CHP systems with different operating modes for residential buildings in Japan.”, Energy and Buildings, 42(6), 853-861.
  • Renzi, M., & Brandoni, C., 2014, “Study and application of a regenerative Stirling cogeneration device based on biomass combustion.”, Applied Thermal Engineering, 67(1-2), 341-351.
  • Riva, G., Sotte, M., & Coccia, G., 2014, “L’accumulo di energia termica quale importante strumento per la realizzazione di edifici nZEB.”, Report Ricerca di Sistema Elettrico, ENEA.
  • Roselli, C., Sasso, M., Sibilio, S., & Tzscheutschler, P., 2011, “Experimental analysis of microcogenerators based on different prime movers.”, Energy and buildings, 43(4), 796-804.
  • Shimoda, Y., Taniguchi-Matsuoka, A., Inoue, T., Otsuki, M., & Yamaguchi, Y., 2017, “Residential energy end-use model as evaluation tool for residential micro-generation.”, Applied Thermal Engineering, 114, 1433-1442.
  • Smith, A. D., & Mago, P. J., 2014, “Effects of load-following operational methods on combined heat and power system efficiency.”, Applied energy, 115, 337-351. Üretilen birim güç başına eşdeğer karbondioksit salınım miktarı ne kadardır?, https://arge7.com/detay.asp?id=2648, ziyaret tarihi: 22 Mart 2019.
  • Viessmann Vitobloc 200 PTK Modül kullanım kılavuzu.
  • Wakui, T., & Yokoyama, R., 2014, “Optimal structural design of residential cogeneration systems in consideration of their operating restrictions.”, Energy, 64, 719-733.
  • Wang, Q., Su, B., Sun, J., Zhou, P., & Zhou, D., 2015, “Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities.”, Applied Energy, 151, 85-92.
  • Yöntem, M. A., 2011, “Küçük ölçekli kojenerasyon sistemlerinin verimliliğinin incelenmesi”, Doctoral dissertation, SDÜ Fen Bilimleri Enstitüsü, Isparta.

KONUTLARDA PAKET TİPİ KOJENERASYON İLE YERİNDE ENERJİ ÜRETİMİ – KONYA ŞARTLARINDA UYGULAMA

Year 2019, , 749 - 767, 04.12.2019
https://doi.org/10.36306/konjes.654923

Abstract

Kojenerasyon, bileşik ısı-güç üretim sistemleri (CHP-Combined Heat and Power) ısı ve elektriğin birlikte üretildiği modüler yapılı sistemlerdir. Konutlarda uygulanan, gazla çalışan ve genellikle küçük kapasiteli bu üniteler kurulduğu binalarda tüketilmesi amacıyla elektrik üretirler. Elektrik üretiminde açığa çıkan atık ısı, neredeyse hiç kayba uğramadan, ısıtma için kullanılarak enerji verimliliği sağlanır. Oldukça çevre dostu olan bu sistemlerin CO ve NOₓ salınımları diğer fosil yakıtlı sistemlere göre ihmal edilebilir seviyelerdedir, toz ve kükürt salınımları da yoktur.
Bu çalışmada, Türkiye’de ilk defa, Konya’da inşa edilen 137 dairelik konut projesinde uygulanan 71 kWe ve 115 kWt kapasiteye sahip mikro kojenerasyon sistemine ait performans değerlendirilmesi yapılmıştır. Aylık tüketilen ortalama 6.998 m³/ay doğalgaza karşılık yine ortalama 18.480 kWh/ay elektrik enerjisi elde edilmiştir. Mikro kojenerasyonun devreye girmesi ile şebekeden çekilen elektrik enerjisinde %51 oranında azalma gözlemlenmiştir. Kış sezonunda mikro kojenerasyon ünitesinin saatlik güç üretimi ortalama 48 kW iken bu oran yaz sezonunda saatlik ortalama 30,54 kW olarak tespit edilmiştir. Analiz sonuçlarına göre, toplam verimlilik oranının %87 civarında olduğu saptanmıştır. Ekonomik göstergelere göre, daire başı aylık ortalama $22,10 civarında bir ekonomik getirisinin olduğu hesaplanmıştır. Yaz döneminde mikro kojenerasyon ünitesi uyku modunun kış dönemine oranla ortalama %44 daha fazla olduğu gözlemlenmiştir. Bu çalışma da ayrıca mikro kojenerasyonun konutlara uygulanabilirliği konusu analiz edilmiştir.

References

  • Alahäivälä, A., Heß, T., Cao, S., & Lehtonen, M., 2015, “Analyzing the optimal coordination of a residential micro-CHP system with a power sink.” Applied Energy, 149, 326-337.
  • Arteconi, A., Hewitt, N. J., & Polonara, F., 2012, “State of the art of thermal storage for demand-side management.”, Applied Energy, 93, 371-389.
  • Asaee, S. R., Ugursal, V. I., & Beausoleil-Morrison, I., 2015, “Techno-economic evaluation of internal combustion engine based cogeneration system retrofits in Canadian houses–A preliminary study.”, Applied Energy, 140, 171-183.
  • Badami, M., Chicco, G., Portoraro, A., & Romaniello, M., 2018, “Micro-multigeneration prospects for residential applications in Italy.”, Energy Conversion and Management, 166, 23-36.
  • Barbieri, E. S., Spina, P. R., & Venturini, M., 2012, “Analysis of innovative micro-CHP systems to meet household energy demands.”, Applied Energy, 97, 723-733.
  • Bianchi, M., De Pascale, A., & Melino, F., 2013, “Performance analysis of an integrated CHP system with thermal and Electric Energy Storage for residential application.”, Applied Energy, 112, 928-938.
  • Cioccolanti, L., Savoretti, A., Renzi, M., Caresana, F., & Comodi, G., 2015, “Design and test of a single effect thermal desalination plant using waste heat from m-CHP units.”, Applied Thermal Engineering, 82, 18-29.
  • Fuentes-Cortés, L. F., Ávila-Hernández, A., Serna-González, M., & Ponce-Ortega, J. M., 2015, “Optimal design of CHP systems for housing complexes involving weather and electric market variations.”. Applied Thermal Engineering, 90, 895-906.
  • Horlock, J. H., 1997, “Cogeneration-Combined Heat and Power (CHP): Thermodynamics and Economics.”
  • İmal, M., Kısakesen, T., & Kaya, A., 2016, “Enerji Ekonomisi Açısından Kojenerasyon ve Trijenerasyon Teknolojilerinin Isıtma-Soğutma Kapasitelerinin Analizi.”, Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 19(2), 9-19.
  • Kannan, R., & Strachan, N., 2009, “Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches.”. Applied Energy, 86(4), 416-428.
  • Kanoğlu, M., " Jeotermal elektrik üretim sistemleri ve kojenerasyon.”, Ulusal Tesisat Mühendisliği Kongresi, 2005. Kojenerasyon nedir?, http://www.yegem.com/bilgidetay/1250/kojenerasyon-nedir, ziyaret tarihi: 16 Ekim 2018. Kojenerasyon sistemlerinde gaz jeneratörü, http://gesenerji.com/istatistik/imaj/kojenerasyon.PNG, ziyaret tarihi: 22 Mart 2019.
  • Merkel, E., McKenna, R., & Fichtner, W., 2015, “Optimisation of the capacity and the dispatch of decentralised micro-CHP systems: A case study for the UK.”, Applied Energy, 140, 120-134.
  • Mongibello, L., Bianco, N., Caliano, M., & Graditi, G., 2016, “Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization.”, Applied energy, 184, 55-67.
  • Noussan, M., Abdin, G. C., Poggio, A., & Roberto, R., 2014, “Biomass-fired CHP and heat storage system simulations in existing district heating systems.”, Applied Thermal Engineering, 71(2), 729-735.
  • Onovwiona, H. I., & Ugursal, V. I., 2006, “Residential cogeneration systems: review of the current technology.”, Renewable and sustainable energy reviews, 10(5), 389-431.
  • Özil, E., Şişbot, S., Özpınar, A., & Olgun, B., 2012, “Santral Ekonomisi”, Elektrik Enerjisi Teknolojileri ve Enerji Verimliliği, Cilt 3, Türkiye Elektrik Sanayi Birliği (TESAB) Ticari İşletmesi, 331-334.
  • Pilavachi, P. A., Roumpeas, C. P., Minett, S., & Afgan, N. H., 2006, “Multi-criteria evaluation for CHP system options.”, Energy Conversion and Management, 47(20), 3519-3529.
  • Possidente, R., Roselli, C., Sasso, M., & Sibilio, S., 2006, “Experimental analysis of micro-cogeneration units based on reciprocating internal combustion engine.”, Energy and Buildings, 38(12), 1417-1422.
  • Pravadalıoğlu, S., Komisyonu, E. M. O. İ. Ş. E., & Şti, Ü. T. E. M. L. (2011). Yerinde Enerji Üretimi-Kojenerasyon Sistemleri. EMO. Rahim, M., & Gündüz, D., 2013, “Gaz Türbinli Bir Isil-Güç (Kojenerasyon) Çevrim Santralinin Enerji Ve Ekserji Analizi: Ankara Şartlarinda Uygulama.”, TÜBAV Bilim Dergisi, 6(2), 19-27.
  • Ren, H., & Gao, W., 2010, “Economic and environmental evaluation of micro CHP systems with different operating modes for residential buildings in Japan.”, Energy and Buildings, 42(6), 853-861.
  • Renzi, M., & Brandoni, C., 2014, “Study and application of a regenerative Stirling cogeneration device based on biomass combustion.”, Applied Thermal Engineering, 67(1-2), 341-351.
  • Riva, G., Sotte, M., & Coccia, G., 2014, “L’accumulo di energia termica quale importante strumento per la realizzazione di edifici nZEB.”, Report Ricerca di Sistema Elettrico, ENEA.
  • Roselli, C., Sasso, M., Sibilio, S., & Tzscheutschler, P., 2011, “Experimental analysis of microcogenerators based on different prime movers.”, Energy and buildings, 43(4), 796-804.
  • Shimoda, Y., Taniguchi-Matsuoka, A., Inoue, T., Otsuki, M., & Yamaguchi, Y., 2017, “Residential energy end-use model as evaluation tool for residential micro-generation.”, Applied Thermal Engineering, 114, 1433-1442.
  • Smith, A. D., & Mago, P. J., 2014, “Effects of load-following operational methods on combined heat and power system efficiency.”, Applied energy, 115, 337-351. Üretilen birim güç başına eşdeğer karbondioksit salınım miktarı ne kadardır?, https://arge7.com/detay.asp?id=2648, ziyaret tarihi: 22 Mart 2019.
  • Viessmann Vitobloc 200 PTK Modül kullanım kılavuzu.
  • Wakui, T., & Yokoyama, R., 2014, “Optimal structural design of residential cogeneration systems in consideration of their operating restrictions.”, Energy, 64, 719-733.
  • Wang, Q., Su, B., Sun, J., Zhou, P., & Zhou, D., 2015, “Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities.”, Applied Energy, 151, 85-92.
  • Yöntem, M. A., 2011, “Küçük ölçekli kojenerasyon sistemlerinin verimliliğinin incelenmesi”, Doctoral dissertation, SDÜ Fen Bilimleri Enstitüsü, Isparta.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Mehmet Kaplan This is me

Mahmut Sami Büker

Publication Date December 4, 2019
Submission Date December 15, 2018
Acceptance Date April 27, 2019
Published in Issue Year 2019

Cite

IEEE M. Kaplan and M. S. Büker, “KONUTLARDA PAKET TİPİ KOJENERASYON İLE YERİNDE ENERJİ ÜRETİMİ – KONYA ŞARTLARINDA UYGULAMA”, KONJES, vol. 7, no. 4, pp. 749–767, 2019, doi: 10.36306/konjes.654923.