Research Article
BibTex RIS Cite

Sandviç Tasarımı İçerisindeki Termoelektrik Jeneratörde Elekrtrik Enerjisinin Analizi

Year 2020, , 76 - 91, 31.12.2020
https://doi.org/10.36306/konjes.822181

Abstract

Son zamanlarda enerjinin gittikçe artan öneminden dolayı, araştırmacılar ve sanayi, enerji sisteminin verimliliğini artırarak enerjiyi daha iyi yönetmek istemektedirler. Bu nedenle elektrik enerjisini sağlamak için alternatif enerji kaynaklarına yönelim başlamıştır. Alternatif enerji kaynaklarından ise yenilenebilir enerji kaynaklarına olan ilgi her geçen gün artmaktadır. Güneş, Rüzgâr ve Termal kaynaklar yenilenebilir enerji kaynaklarının öne çıkanlarıdır. Günümüzde termal kaynaklardan seracılık, balık yetiştirme, termal tesisler, şehir ısıtması ve elektrik üretimi gibi birçok alanda faydalanmaktayız. Günümüzde termal suyu kaynağından faydalandığımız yere taşırken, etrafına yaydığı ısıyı elektrik enerjisine dönüştürebileceğimiz bilinmektedir. Bu çalışmada yenilenebilir enerji kaynaklarından termal kaynaklar kullanılarak, elektrik üretiminde termal suyun taşındığı malzemenin türünün ve Termoelektrik Jeneratörün (TEG) yerleşim şeklinin farklı iki Termoelektrik Modülün (TEM) verimi üzerindeki etkisi incelenmiştir. Sıcak ve soğuk su Bakır, Alüminyum ve Pirinç malzemelerinden oluşturduğumuz sandviç bloklardan geçirilerek TEG’de üretilen güç üzerindeki analizi gerçekleştirilmiştir. TEG olarak da TEC1-12706 ve TEC1-12710 malzemeleri kullanılmıştır. Yapılan deneysel çalışmalar sonucunda termal suyun geçtiği malzemenin türünün ve sıcak/soğuk suyun sandviç plakalardan geçme sırasının hem TEC1-12706’nın hem de TEC1-12710’nun ürettiği güç üzerinde etkili olduğu görülmüştür.

References

  • Ağaçayak, A. C., Neşeli, S., & YalçınG, T. H. (2017). The Impact of Different Electric Connection Types in Thermoelectric Generator Modules on Power. International Journal of Engineering Research & Science (IJOER), 3, 2395-6992.
  • Ağaçayak, A. C., Terzioğlu, H., Neşeli, S., & Yalçin, G. (2019). Mathematical Modeling Of Thermoelectric Generator By Regression Analysis. Selçuk-Teknik Dergisi, 132-143.
  • Ağaçayak, A.C., Terzioğlu, Çimen, Neşeli, Yalçın, (2018). "The Effects of Speed and Flow Rate on Power in Thermoelectric Generators", International Journal of Intelligent Systems and Applications in Engineering, Vol.6, pp.65-71.
  • Akçay H. (2015). The conversion of heat lost in the exhaust and cooling system of a spark ignition engine fuelled with LPG to a usable energy via a TEJ module. M.Sc. Süleyman Demirel University, Isparta, Turkey.
  • Champier, D. (2017). Thermoelectric generators: A review of applications. Energy Conversion and Management, 140, 167-181.
  • Çimen, H., Ağaçayak, A. C., Neşeli, S., & Yalçin, G. (2017). Comparison of Two Different Peltiers Running as Thermoelectric Generator at Different Temperatures. Paper presented at the 2017 International Renewable and Sustainable Energy Conference (IRSEC).
  • Demir, M. E., & Dincer, I. (2017). Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery. Applied Thermal Engineering, 120, 694-707.
  • He, W., Wang, S., & Yue, L. (2017). High net power output analysis with changes in exhaust temperature in a thermoelectric generator system. Applied Energy, 196, 259-267.
  • Hossam A.G, C.A.Barry S, Derek S, Cole S, Thomas S, David N, Dominique P, Emmanuel B, (2017). Evaluation and optimization of thermoelectric generator network for waste heat utilization in nuclear power plants and non-nuclear energy applications. Annals of Nuclear Energy; 101: 454-464.
  • Kaya, A. Y. (2010). Experimental research of thermoelectric system that worked by the heat on exhaust gas. M.Sc. Süleyman Demirel University, Isparta, Turkey.
  • Khattab, N., & El Shenawy, E. (2006). Optimal operation of thermoelectric cooler driven by solar thermoelectric generator. Energy Conversion and Management, 47(4), 407-426.
  • Kim, T. Y., Negash, A., & Cho, G. (2017). Direct contact thermoelectric generator (DCTEG): A concept for removing the contact resistance between thermoelectric modules and heat source. Energy Conversion and Management, 142, 20-27.
  • Kushch, A. S., Bass, J. C., Ghamaty, S., & Eisner, N. (2001). Thermoelectric development at Hi-Z technology. Paper presented at the Proceedings ICT2001. 20 International Conference on Thermoelectrics (Cat. No. 01TH8589).
  • La Rocca, V., Morale, M., Peri, G., & Scaccianoce, G. (2017). A solar pond for feeding a thermoelectric generator or an organic Rankine cycle system. International Journal of Heat and Technology, 35(1), S435-S441.
  • Maneewan, S., Hirunlabh, J., Khedari, J., Zeghmati, B., & Teekasap, S. (2005). Heat gain reduction by means of thermoelectric roof solar collector. Solar Energy, 78(4), 495-503.
  • Meng, F., Chen, L., Feng, Y., & Xiong, B. (2017). Thermoelectric generator for industrial gas phase waste heat recovery. energy, 135, 83-90.
  • Montecucco, A., Siviter, J., & Knox, A. (2017). Combined heat and power system for stoves with thermoelectric generators. Applied Energy, 185, 1336-1342.
  • Omer, G., Yavuz, A. H., & Ahiska, R. (2017). Heat pipes thermoelectric solar collectors for energy applications. International Journal of Hydrogen Energy, 42(12), 8310-8313.
  • Serbülent G, Kemal A, (2009). Power generation using concentration solar collectors and thermoelectric generators. 5th International Advanced Technologies Symposium (IATS’09); 13-15 May 2009; Karabük, Turkey
  • Singh, R., Tundee, S., & Akbarzadeh, A. (2011). Electric power generation from solar pond using combined thermosyphon and thermoelectric modules. Solar Energy, 85(2), 371-378.
  • Sun, D., Shen, L., Yao, Y., Chen, H., Jin, S., & He, H. (2017). The real-time study of solar thermoelectric generator. Applied Thermal Engineering, 119, 347-359.
  • Terzioğlu, Neşeli &Yalçın, (2018). Termoelektrik Jeneratörler ve Kullanım Alanlarına Genel Bir Bakış. Mühendislik Alanında Akademik Çalışmalar, Editör: Prof. Dr. HATİPOĞLU Murat, Dr. Öğr. Üyesi Gündoğan Kadir, Basım sayısı:1, Sayfa Sayısı 160, ISBN:978-605-288-624-3
  • Terzioğlu, & Ağaçayak, (2018). Analysis of Thermoelectric Cooler Used to Produce Electrical Energy in Terms of Efficiency. Academic Studies In Engineering, Editör:Prof. Dr. Hatipoğlu Murat, Dr. Öğr. Üyesi Gündoğan Kadir, Basım sayısı:1, Sayfa Sayısı 134, ISBN:978-605-288-611-3
  • Terzioğlu H., (2020). Analysis of effect factors on thermoelectric generator using Taguchi method. Measurement, 149,1-10
  • Tie, S. F., & Tan, C. W. (2013). A review of energy sources and energy management system in electric vehicles. Renewable and sustainable energy reviews, 20, 82-102.
  • Tugay M. (2019). Getting optimum level in the generation of electrical energy by means of thermoelectric convertors using parabolic reflector having dinamics structure. M.Sc. Kırıkkale University, Kırıkkale, Turkey.
  • Yalçın, Selek, & Terzioğlu, (2016). "Termoelektrık Jeneratör ile Maksimum Enerji Elde Edilmesi için Levha Tasarımı" In UMYOS 5th Internatıonal Vocational School Symposium, Vol.1, pp.909-16. Prizren.

ANALYSIS OF ELECTRICAL ENERGY IN THERMOELECTRIC GENERATOR IN SANDWICH DESIGN

Year 2020, , 76 - 91, 31.12.2020
https://doi.org/10.36306/konjes.822181

Abstract

Researchers and industry are seeking to manage energy better by increasing the efficiency of the energy system because of the increasing importance of energy in recent years. For this reason, a shift towards alternative energy sources to provide electricity has begun. As for alternative energy sources, interest in renewable energy sources is increasing day by day. Solar, wind and thermal sources are the most prominent renewable energy sources. Today we use of thermal sources in greenhouse, fish breeding, thermal facilities, city heating and electricity production. Nowadays, it is known that when we move thermal water from the source to the place to be used, it can be converted into electrical energy by utilizing the heat it emits around it. In this study, the effects of the type of the material and the placement of the thermoelectric generator (TEG) on the efficiency of two Thermoelectric Modules (TEM) were investigated by using thermal sources from renewable energy sources. Hot and cold water was passed through the sandwich blocks which were made from Copper, Aluminum and Brass materials, and the power produced in TEG was analyzed. As TEG, TEC1-12706 and TEC1-12710 materials were used. As a result of experimental studies, it is observed that the type of the material that conveys thermal water and the order of transmission of hot/cold water through sandwich blocks have an effect on the power produced by both TEC1-12706 and TEC1-12710

References

  • Ağaçayak, A. C., Neşeli, S., & YalçınG, T. H. (2017). The Impact of Different Electric Connection Types in Thermoelectric Generator Modules on Power. International Journal of Engineering Research & Science (IJOER), 3, 2395-6992.
  • Ağaçayak, A. C., Terzioğlu, H., Neşeli, S., & Yalçin, G. (2019). Mathematical Modeling Of Thermoelectric Generator By Regression Analysis. Selçuk-Teknik Dergisi, 132-143.
  • Ağaçayak, A.C., Terzioğlu, Çimen, Neşeli, Yalçın, (2018). "The Effects of Speed and Flow Rate on Power in Thermoelectric Generators", International Journal of Intelligent Systems and Applications in Engineering, Vol.6, pp.65-71.
  • Akçay H. (2015). The conversion of heat lost in the exhaust and cooling system of a spark ignition engine fuelled with LPG to a usable energy via a TEJ module. M.Sc. Süleyman Demirel University, Isparta, Turkey.
  • Champier, D. (2017). Thermoelectric generators: A review of applications. Energy Conversion and Management, 140, 167-181.
  • Çimen, H., Ağaçayak, A. C., Neşeli, S., & Yalçin, G. (2017). Comparison of Two Different Peltiers Running as Thermoelectric Generator at Different Temperatures. Paper presented at the 2017 International Renewable and Sustainable Energy Conference (IRSEC).
  • Demir, M. E., & Dincer, I. (2017). Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery. Applied Thermal Engineering, 120, 694-707.
  • He, W., Wang, S., & Yue, L. (2017). High net power output analysis with changes in exhaust temperature in a thermoelectric generator system. Applied Energy, 196, 259-267.
  • Hossam A.G, C.A.Barry S, Derek S, Cole S, Thomas S, David N, Dominique P, Emmanuel B, (2017). Evaluation and optimization of thermoelectric generator network for waste heat utilization in nuclear power plants and non-nuclear energy applications. Annals of Nuclear Energy; 101: 454-464.
  • Kaya, A. Y. (2010). Experimental research of thermoelectric system that worked by the heat on exhaust gas. M.Sc. Süleyman Demirel University, Isparta, Turkey.
  • Khattab, N., & El Shenawy, E. (2006). Optimal operation of thermoelectric cooler driven by solar thermoelectric generator. Energy Conversion and Management, 47(4), 407-426.
  • Kim, T. Y., Negash, A., & Cho, G. (2017). Direct contact thermoelectric generator (DCTEG): A concept for removing the contact resistance between thermoelectric modules and heat source. Energy Conversion and Management, 142, 20-27.
  • Kushch, A. S., Bass, J. C., Ghamaty, S., & Eisner, N. (2001). Thermoelectric development at Hi-Z technology. Paper presented at the Proceedings ICT2001. 20 International Conference on Thermoelectrics (Cat. No. 01TH8589).
  • La Rocca, V., Morale, M., Peri, G., & Scaccianoce, G. (2017). A solar pond for feeding a thermoelectric generator or an organic Rankine cycle system. International Journal of Heat and Technology, 35(1), S435-S441.
  • Maneewan, S., Hirunlabh, J., Khedari, J., Zeghmati, B., & Teekasap, S. (2005). Heat gain reduction by means of thermoelectric roof solar collector. Solar Energy, 78(4), 495-503.
  • Meng, F., Chen, L., Feng, Y., & Xiong, B. (2017). Thermoelectric generator for industrial gas phase waste heat recovery. energy, 135, 83-90.
  • Montecucco, A., Siviter, J., & Knox, A. (2017). Combined heat and power system for stoves with thermoelectric generators. Applied Energy, 185, 1336-1342.
  • Omer, G., Yavuz, A. H., & Ahiska, R. (2017). Heat pipes thermoelectric solar collectors for energy applications. International Journal of Hydrogen Energy, 42(12), 8310-8313.
  • Serbülent G, Kemal A, (2009). Power generation using concentration solar collectors and thermoelectric generators. 5th International Advanced Technologies Symposium (IATS’09); 13-15 May 2009; Karabük, Turkey
  • Singh, R., Tundee, S., & Akbarzadeh, A. (2011). Electric power generation from solar pond using combined thermosyphon and thermoelectric modules. Solar Energy, 85(2), 371-378.
  • Sun, D., Shen, L., Yao, Y., Chen, H., Jin, S., & He, H. (2017). The real-time study of solar thermoelectric generator. Applied Thermal Engineering, 119, 347-359.
  • Terzioğlu, Neşeli &Yalçın, (2018). Termoelektrik Jeneratörler ve Kullanım Alanlarına Genel Bir Bakış. Mühendislik Alanında Akademik Çalışmalar, Editör: Prof. Dr. HATİPOĞLU Murat, Dr. Öğr. Üyesi Gündoğan Kadir, Basım sayısı:1, Sayfa Sayısı 160, ISBN:978-605-288-624-3
  • Terzioğlu, & Ağaçayak, (2018). Analysis of Thermoelectric Cooler Used to Produce Electrical Energy in Terms of Efficiency. Academic Studies In Engineering, Editör:Prof. Dr. Hatipoğlu Murat, Dr. Öğr. Üyesi Gündoğan Kadir, Basım sayısı:1, Sayfa Sayısı 134, ISBN:978-605-288-611-3
  • Terzioğlu H., (2020). Analysis of effect factors on thermoelectric generator using Taguchi method. Measurement, 149,1-10
  • Tie, S. F., & Tan, C. W. (2013). A review of energy sources and energy management system in electric vehicles. Renewable and sustainable energy reviews, 20, 82-102.
  • Tugay M. (2019). Getting optimum level in the generation of electrical energy by means of thermoelectric convertors using parabolic reflector having dinamics structure. M.Sc. Kırıkkale University, Kırıkkale, Turkey.
  • Yalçın, Selek, & Terzioğlu, (2016). "Termoelektrık Jeneratör ile Maksimum Enerji Elde Edilmesi için Levha Tasarımı" In UMYOS 5th Internatıonal Vocational School Symposium, Vol.1, pp.909-16. Prizren.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Hakan Terzioğlu 0000-0001-5928-8457

Abdullah Ağaçayak This is me

Publication Date December 31, 2020
Submission Date November 5, 2020
Acceptance Date December 23, 2020
Published in Issue Year 2020

Cite

IEEE H. Terzioğlu and A. Ağaçayak, “ANALYSIS OF ELECTRICAL ENERGY IN THERMOELECTRIC GENERATOR IN SANDWICH DESIGN”, KONJES, vol. 8, pp. 76–91, 2020, doi: 10.36306/konjes.822181.