Research Article
BibTex RIS Cite

BATMIŞ HİDROLİK SIÇRAMADA GERİ DÖNÜŞ BÖLGESİ UZUNLUĞUNUN YAPAY ZEKÂ YÖNTEMLERİYLE TAHMİNİ

Year 2021, , 606 - 620, 01.09.2021
https://doi.org/10.36306/konjes.879666

Abstract

Bu çalışmada, içerisinde kayar kapak bulunan bir laboratuvar kanalının mansabında meydana gelmiş batmış hidrolik sıçramanın geri dönüş bölgesinin uzunluğu deneysel olarak belirlenmiştir. Deneysel olarak kapak açıklığı, mansap su yüksekliği, froude sayıları kullanılarak farklı yapay zekâ yöntemleri ve Çoklu Doğrusal Regresyon (ÇDR) yöntemi ile batmış hidrolik sıçramada geri dönüş bölgesinin uzunluğu tahmin edilmiştir. Yapay zekâ yöntemleri olarak Yapay Sinir Ağları (YSA), Uyarlamalı Ağ Tabanlı Bulanık Mantık Çıkarım Sistemi (ANFIS) ve Genexpresyon Programlama (GEP) yöntemleri tercih edilmiştir. Yöntemlerin geri dönüş bölgesinin uzunluğunu tahmin etmedeki başarı performanslarını belirlemek için belirlilik katsayısı (R2), Ortalama Karesel Hata (OKH) ve Ortalama Mutlak Göreceli Hata (OMGH) parametreleri kullanılmıştır. Çalışma sonucunda, kapak açıklığı, mansap su yüksekliği ve froude sayısını girdi parametresi olarak kullanan YSA ve ANFIS yöntemlerinin sıçrama geri dönüş bölgesinin uzunluğunu belirlemede oldukça başarılı olduğu belirlenmiştir.

Supporting Institution

HÜBAP

Project Number

18195

Thanks

Bu çalışma Harran Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (HÜBAP) tarafından desteklenmiştir (Proje No:18195).

References

  • Abbaspour, A., Farsadizadeh, D., Ghorbanı, M. A., 2013, “Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming”, Water Science and Engineering, Cilt 6, Sayı 2, ss. 189-198.
  • Azimi, H., Bonakdari, H., Ebtehaj, I., Michelson, D. G., 2018, “A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed”, Neural Computing and Applications, Cilt 29, Sayı 6, ss. 249-258.
  • Banhatti, A. G., Hinge, G. A., 2014, “Artificial Neural Network Model for Control of Hydraulic Jump” CiiT, International Journal of Artificial Intelligent Systems and Machine Learning, Cilt 6, Sayı 3, ss. 81- 84.
  • Ferreira, C., 2001, “Gene expression programming: a new adaptive algorithm for solving problems”, Complex Systems, Cilt 13, Sayı 2, ss. 87–129.
  • Gümüş, V., Aköz, M. S., Kırkgöz, M. S., 2013, “Kapak mansabında batmış hidrolik sıçramanın deneysel ve sayısal modellenmesi”, İMO Teknik Dergi, Cilt 24, Sayı 2, ss. 6379-6397.
  • Houichi, L., Dechemi, N., Heddam, S., Achour, B., 2013, “An evaluation of ANN methods for estimating the lengths of hydraulic jumps in U-shaped channel”, Journal of Hydroinformatics, Cilt 15, Sayı 1, ss. 147-154.
  • Husain, D., Alhamid, A. A., Negm, A. A. M., 1994, “Length and depth of hydraulic jump in sloping channels”, Journal of Hydraulic Research, Cilt 32, Sayı 6, ss. 899-910.
  • Jang, J. S., 1993, “ANFIS: adaptive-network-based fuzzy inference system”, IEEE Transactions on Systems, Man, and Cybernetics, Cilt 23, Sayı 3, ss. 665-685.
  • Karbasi, M., Azamathulla, H. M., 2016, “GEP to predict characteristics of a hydraulic jump over a rough bed”, KSCE Journal of Civil Engineering, Cilt 20, Sayı 7, ss. 3006-3011.
  • Kisi, O., Shiri, J., & Nikoofar, B. 2012. “Forecasting daily lake levels using artificial intelligence approaches”, Computers & Geosciences, 41, 169-180.
  • Kumar, M., Kumar, S., Bidhu, S., 2019, “Determination of sequent depth of hydraulic jump over sloping floor with rounded and crushed aggregates using experimental and ANN model”, Water Supply, Cilt 19, Sayı 8, ss. 2240-2247.
  • Mahtabi, G., Satari, M. T., 2016, “Investigation of hydraulic jump characteristics in rough beds using M5 model tree”, Jordan J. Agric. Sci, Cilt 12, ss. 631-648.
  • Majidifard, H., Jahangiri, B., Rath, P., Contreras, L. U., Buttlar, W. G., Alavi, A. H., 2021, Developing a prediction model for rutting depth of asphalt mixtures using gene expression programming”, Construction and Building Materials, Cilt 267, 120543.
  • Marquardt, D. W., 1963, “An algorithm for least-squares estimation of nonlinear parameters”, Journal of the society for Industrial and Applied Mathematics, Cilt 11, Sayı 2, ss. 431-441.
  • Naseri, M., Othman, F., 2012, “Determination of the length of hydraulic jumps using artificial neural networks”, Advances in Engineering Software, Cilt 48, ss. 27-31.
  • Negm, A. M., 2009-January, “Modeling Of Hydraulic Jumps Formed At Drops Using ANNs”, 7th ISE & 8th HIC, Conception,Chile, January, ss. 1-10.
  • Negm, A. M., Shouman, M. A., 2002- April, “Artificial Neural Network model for submerged hydraulic jump over roughened floor”, In Proc. 2 nd Int. Conf. For Advanced Trends in Engineering (MICATE’2002), April, ss. 7-9.
  • Roushangar, K., Homayounfar, F., 2019, “Prediction characteristics of free and submerged hydraulic jumps on horizontal and sloping beds using SVM method”, KSCE Journal of Civil Engineering, Cilt 23, Sayı 11, ss. 4696-4709.
  • Wu, J. D., Hsu, C. C., Wu, G. Z, 2009, “Fault gear identification and classification using discrete wavelet transform and adaptive neuro-fuzzy inference”, Expert Systems with Applications, Cilt 36, Sayı 3, ss. 6244-6255.
  • Yeşiltaş, Y., 2018, “Yapay zeka yöntemleri ile GAP bölgesindeki aylık tava buharlaşma değerlerinin tahmin edilmesi”, Yüksek Lisans Tezi, Harran Üniversitesi, Fen Bilimleri Enstitüsü, Şanlıurfa.

Estimation of the Roller Length of Submerged Hydraulic Jumps using Artificial Intelligence Methods

Year 2021, , 606 - 620, 01.09.2021
https://doi.org/10.36306/konjes.879666

Abstract

In this study, the roller length of the submerged hydraulic jump that occurred in a downstream of the laboratory canal with a sluice gate is experimentally determined. Experimentally, the roller length of the submerged hydraulic jump is estimated by using artificial intelligence methods and Multiple Linear Regression (MLR) method using the gate opening height, tail water height and froude numbers. Artificial Neural Networks (ANN), Adaptive Network Based Fuzzy Inference System (ANFIS) and Genexpression Programming (GEP) methods have been preferred as artificial intelligence methods.
The coefficient of determination (R2), Mean Square Error (MSE) and Mean Absolute Relative Error (MARE) parameters are used to determine the success performance of methods in estimating the length of the roller zone. As a result of the study, it is determined that ANN and ANFIS methods, which use gate opening height, tail water height and froude number as input parameters, are quite successful in determining the roller length of the submerged hydraulic jump.

Project Number

18195

References

  • Abbaspour, A., Farsadizadeh, D., Ghorbanı, M. A., 2013, “Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming”, Water Science and Engineering, Cilt 6, Sayı 2, ss. 189-198.
  • Azimi, H., Bonakdari, H., Ebtehaj, I., Michelson, D. G., 2018, “A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed”, Neural Computing and Applications, Cilt 29, Sayı 6, ss. 249-258.
  • Banhatti, A. G., Hinge, G. A., 2014, “Artificial Neural Network Model for Control of Hydraulic Jump” CiiT, International Journal of Artificial Intelligent Systems and Machine Learning, Cilt 6, Sayı 3, ss. 81- 84.
  • Ferreira, C., 2001, “Gene expression programming: a new adaptive algorithm for solving problems”, Complex Systems, Cilt 13, Sayı 2, ss. 87–129.
  • Gümüş, V., Aköz, M. S., Kırkgöz, M. S., 2013, “Kapak mansabında batmış hidrolik sıçramanın deneysel ve sayısal modellenmesi”, İMO Teknik Dergi, Cilt 24, Sayı 2, ss. 6379-6397.
  • Houichi, L., Dechemi, N., Heddam, S., Achour, B., 2013, “An evaluation of ANN methods for estimating the lengths of hydraulic jumps in U-shaped channel”, Journal of Hydroinformatics, Cilt 15, Sayı 1, ss. 147-154.
  • Husain, D., Alhamid, A. A., Negm, A. A. M., 1994, “Length and depth of hydraulic jump in sloping channels”, Journal of Hydraulic Research, Cilt 32, Sayı 6, ss. 899-910.
  • Jang, J. S., 1993, “ANFIS: adaptive-network-based fuzzy inference system”, IEEE Transactions on Systems, Man, and Cybernetics, Cilt 23, Sayı 3, ss. 665-685.
  • Karbasi, M., Azamathulla, H. M., 2016, “GEP to predict characteristics of a hydraulic jump over a rough bed”, KSCE Journal of Civil Engineering, Cilt 20, Sayı 7, ss. 3006-3011.
  • Kisi, O., Shiri, J., & Nikoofar, B. 2012. “Forecasting daily lake levels using artificial intelligence approaches”, Computers & Geosciences, 41, 169-180.
  • Kumar, M., Kumar, S., Bidhu, S., 2019, “Determination of sequent depth of hydraulic jump over sloping floor with rounded and crushed aggregates using experimental and ANN model”, Water Supply, Cilt 19, Sayı 8, ss. 2240-2247.
  • Mahtabi, G., Satari, M. T., 2016, “Investigation of hydraulic jump characteristics in rough beds using M5 model tree”, Jordan J. Agric. Sci, Cilt 12, ss. 631-648.
  • Majidifard, H., Jahangiri, B., Rath, P., Contreras, L. U., Buttlar, W. G., Alavi, A. H., 2021, Developing a prediction model for rutting depth of asphalt mixtures using gene expression programming”, Construction and Building Materials, Cilt 267, 120543.
  • Marquardt, D. W., 1963, “An algorithm for least-squares estimation of nonlinear parameters”, Journal of the society for Industrial and Applied Mathematics, Cilt 11, Sayı 2, ss. 431-441.
  • Naseri, M., Othman, F., 2012, “Determination of the length of hydraulic jumps using artificial neural networks”, Advances in Engineering Software, Cilt 48, ss. 27-31.
  • Negm, A. M., 2009-January, “Modeling Of Hydraulic Jumps Formed At Drops Using ANNs”, 7th ISE & 8th HIC, Conception,Chile, January, ss. 1-10.
  • Negm, A. M., Shouman, M. A., 2002- April, “Artificial Neural Network model for submerged hydraulic jump over roughened floor”, In Proc. 2 nd Int. Conf. For Advanced Trends in Engineering (MICATE’2002), April, ss. 7-9.
  • Roushangar, K., Homayounfar, F., 2019, “Prediction characteristics of free and submerged hydraulic jumps on horizontal and sloping beds using SVM method”, KSCE Journal of Civil Engineering, Cilt 23, Sayı 11, ss. 4696-4709.
  • Wu, J. D., Hsu, C. C., Wu, G. Z, 2009, “Fault gear identification and classification using discrete wavelet transform and adaptive neuro-fuzzy inference”, Expert Systems with Applications, Cilt 36, Sayı 3, ss. 6244-6255.
  • Yeşiltaş, Y., 2018, “Yapay zeka yöntemleri ile GAP bölgesindeki aylık tava buharlaşma değerlerinin tahmin edilmesi”, Yüksek Lisans Tezi, Harran Üniversitesi, Fen Bilimleri Enstitüsü, Şanlıurfa.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Veysel Gümüş 0000-0003-2321-9526

İbrahim Mahmut Yoluk This is me 0000-0002-0444-0316

Oğuz Şimşek 0000-0001-6324-0229

Göksu Soydan 0000-0001-6469-2649

Project Number 18195
Publication Date September 1, 2021
Submission Date February 13, 2021
Acceptance Date May 11, 2021
Published in Issue Year 2021

Cite

IEEE V. Gümüş, İ. M. Yoluk, O. Şimşek, and G. Soydan, “BATMIŞ HİDROLİK SIÇRAMADA GERİ DÖNÜŞ BÖLGESİ UZUNLUĞUNUN YAPAY ZEKÂ YÖNTEMLERİYLE TAHMİNİ”, KONJES, vol. 9, no. 3, pp. 606–620, 2021, doi: 10.36306/konjes.879666.