MİKROAKIŞKAN CİHAZ KULLANARAK POLİMERİK MİKROBALONCUK/NANOPARTİKÜLLERİN ÜRETİM VE KARAKTERİZASYONU
Year 2021,
, 17 - 24, 02.03.2021
Sümeyye Cesur
,
Muhammet Emin Çam
,
Oğuzhan Gündüz
Abstract
Son yıllarda, biyomedikal uygulamalarda farklı morfolojilere sahip polimerik mikro/nano partiküller kontrollü ilaç salımı gibi birçok uygulamadaki potansiyelleri nedeniyle ilgi görmektedir. Bu çalışmada, polimer kaplı mikrobaloncuklardan nanopartiküller üretmek için T-bağlantılı mikroakışkan cihaz kullanılmıştır. Mikrobaloncukların ve nanopartiküllerin morfolojisi ve yapısı optik mikroskop, taramalı elektron mikroskobu (SEM) ve Fourier Dönüşümlü Kızıl Ötesi Spektrometresi (FT-IR) kullanılarak üretim işleminden sonra incelendi. Elde edilen mikrobaloncukların ve nanopartiküllerin çapı sırasıyla 104 ± 91 μm ve 116 ± 13 nm idi. Solüsyonun akış hızının nanopartiküllerin çapı üzerinde önemli bir etkiye sahip olduğu görülmüştür. Ortaya çıkan bu sonuçlar, biyomedikal tedavide hücre nakli, ileri terapötik uygulamalar ve gıda endüstrisi gibi birçok uygulama için çok yararlı olacaktır.
References
- Banerjee, A., Qi, J., Gogoi, R., Wong, J., & Mitragotri, S., 2016, “Role of nanoparticle size, shape and surface chemistry in oral drug delivery”, Journal of Controlled Release, Cilt 238, ss. 176-185.
- Cam, M. E., Zhang, Y., & Edirisinghe, M., 2019a, “Electrosprayed microparticles: a novel drug delivery method” Expert opınıon on drug delıvery, Cilt 16, Sayı 9, ss. 895-901.
- Cam, M. E., Cesur, S., Taskin, T., Erdemir, G., Kuruca, D. S., Sahin, Y. M., & Gunduz, O., 2019b, “Fabrication, characterization and fibroblast proliferative activity of electrospun Achillea lycaonica-loaded nanofibrous mats”, European Polymer Journal, Cilt 120, ss. 109239.
- Cesur, S., Oktar, F. N., Ekren, N., Kilic, O., Alkaya, D. B., Seyhan, S. A., & Gunduz, O., 2019, “Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application”, Journal of the Australian Ceramic Society, ss. 1- 11.
- Elsayed, M., Kothandaraman, A., Edirisinghe, M., & Huang, J., 2016, “Porous polymeric films from microbubbles generated using a T-junction microfluidic device”, Langmuir, Cilt 32, Sayı 50, ss. 13377-13385.
- Fernandez-Fernandez, A., Manchanda, R., & McGoron, A. J., 2011, “Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms”, Applied biochemistry and biotechnology, Cilt 165, Sayı 7-8, ss. 1628-1651.
- Garstecki, P., Gitlin, I., DiLuzio, W., Whitesides, G. M., Kumacheva, E., & Stone, H. A., 2004, “Formation of monodisperse bubbles in a microfluidic flow-focusing device”, Applied Physics Letters, Cilt 85, Sayı 13, ss. 2649-2651.
- Gunduz, O., Ahmad, Z., Stride, E., Tamerler, C., & Edirisinghe, M., 2012, “Bioinspired bubble design for particle generation”, Journal of The Royal Society Interface, Cilt 9, Sayı 67, ss. 389-395.
- Gunduz, O., Ahmad, Z., Stride, E., & Edirisinghe, M., 2013. “Continuous generation of ethyl cellulose drug delivery nanocarriers from microbubbles”. Pharmaceutical research, Cilt 30, Sayı 1, ss. 225-237.
- Jain, S., Hirst, D. G., & O'sullivan, J. M., 2012, “Gold nanoparticles as novel agents for cancer therapy”, The British journal of radiology, Cilt 85, Sayı 1010, ss. 101-113.
- Jiang, S., Liu, S., & Feng, W., 2011, “PVA hydrogel properties for biomedical application”, Journal of the
mechanical behavior of biomedical materials, Cilt 4, Sayı 7, ss. 1228-1233.
- Kucuk, I., Yilmaz, N. F., & Sinan, A., 2018, “Effects of junction angle and gas pressure on polymer nanosphere preparation from microbubbles bursted in a combined microfluidic device with thin capillaries”, Journal of Molecular Structure, Cilt 1173, ss. 422-427.
- Kumar, S., Anselmo, A. C., Banerjee, A., Zakrewsky, M., & Mitragotri, S., 2015, “Shape and size-dependent immune response to antigen-carrying nanoparticles”, Journal of Controlled Release, Cilt 220, ss. 141-148.
- Liu, D., Zhang, H., Fontana, F., Hirvonen, J. T., & Santos, H. A., 2017. “Microfluidic-assisted fabrication of carriers for controlled drug delivery”, Lab on a Chip, Cilt 17, Sayı 11, ss. 1856-1883.
- Martínez-Gómez, F., Guerrero, J., Matsuhiro, B., & Pavez, J., 2017, “In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels”, Carbohydrate polymers, Cilt 155, ss. 182-191.
- McEwan, C., Kamila, S., Owen, J., Nesbitt, H., Callan, B., Borden, M., McHale, A. P., 2016, “Combined sonodynamic and antimetabolite therapy for the improved treatment of pancreatic cancer using oxygen loaded microbubbles as a delivery vehicle”,Biomaterials, Cilt 80, ss. 20-32.
- Pancholi, K., Stride, E., & Edirisinghe, M., 2008. “Dynamics of bubble formation in highly viscous liquids”Langmuir, Cilt 24 Sayı 8, ss. 4388-4393.
- Parhizkar, M., Edirisinghe, M., & Stride, E., 2013, “Effect of operating conditions and liquid physical properties on the size of monodisperse microbubbles produced in a capillary embedded T- junction device”, Microfluidics and nanofluidics, Cilt 14, Sayı 5, ss. 797-808.
- Parhizkar, M., Edirisinghe, M., & Stride, E., 2015, “The effect of surfactant type and concentration on the size and stability of microbubbles produced in a capillary embedded T-junction device”, Rsc Advances, Cilt 5, Sayı 14, ss. 10751-10762.
- Peltonen, L., Valo, H., Kolakovic, R., Laaksonen, T., & Hirvonen, J., 2010, “Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles”, Expert opinion on drug delivery, Cilt 7, Sayı 6, ss. 705-719.
- Roberts, M. J., Bentley, M. D., & Harris, J. M., 2002, “Chemistry for peptide and protein PEGylation”, Advanced drug delivery reviews, Cilt 54, Sayı 4, ss. 459-476.
- Xu, R. X., Xu, S., Zuo, T., Huang, T. H., Shen, R., & Tweedle, M. F., 2011, “Drug-loaded biodegradable microspheres for image-guided combinatory epigenetic therapy in cells”, Journal of biomedical optics, Cilt 16, Sayı 2, ss. 020507.
Production and Characterization of Polymeric Microbubble / Nanoparticles Using a Microfluidic Device
Year 2021,
, 17 - 24, 02.03.2021
Sümeyye Cesur
,
Muhammet Emin Çam
,
Oğuzhan Gündüz
Abstract
In recent years, polymeric micro/nanoparticles with different morphologies in biomedical applications have gained attention due to their potential in many applications such as controlled drug release. In this study, a T-junction microfluidic device was used to produce nanoparticles from polymer- coated microbubbles. The morphology and structure of microbubbles and nanoparticles were performed after the production process using optical microscopy, scanning electron microscopy (SEM), and Fourier- transform infrared spectroscopy (FT-IR). The diameter of the produced microbubbles and nanoparticles was 104 ± 91 μm and 116 ± 13 nm, respectively. The flow rate of the solution was found to have a significant effect on the diameter of the nanoparticles. These results can be very useful for many applications such as advanced therapeutic applications, cell transplantation in biomedical therapy, and the food industry.
References
- Banerjee, A., Qi, J., Gogoi, R., Wong, J., & Mitragotri, S., 2016, “Role of nanoparticle size, shape and surface chemistry in oral drug delivery”, Journal of Controlled Release, Cilt 238, ss. 176-185.
- Cam, M. E., Zhang, Y., & Edirisinghe, M., 2019a, “Electrosprayed microparticles: a novel drug delivery method” Expert opınıon on drug delıvery, Cilt 16, Sayı 9, ss. 895-901.
- Cam, M. E., Cesur, S., Taskin, T., Erdemir, G., Kuruca, D. S., Sahin, Y. M., & Gunduz, O., 2019b, “Fabrication, characterization and fibroblast proliferative activity of electrospun Achillea lycaonica-loaded nanofibrous mats”, European Polymer Journal, Cilt 120, ss. 109239.
- Cesur, S., Oktar, F. N., Ekren, N., Kilic, O., Alkaya, D. B., Seyhan, S. A., & Gunduz, O., 2019, “Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application”, Journal of the Australian Ceramic Society, ss. 1- 11.
- Elsayed, M., Kothandaraman, A., Edirisinghe, M., & Huang, J., 2016, “Porous polymeric films from microbubbles generated using a T-junction microfluidic device”, Langmuir, Cilt 32, Sayı 50, ss. 13377-13385.
- Fernandez-Fernandez, A., Manchanda, R., & McGoron, A. J., 2011, “Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms”, Applied biochemistry and biotechnology, Cilt 165, Sayı 7-8, ss. 1628-1651.
- Garstecki, P., Gitlin, I., DiLuzio, W., Whitesides, G. M., Kumacheva, E., & Stone, H. A., 2004, “Formation of monodisperse bubbles in a microfluidic flow-focusing device”, Applied Physics Letters, Cilt 85, Sayı 13, ss. 2649-2651.
- Gunduz, O., Ahmad, Z., Stride, E., Tamerler, C., & Edirisinghe, M., 2012, “Bioinspired bubble design for particle generation”, Journal of The Royal Society Interface, Cilt 9, Sayı 67, ss. 389-395.
- Gunduz, O., Ahmad, Z., Stride, E., & Edirisinghe, M., 2013. “Continuous generation of ethyl cellulose drug delivery nanocarriers from microbubbles”. Pharmaceutical research, Cilt 30, Sayı 1, ss. 225-237.
- Jain, S., Hirst, D. G., & O'sullivan, J. M., 2012, “Gold nanoparticles as novel agents for cancer therapy”, The British journal of radiology, Cilt 85, Sayı 1010, ss. 101-113.
- Jiang, S., Liu, S., & Feng, W., 2011, “PVA hydrogel properties for biomedical application”, Journal of the
mechanical behavior of biomedical materials, Cilt 4, Sayı 7, ss. 1228-1233.
- Kucuk, I., Yilmaz, N. F., & Sinan, A., 2018, “Effects of junction angle and gas pressure on polymer nanosphere preparation from microbubbles bursted in a combined microfluidic device with thin capillaries”, Journal of Molecular Structure, Cilt 1173, ss. 422-427.
- Kumar, S., Anselmo, A. C., Banerjee, A., Zakrewsky, M., & Mitragotri, S., 2015, “Shape and size-dependent immune response to antigen-carrying nanoparticles”, Journal of Controlled Release, Cilt 220, ss. 141-148.
- Liu, D., Zhang, H., Fontana, F., Hirvonen, J. T., & Santos, H. A., 2017. “Microfluidic-assisted fabrication of carriers for controlled drug delivery”, Lab on a Chip, Cilt 17, Sayı 11, ss. 1856-1883.
- Martínez-Gómez, F., Guerrero, J., Matsuhiro, B., & Pavez, J., 2017, “In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels”, Carbohydrate polymers, Cilt 155, ss. 182-191.
- McEwan, C., Kamila, S., Owen, J., Nesbitt, H., Callan, B., Borden, M., McHale, A. P., 2016, “Combined sonodynamic and antimetabolite therapy for the improved treatment of pancreatic cancer using oxygen loaded microbubbles as a delivery vehicle”,Biomaterials, Cilt 80, ss. 20-32.
- Pancholi, K., Stride, E., & Edirisinghe, M., 2008. “Dynamics of bubble formation in highly viscous liquids”Langmuir, Cilt 24 Sayı 8, ss. 4388-4393.
- Parhizkar, M., Edirisinghe, M., & Stride, E., 2013, “Effect of operating conditions and liquid physical properties on the size of monodisperse microbubbles produced in a capillary embedded T- junction device”, Microfluidics and nanofluidics, Cilt 14, Sayı 5, ss. 797-808.
- Parhizkar, M., Edirisinghe, M., & Stride, E., 2015, “The effect of surfactant type and concentration on the size and stability of microbubbles produced in a capillary embedded T-junction device”, Rsc Advances, Cilt 5, Sayı 14, ss. 10751-10762.
- Peltonen, L., Valo, H., Kolakovic, R., Laaksonen, T., & Hirvonen, J., 2010, “Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles”, Expert opinion on drug delivery, Cilt 7, Sayı 6, ss. 705-719.
- Roberts, M. J., Bentley, M. D., & Harris, J. M., 2002, “Chemistry for peptide and protein PEGylation”, Advanced drug delivery reviews, Cilt 54, Sayı 4, ss. 459-476.
- Xu, R. X., Xu, S., Zuo, T., Huang, T. H., Shen, R., & Tweedle, M. F., 2011, “Drug-loaded biodegradable microspheres for image-guided combinatory epigenetic therapy in cells”, Journal of biomedical optics, Cilt 16, Sayı 2, ss. 020507.