Research Article
BibTex RIS Cite

Optimum Cable Bonding Design in High Voltage Cables by Regression in Radial Network

Year 2020, , 771 - 784, 01.12.2020
https://doi.org/10.36306/konjes.703243

Abstract

With the development of technology, the variety of loads in electrical networks has also increased. These various loads increase the zero component and harmonic currents in the network and cause cable termination faults in high voltage underground cables. In practice, the solid bonding (SB) method, which is included in the IEEE 575-1988 standard, is generally used to prevent cable termination faults. However, this method is not sufficient to prevent cable termination faults caused by zero component and harmonic currents. In this study, a new method, the sectional solid bonding (SSB) method and the SB method were compared. In order to use the SSB method, it is necessary to know the sheath voltage that will occur in the cable. Therefore, sheath voltage estimation is made with the Support Vector Regression (SVR) methods. Later, the SSB method is optimized with touch voltage to prevent cable failures and electrical distortions. Particle Swarm Optimization, Inertia Weighted Particle Swarm Optimization, Gravitational Search Algorithm and Genetic Algorithm were used as optimization methods. At the end of the study, it has been observed that the sheath voltage exceeds the touch voltage in case the grounding of the high voltage cable is performed by the SB method. This causes cable failure due to unbalanced electric field and electric shock due to high voltage. In the optimized SSB methods designed for the same line, the sheath voltage is not exceeded. Thus, both cable faults and electrical shock will be prevented by the SSB method.

References

  • Akbal, B., 2018, “Applications of artificial intelligence and hybrid neural network methods with new bonding method to prevent electroshock risk and insulation faults in high-voltage underground cable lines”, Neural Comput & Applic, Cilt: 24, Sayı: 2, ss. 32-36.
  • Alex J. S., Bernhard, S., 2004, “A tutorial on support vector regression” Statistics and Computing, Cilt: 14, ss. 199–222.
  • Bak, C., L., Silva, F., F. 2016. “High voltage AC underground cable systems for power transmission – A review of the Danish experience, part 1.” Electric Power Systems Research, Cilt: 140, ss. 984-994.
  • Bak, C., L., Silva, F., F. 2016. “High voltage AC underground cable systems for power transmission – A review of the Danish experience, part 2.” Electric Power Systems Research, Cilt: 140, ss. 995-1004.
  • Benato, R., Balanuye, I., Köksal, F., Ozan, N., Özdemirci, E. 2017.“A 4 GW AC submarine Turkish power grid reinforcement under the Dardanelles Strait”,IEEE 2017 AEIT International Annual Conference, Cagliari, Italy ss. 1-6.
  • Bessissa, L., Boukezzi, L., Mahi, D. 2016. “Influence of Fuzzy Parameters on the Modeling Quality of XLPE Insulation Properties under Thermal Aging.” Fuzzy Information and Engineering, Cilt: 8, Sayı:1, ss. 101-112.
  • Bessissa, L., Boukezzi, L., Mahi, D. 2016. “Influence of Fuzzy Parameters on the Modeling Quality of XLPE Insulation Properties under Thermal Aging.” Fuzzy Information and Engineering, Cilt: 8, Sayı:1, ss. 101-112.
  • Czapp, S., Dobrzynski, K., Klucznik, J., 2014, “Calculation of induced sheath voltages in power cables – single circuit system versus double circuit system” Journal of Information, Control and Management Systems, Cilt: 12, ss. 113–123.
  • Gatta F. M.,Lauria S., Luigi C. 2005. “Very long EHV cables and mixed overhead-cable lines. Steady-state operation.” IEEE Russia Power Tech, ss. 1-7.
  • Gouramanis, K., V., Kaloudas, C., G., Papadopoulos, T., A., 2011, “Sheath voltage calculations in long medium voltage power cables,” IEEE Trondheim Power Tech, Norway, ss. 1–7.
  • Jiali D., Xin W., Yihui Z., Lixue L. 2019. “A Novel Fault Location Algorithm for Mixed Overhead-Cable Transmission System Using Unsynchronized Current Data.” IEEJ Transactions on Electrical and Electronic Engineering, Cilt: 14, ss. 1295-1303.
  • Jiangchao, Q., Maryam, S., 2015, “A Zero-Sequence Voltage Injection-Based Control Strategy for a Parallel Hybrid Modular Multilevel HVDC Converter System”, IEEE Transactions on Power Delivery, Cilt: 30, Sayı: 2, ss. 728 – 736.
  • Jittiphong K., Atthapol N.2017. “Fault Classification on the Hybrid Transmission Line System between Overhead Line and Underground Cable.” 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA- SCIS), ss. 1-6.
  • Jung, C., K., Lee, J., B., Kang, J., W., 2007, “Sheath circulating current analysis of a cross-bonded power cable systems” J Electr Eng & Technol, Cilt: 2, ss. 320–328.
  • Jung, C., K., Lee, J., B., Kang, J., W., 2005, “Sheath current characteristic and its reduction on underground power cable systems” IEEE Power Engineering Society General Meeting, CA, USA, ss. 2562– 2569.
  • Marina, A., S., Abderrahim K., Fernando G., et al.: 'Detection and localization of defects in cable sheath of cross-bonding configuration by sheath currents', IEEE Transactions On Power Delivery, DOI 10.1109/TPWRD.2019.2903329.
  • Mehdi, N., Gerry, M., 2014, “Three-Phase Multi module VSIs Using SHE-PWM to Reduce Zero-Sequence Circulating Current”, IEEE Transactions on Industrial Electronics, Cilt: 61, Sayı: 4, ss. 1659 – 1668.
  • Ruiz, J., R., Garcia, A., Morera, X., A. 2007. “Circulating sheath currents in flat formation underground power lines.” 2007 International Conf. Renewable Energies and Power Quality, Mart, ss. 1–5.
  • Sachin K. G., Arun P., 2016, “Study on Semi Conductive Layer during EHV XLPE Cable Joint Procedure” International Journal of Novel Research in Engineering and Science, Cilt: 3, Sayı: 1, ss. 8-11.
  • Shuai Z., Houlei G., Yingtao S. 2016. “A New Fault-Location Algorithm for Extra-High-Voltage Mixed Lines Based on Phase Characteristics of the Hyperbolic Tangent Function.” IEEE Transactions on Power Delivery, Cilt: 31, Sayı: 3, ss. 1203-1212.
  • Tziouvaras A. D. 2006. “Protection of high-voltage AC cables”, 59th Annual Conf. for Protective Relay Engineers, TX, USA ss. 48–61.
  • Xiang D., Yang Y., Chengke Z., Donald M. H., 2017, “Online Monitoring and Diagnosis of HV Cable Faults by Sheath System Currents”, IEEE Transactions On Power Delivery, Cilt: 32, Sayı: 5, ss. 2281- 2290.
  • Yunus, B. 2016. “Trend adjusted lifetime monitoring of underground power cable”. Electric Power Systems Research, Cilt: 143, ss. 189-196.
  • Zhangping, S., Xing, Z., Fusheng, W., 2015, “Modeling and Elimination of Zero-Sequence Circulating Currents in Parallel Three-Level T-Type Grid-Connected Inverters”, IEEE Transactions on Power Electronics, Cilt: 30, Sayı: 2, ss. 1050 – 1063.
  • Zhonglei, L., Du, B., X., Wang, L., 2012, “The calculation of circulating current for the single-core cables in smart grid”, 2012 IEEE Innovative Smart Grid Technologies – Asia, China, Mayıs, ss. 1–4.

RADYAL ŞEBEKELERDE DESTEK VEKTÖR REGRESYON İLE OPTİMUM KABLO TOPRAKLAMA SİSTEMİ TASARIMI

Year 2020, , 771 - 784, 01.12.2020
https://doi.org/10.36306/konjes.703243

Abstract

Teknolojinin gelişmesi ile elektrik şebekelerindeki yüklerin çeşitliliği de artmıştır. Bu çeşitli yükler şebekede sıfır bileşen ve harmonik akımlarını artırarak yüksek gerilim yeraltı kablolarında başlık arızalarına neden olmaktadır. Uygulamada kablo başlığı arızalarını önlemek için genellikle IEEE 575-1988 standardında yer alan çift taraflı topraklama (ÇTT) yöntemi kullanılmaktadır. Fakat bu yöntem sıfır bileşen ve harmonik akımlarının neden olduğu kablo başlığı arızalarını önlemek için yeterli değildir. Bu çalışmada yeni bir yöntem olan Parçalı Çift Taraflı Topraklama (PÇT) yöntemi ile ÇTT yöntemi karşılaştırılmıştır. PÇT yönteminin kullanılması için kabloda oluşacak olan kılıf geriliminin bilinmesi gereklidir. Bu yüzden Destek Vektör Regresyon (DVR) yöntemleri ile kılıf gerilimi tahmini yapılmıştır.
Daha sonra kablo arızalarını ve elektrik çarpılmalarını önlemek için PÇT yöntemi dokunma gerilimine göre optimize edilmiştir. Optimizasyon yöntemleri olarak da Parçacık Sürü Optimizasyonu, İnertia Ağırlıklı Parçacık Sürü Optimizasyonu, Çekimsel Arama Algoritması ve Genetik Algoritma kullanılmıştır.
Çalışma sonunda, yüksek gerilim kablosunun topraklamasının ÇTT yöntemi ile yapılması durumunda kılıf geriliminin dokunma gerilimini aştığı görülmüştür. Bu durum dengesiz elektrik alanı nedeniyle kablo arızasına, yüksek gerilim nedeniyle de elektrik çarpılmasına neden olmaktadır. Aynı hat için tasarlanan optimize edilmiş PÇT yöntemlerinde ise kılıf gerilimi aşılamamıştır. Böylece PÇT yöntemi ile hem kablo arızalarının hem de elektrik çarpılmalarının önüne geçilecektir.

References

  • Akbal, B., 2018, “Applications of artificial intelligence and hybrid neural network methods with new bonding method to prevent electroshock risk and insulation faults in high-voltage underground cable lines”, Neural Comput & Applic, Cilt: 24, Sayı: 2, ss. 32-36.
  • Alex J. S., Bernhard, S., 2004, “A tutorial on support vector regression” Statistics and Computing, Cilt: 14, ss. 199–222.
  • Bak, C., L., Silva, F., F. 2016. “High voltage AC underground cable systems for power transmission – A review of the Danish experience, part 1.” Electric Power Systems Research, Cilt: 140, ss. 984-994.
  • Bak, C., L., Silva, F., F. 2016. “High voltage AC underground cable systems for power transmission – A review of the Danish experience, part 2.” Electric Power Systems Research, Cilt: 140, ss. 995-1004.
  • Benato, R., Balanuye, I., Köksal, F., Ozan, N., Özdemirci, E. 2017.“A 4 GW AC submarine Turkish power grid reinforcement under the Dardanelles Strait”,IEEE 2017 AEIT International Annual Conference, Cagliari, Italy ss. 1-6.
  • Bessissa, L., Boukezzi, L., Mahi, D. 2016. “Influence of Fuzzy Parameters on the Modeling Quality of XLPE Insulation Properties under Thermal Aging.” Fuzzy Information and Engineering, Cilt: 8, Sayı:1, ss. 101-112.
  • Bessissa, L., Boukezzi, L., Mahi, D. 2016. “Influence of Fuzzy Parameters on the Modeling Quality of XLPE Insulation Properties under Thermal Aging.” Fuzzy Information and Engineering, Cilt: 8, Sayı:1, ss. 101-112.
  • Czapp, S., Dobrzynski, K., Klucznik, J., 2014, “Calculation of induced sheath voltages in power cables – single circuit system versus double circuit system” Journal of Information, Control and Management Systems, Cilt: 12, ss. 113–123.
  • Gatta F. M.,Lauria S., Luigi C. 2005. “Very long EHV cables and mixed overhead-cable lines. Steady-state operation.” IEEE Russia Power Tech, ss. 1-7.
  • Gouramanis, K., V., Kaloudas, C., G., Papadopoulos, T., A., 2011, “Sheath voltage calculations in long medium voltage power cables,” IEEE Trondheim Power Tech, Norway, ss. 1–7.
  • Jiali D., Xin W., Yihui Z., Lixue L. 2019. “A Novel Fault Location Algorithm for Mixed Overhead-Cable Transmission System Using Unsynchronized Current Data.” IEEJ Transactions on Electrical and Electronic Engineering, Cilt: 14, ss. 1295-1303.
  • Jiangchao, Q., Maryam, S., 2015, “A Zero-Sequence Voltage Injection-Based Control Strategy for a Parallel Hybrid Modular Multilevel HVDC Converter System”, IEEE Transactions on Power Delivery, Cilt: 30, Sayı: 2, ss. 728 – 736.
  • Jittiphong K., Atthapol N.2017. “Fault Classification on the Hybrid Transmission Line System between Overhead Line and Underground Cable.” 17th World Congress of International Fuzzy Systems Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA- SCIS), ss. 1-6.
  • Jung, C., K., Lee, J., B., Kang, J., W., 2007, “Sheath circulating current analysis of a cross-bonded power cable systems” J Electr Eng & Technol, Cilt: 2, ss. 320–328.
  • Jung, C., K., Lee, J., B., Kang, J., W., 2005, “Sheath current characteristic and its reduction on underground power cable systems” IEEE Power Engineering Society General Meeting, CA, USA, ss. 2562– 2569.
  • Marina, A., S., Abderrahim K., Fernando G., et al.: 'Detection and localization of defects in cable sheath of cross-bonding configuration by sheath currents', IEEE Transactions On Power Delivery, DOI 10.1109/TPWRD.2019.2903329.
  • Mehdi, N., Gerry, M., 2014, “Three-Phase Multi module VSIs Using SHE-PWM to Reduce Zero-Sequence Circulating Current”, IEEE Transactions on Industrial Electronics, Cilt: 61, Sayı: 4, ss. 1659 – 1668.
  • Ruiz, J., R., Garcia, A., Morera, X., A. 2007. “Circulating sheath currents in flat formation underground power lines.” 2007 International Conf. Renewable Energies and Power Quality, Mart, ss. 1–5.
  • Sachin K. G., Arun P., 2016, “Study on Semi Conductive Layer during EHV XLPE Cable Joint Procedure” International Journal of Novel Research in Engineering and Science, Cilt: 3, Sayı: 1, ss. 8-11.
  • Shuai Z., Houlei G., Yingtao S. 2016. “A New Fault-Location Algorithm for Extra-High-Voltage Mixed Lines Based on Phase Characteristics of the Hyperbolic Tangent Function.” IEEE Transactions on Power Delivery, Cilt: 31, Sayı: 3, ss. 1203-1212.
  • Tziouvaras A. D. 2006. “Protection of high-voltage AC cables”, 59th Annual Conf. for Protective Relay Engineers, TX, USA ss. 48–61.
  • Xiang D., Yang Y., Chengke Z., Donald M. H., 2017, “Online Monitoring and Diagnosis of HV Cable Faults by Sheath System Currents”, IEEE Transactions On Power Delivery, Cilt: 32, Sayı: 5, ss. 2281- 2290.
  • Yunus, B. 2016. “Trend adjusted lifetime monitoring of underground power cable”. Electric Power Systems Research, Cilt: 143, ss. 189-196.
  • Zhangping, S., Xing, Z., Fusheng, W., 2015, “Modeling and Elimination of Zero-Sequence Circulating Currents in Parallel Three-Level T-Type Grid-Connected Inverters”, IEEE Transactions on Power Electronics, Cilt: 30, Sayı: 2, ss. 1050 – 1063.
  • Zhonglei, L., Du, B., X., Wang, L., 2012, “The calculation of circulating current for the single-core cables in smart grid”, 2012 IEEE Innovative Smart Grid Technologies – Asia, China, Mayıs, ss. 1–4.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Bahadir Akbal

Publication Date December 1, 2020
Submission Date March 13, 2020
Acceptance Date June 15, 2020
Published in Issue Year 2020

Cite

IEEE B. Akbal, “RADYAL ŞEBEKELERDE DESTEK VEKTÖR REGRESYON İLE OPTİMUM KABLO TOPRAKLAMA SİSTEMİ TASARIMI”, KONJES, vol. 8, no. 4, pp. 771–784, 2020, doi: 10.36306/konjes.703243.