FARKLI EĞİLME DONATISINA SAHİP ULTRA YÜKSEK PERFORMANSLI LİFLİ BETONARME KİRİŞLERDE ÇARPMA ETKİSİ
Year 2021,
, 280 - 291, 01.06.2021
Gamze Demirtaş
Naci Çağlar
,
Yusuf Sümer
Abstract
Ultra Yüksek Performanslı Lifli Beton (UYPLB) karakteristik basınç dayanımı 150-250 MPa ve çekme dayanımı 10-15 MPa civarlarında olan çelik, sentetik, vb. lifler ile güçlendirilmiş kompozit bir yapı malzemesidir. UYPLB birçok yapı elemanında, geleneksel betonlara göre çeşitli avantajlar sağlama potansiyeline sahiptir. Bu çalışmada, UYPLB ile üretilen betonarme kirişlerin çarpma yükleri etkisi altındaki davranışları nümerik olarak incelenmiştir. Çalışmanın ilk aşamasında çarpma yükü altında UYPLB ile üretilen betonarme kirişlerin nümerik olarak analizine imkân sağlayan bir sonlu eleman modeli geliştirilmiştir. Geliştirilen sonlu eleman modelinin doğrulanması literatürden seçilen deneysel çalışma sonuçları ile yapılmış ve modelin UYPLB ile üretilen betonarme kirişlerin çarpma yükleri etkisi altındaki davranışını başarıyla simüle edebildiği gösterilmiştir. Çalışmanın ikinci aşamasında ise doğrulanmış sonlu eleman modeli kullanılarak parametrik bir çalışma gerçekleştirilmiş ve elde edilen sonuçlar çarpma hızı ve donatı oranının UYPLB ile üretilen betonarme kirişlerin davranışı üzerinde önemli bir etkisi olduğunu göstermiştir.
References
- ABAQUS Documentation, 2018, Dassault Systèmes, 10 rue Marcel Dassault CS 40501 78946 Vélizy- Villacoublay Cedex, SE, France.
- AFGC (Association Francaise du Genil Civil) 2013, Ultra High Performance Fibre-Reinforced Concretes Recommendations, Fransa.
- Birtel, V., Mark, P., 2006, “Parameterised finite element modelling of RC beam shear failure”, In ABAQUS users’ conference, ss. 95-108.
- Chen, L., Graybeal, B. A., 2012, “Modeling Structural Performance of Ultra High Performance Concrete I- Girders”, Journal of Bridge Engineering, Cilt 17, Sayı 5, ss. 754-764.
- Curbach, M., Speck, K., 2008, “Ultra high performance concrete under biaxial compression”, In Ultra High Performance Concrete (UHPC): Proceedings of the Second International Symposium on Ultra High Performance Concrete, Kassel, Germany, Sayı 10, ss. 477-484.
- Demirtaş, G., Çağlar, N., Sümer, Y. (2018). Çarpma Etkisindeki UltraYüksek Performanslı Lifli Betonarme Kirişlerin Sonlu Elemanlar Analizi. Academic Perspective Procedia, 1 (1), 1126-1135. DOI: 10.33793/acperpro.01.01.180
- Demirtaş, G, 2019, Çarpma Etkisindeki Ultra Yüksek Performansli Lifli Betonarme Kirişlerin Sonlu Elemanlar Analizi, Yüksek Lisans Tezi, Sakarya Üniversitesi, Türkiye.
- Earij, A., Alfano, G., Cashell, K., Zhou, X., 2017, “Nonlinear three–dimensional finite–element modelling of reinforced–concrete beams: Computational challenges and experimental validation”, Engineering Failure Analysis, Sayı:82, ss. 92-115.
- Fujikake, K., Senga, T., Ueda, N., Ohno, T., Katagiri, M., 2006, “Study on impact response of reactive powder concrete beam and its analytical model”, Journal of advanced concrete technology, Sayı 4(1), ss. 99-108.
- Lu, Z. H., Zhao, Y. G., 2010, “Empirical Stress Strain Model for Unconfined High Strength Concrete under Uniaxial Compression”, Journal of Materials in Civil Engineering, Sayı 22(11), ss. 1181-1186.
- Lubliner, J., Oliver, J., Oller, S., Oñate, E., 1989, “A plastic-damage model for concrete”, International Journal of solids and structures, Sayı 25(3), ss. 299-326.
- Othman, H., Marzouk, H., 2016, “Impact response of ultra-high-performance reinforced concrete plates”, ACI Structural Journal, Sayı 113(6), ss. 1325-1334.
- Othman, H., Marzouk, H., 2017, “Finite Element Analysis of UHPFRC Plates under Impact Loads”, AFGC- ACI-fib-RILEM Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete, UHPFRC, ss. 337-346.
- Redaelli, D., Muttoni, A., 2007, “Tensile Behaviour of Reinforced Ultra-High Performance Fiber Reinforced Concrete Elements”, In fib Symposium, Dubrovnik, ss. 267-274.
- Singh, M., Sheikh, A. H., Ali, M. M., Visintin, P., Griffith, M. C., 2017, “Experimental and Numerical Study of The Flexural Behaviour of Ultra-High Performance Fibre Reinforced Concrete Beams”, Construction and Building Materials, Sayı 138, ss. 12–25.
- Sümer, Y., 2010, “FRP Elemanlarla Güçlendirilmiş Hasarlı Betonarme Kirişlerin Doğrusal Olmayan Sonlu Elemanlar Yöntemiyle Analizi”, Doktora Tezi, Sakarya Üniversitesi, Turkiye Wille, K., Kim, D. J., Naaman, A. E., 2011, “Strain-hardening UHP-FRC with low fiber contents. Materials and Structures”, Sayı 44(3), ss. 583-598.
- Yoo, D. Y., Banthia, N., 2017, “Mechanical and structural behaviors of ultra-high-performance fiber- reinforced concrete subjected to impact and blast”, Construction and building materials, Sayı 149, ss. 416-431.
- Yoo, D. Y., Banthia, N., Kim, S. W., Yoon, Y. S., 2015, “Response of ultra-high-performance fiber-reinforced concrete beams with continuous steel reinforcement subjected to low-velocity impact loading”, Composite Structures, Sayı 126, ss. 233-245.
- Yoo, D. Y., Banthia, N., Yoon, Y. S., 2017, “Impact Resistance of Reinforced Ultra-High-Performance Concrete Beams with Different Steel Fibers”, ACI Structural Journal, Sayı 114(1) ss.113-124.
Impact Effect on Ultra High Performance Fiber Reinforced Beams with Different Flexural Reinforcement
Year 2021,
, 280 - 291, 01.06.2021
Gamze Demirtaş
Naci Çağlar
,
Yusuf Sümer
Abstract
Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite structural material with fibers such as steel, synthetic, with a characteristic compressive strength 150-250 MPa and tensile strength around 10-15 MPa. UHPFRC has the potential to provide various advantages over conventional concrete in many structural elements. In this study, the response of reinforced concrete beams produced with UHPFRC subjected to impact load was analyzed numerically. In the first stage of the study, a nonlinear finite element model was developed to simulate the behavior of UHPFRC reinforced concrete beams under impact load. The verification of the developed finite element model was made with the experimental results selected from the literature and it was shown that the model is highly successful to capture the behavior of UHPFRC reinforced concrete beams under impact loads. In the second phase of the study, a parametric study performed by using the validated finite element model and the results exposed that the impact velocity and the reinforcement ratio have an important effect on the response of UHPFRC beams.
References
- ABAQUS Documentation, 2018, Dassault Systèmes, 10 rue Marcel Dassault CS 40501 78946 Vélizy- Villacoublay Cedex, SE, France.
- AFGC (Association Francaise du Genil Civil) 2013, Ultra High Performance Fibre-Reinforced Concretes Recommendations, Fransa.
- Birtel, V., Mark, P., 2006, “Parameterised finite element modelling of RC beam shear failure”, In ABAQUS users’ conference, ss. 95-108.
- Chen, L., Graybeal, B. A., 2012, “Modeling Structural Performance of Ultra High Performance Concrete I- Girders”, Journal of Bridge Engineering, Cilt 17, Sayı 5, ss. 754-764.
- Curbach, M., Speck, K., 2008, “Ultra high performance concrete under biaxial compression”, In Ultra High Performance Concrete (UHPC): Proceedings of the Second International Symposium on Ultra High Performance Concrete, Kassel, Germany, Sayı 10, ss. 477-484.
- Demirtaş, G., Çağlar, N., Sümer, Y. (2018). Çarpma Etkisindeki UltraYüksek Performanslı Lifli Betonarme Kirişlerin Sonlu Elemanlar Analizi. Academic Perspective Procedia, 1 (1), 1126-1135. DOI: 10.33793/acperpro.01.01.180
- Demirtaş, G, 2019, Çarpma Etkisindeki Ultra Yüksek Performansli Lifli Betonarme Kirişlerin Sonlu Elemanlar Analizi, Yüksek Lisans Tezi, Sakarya Üniversitesi, Türkiye.
- Earij, A., Alfano, G., Cashell, K., Zhou, X., 2017, “Nonlinear three–dimensional finite–element modelling of reinforced–concrete beams: Computational challenges and experimental validation”, Engineering Failure Analysis, Sayı:82, ss. 92-115.
- Fujikake, K., Senga, T., Ueda, N., Ohno, T., Katagiri, M., 2006, “Study on impact response of reactive powder concrete beam and its analytical model”, Journal of advanced concrete technology, Sayı 4(1), ss. 99-108.
- Lu, Z. H., Zhao, Y. G., 2010, “Empirical Stress Strain Model for Unconfined High Strength Concrete under Uniaxial Compression”, Journal of Materials in Civil Engineering, Sayı 22(11), ss. 1181-1186.
- Lubliner, J., Oliver, J., Oller, S., Oñate, E., 1989, “A plastic-damage model for concrete”, International Journal of solids and structures, Sayı 25(3), ss. 299-326.
- Othman, H., Marzouk, H., 2016, “Impact response of ultra-high-performance reinforced concrete plates”, ACI Structural Journal, Sayı 113(6), ss. 1325-1334.
- Othman, H., Marzouk, H., 2017, “Finite Element Analysis of UHPFRC Plates under Impact Loads”, AFGC- ACI-fib-RILEM Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete, UHPFRC, ss. 337-346.
- Redaelli, D., Muttoni, A., 2007, “Tensile Behaviour of Reinforced Ultra-High Performance Fiber Reinforced Concrete Elements”, In fib Symposium, Dubrovnik, ss. 267-274.
- Singh, M., Sheikh, A. H., Ali, M. M., Visintin, P., Griffith, M. C., 2017, “Experimental and Numerical Study of The Flexural Behaviour of Ultra-High Performance Fibre Reinforced Concrete Beams”, Construction and Building Materials, Sayı 138, ss. 12–25.
- Sümer, Y., 2010, “FRP Elemanlarla Güçlendirilmiş Hasarlı Betonarme Kirişlerin Doğrusal Olmayan Sonlu Elemanlar Yöntemiyle Analizi”, Doktora Tezi, Sakarya Üniversitesi, Turkiye Wille, K., Kim, D. J., Naaman, A. E., 2011, “Strain-hardening UHP-FRC with low fiber contents. Materials and Structures”, Sayı 44(3), ss. 583-598.
- Yoo, D. Y., Banthia, N., 2017, “Mechanical and structural behaviors of ultra-high-performance fiber- reinforced concrete subjected to impact and blast”, Construction and building materials, Sayı 149, ss. 416-431.
- Yoo, D. Y., Banthia, N., Kim, S. W., Yoon, Y. S., 2015, “Response of ultra-high-performance fiber-reinforced concrete beams with continuous steel reinforcement subjected to low-velocity impact loading”, Composite Structures, Sayı 126, ss. 233-245.
- Yoo, D. Y., Banthia, N., Yoon, Y. S., 2017, “Impact Resistance of Reinforced Ultra-High-Performance Concrete Beams with Different Steel Fibers”, ACI Structural Journal, Sayı 114(1) ss.113-124.