Research Article
BibTex RIS Cite

Hidrotermal Olarak Sentezlenen Titanyum Dioksit Mikronaltı Tozları Üzerine Kalsinasyon Sıcaklığının Etkileri

Year 2021, , 676 - 685, 01.09.2021
https://doi.org/10.36306/konjes.915062

Abstract

Bu çalışma, titanyum dioksit (TiO2) mikronaltı tozların titanyum tetraizopropoksit başlangıç malzemesinden, hidrotermal yöntem ve ardından yapılan kalsinasyon ile sentezlenme prosedürünü incelemektedir. Hidrotermal sentez sonrası yapılan kalsinasyon işleminin, 200 °C ‘den 800 °C’ye kadar değişen sıcaklıklarda uygulanması ile, bu sıcaklıkların elde edilen tozların kristal fazı, morfolojisi ve partikül boyutu üzerindeki etkileri araştırılmıştır. Kalsinasyon işlemini takiben, elde edilen tozlar çeşitli karakterizasyon teknikleri kullanılarak incelenmiştir. Morfolojik analiz sonuçlarına göre mikronaltı tozların kristal yapısı artan kalsinasyon sıcaklığından etkilenmiştir. Anataz ve rutil faza sahip TiO2 mikronaltı tozlar, sırasıyla iki modlu ve tek modlu partikül boyut dağılımı göstermişlerdir. Ayrıca, kalsinasyon sıcaklığı arttıkça sentezlenen mikronaltı tozların partikül boyutları azalırken, kristalit boyutları artmıştır. Faz analizi sonuçları, tetragonal yapıda anataz ve rutil faza sahip TiO2 mikronaltı tozları ortaya çıkarmıştır. Özellikle, anatazdan rutil faza dönüşüm düşük sıcaklıklarda gerçekleştirilmiştir.

References

  • Andersson, M., Österlund, L., Ljungstroem, S., Palmqvist, A., 2002, “Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol“, The Journal of Physical Chemistry B, 106(41), p. 10674-10679.
  • Ayllon, J., Figueras, A., Garelik, S., Spirkova, L., Durand, J., Cot, L., 1999, “Preparation of TiO2 powder using titanium tetraisopropoxide decomposition in a plasma enhanced chemical vapor deposition (PECVD) reactor“, Journal of Materials Science Letters, 1999. 18(16): p. 1319-1321.
  • Benkstein, K.D., Semancik, S., 2006, “Mesoporous nanoparticle TiO2 thin films for conductometric gas sensing on microhotplate platforms“, Sensors and Actuators B: Chemical, 113(1): p. 445-453.
  • Chae, S. Y., Park, M. K., Lee, S. K., Kim, T. Y., Kim, S. K., Lee, W. I., 2003, “Preparation of size controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films“, Chemistry of Materials, 15(17), ): p. 445-453.
  • Chen, Y.-F., Lee, C. Y., Yeng, M. Y., & Chiu, H. T., 2003, “The effect of calcination temperature on the crystallinity of TiO2 nanopowders“, Journal of Crystal Growth, 247(3-4): p. 363-370.
  • Chen, X., Mao, S.S., 2007, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications“, Chemical reviews, 107(7): p. 2891-2959.
  • Cheong, Y.L., Yam, F.K., Chin, I.K., Hassan, Z., 2013, “X-ray analysis of nanoporous TiO2 synthesized by electrochemical anodization”, Superlattices Microstruct., 64: p. 34–43.
  • Corradi, A.B., Bondioli, F., Focher, B., Ferrari, A. M., Grippo, C., Mariani, E., & Villa, C., 2005, “Conventional and microwave‐hydrothermal synthesis of TiO2 nanopowders“, Journal of the American Ceramic Society, 88(9): p. 2639-2641.
  • Ding, K., Miao, Z., Hu, B., An, G., Sun, Z., Han, B., & Liu, Z., 2010, “Study on the Anatase to Rutile Phase Transformation and Controlled Synthesis of Rutile Nanocrystals with the Assistance of Ionic Liquid“, Langmuir, 2010. 26(12): p. 10294–10302.
  • Duman, Ş., Bulut, B., Ozkal, B., 2020, “Antibacterial and Optical Properties of Mn Doped ZnO Nanopowders Synthesized via Spray Drying and Subsequent Thermal Decomposition”, Çukurova University Journal of the Faculty of Engineering and Architecture, 35(4), p. 1073-1081.
  • Feng, P., Gao, C., Shuai, C., Peng, S., 2015, “Toughening and strengthening mechanisms of porous akermanite scaffolds reinforced with nano-titania“, RSC advances, 5(5), p. 3498-3507.
  • Hashimoto, K., Irie H., Fujishima, A., 2005, “TiO2 photocatalysis: a historical overview and future prospects“, Japanese Journal of Applied Physics, 44(12R): p. 8269.
  • Hird, M., 1976, “Transmission of ultraviolet light by films containing titanium pigments—applications in uv curing“, Pigment & Resin Technology.
  • Li, H., Duan, X., Liu, G., Jia, X., Liu, X., 2008, “Morphology controllable synthesis of TiO2 by facile hydrothermal process“, Materials Letters, 62(24): p. 4035-4037.
  • Manjunath, K., Yadav, L. S. R., Jayalakshmi, T., Reddy, V., Rajanaika, H., Nagaraju, G., 2018, Ionic liquid assisted hydrothermal synthesis of TiO2 nanoparticles: photocatalytic and antibacterial activity. Journal of Materials Research and Technology, 7(1): p. 7-13.
  • McCormick, J.R., J. R., Zhao, B., Rykov, S. A., Wang, H., & Chen, J. G., 2004. “Thermal stability of flame- synthesized anatase TiO2 nanoparticles“, The Journal of Physical Chemistry B, 108(45): p. 17398- 17402.
  • Mioduska, J., Zielińska-Jurek, A., Janczarek, M., & Hupka, J., 2016. “The Effect of Calcination Temperature on Structure and Photocatalytic Properties of WO3/TiO2 Nanocomposites” Journal of Nanomaterials, vol. 2016, Article ID 3145912, 8 pages. https://doi.org/10.1155/2016/3145912
  • Nalwa, H.S., 2000, Handbook of nanostructrured Materials and Nanotechnology ,Vol 2: Spectroscopy and Theory", Academic Press, p. 155-167.
  • Pelizzetti, E., C. Minero, 1993, “Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles“, Electrochimica acta, 38(1): p. 47-55.
  • Phromma, S., T. Wutikhun, P. Kasamechonchung, T. Eksangsri, C. Sapcharoenkun, 2020. “Effect of Calcination Temperature on Photocatalytic Activity of Synthesized TiO2 Nanoparticles via Wet Ball Milling Sol‐Gel Method “, Applied Science, 10(3): p. 993-1006.
  • Rao, N.N., S. Dube, 1996, “Photocatalytic degradation of mixed surfactants and some commercial soap/detergent products using suspended TiO2 catalysts“, Journal of Molecular Catalysis A: Chemical, 104(3): p. L197-L199.
  • Tan, Z., K. Sato, S. Ohara, 2015, “Synthesis of layered nanostructured TiO2 by hydrothermal method“, Advanced Powder Technology, 26(1): p. 296-302.
  • Tatar, C., Bagci, D., Kaygili, O., 2016, "The effects of high amounts of Al and Zn on the structural properties of hydroxyapatite prepared by sol-gel method", J. Ceram. Process. Res., 17: p. 426–429.
  • Tomić, N., Grujić-Brojčin, M., Finčur, N., Abramović, B., Simović, B., Krstić, J., Šćepanović, M., 2015, “Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route“, Materials Chemistry and Physics, 163, p. 518-528.
  • Venkateswarlu, K., Chandra Bose, A., Rameshbabu, N., 2010, "X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis", Phys. B, 405: p. 4256–4261.
  • Yang, J., Mei, S., Ferreira J., 2001, “Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols“, Materials Science and Engineering: C, 15(1-2): p. 183-185.
  • Zheng, L., Xu, M., Xu, T., 2000, “TiO2−x thin films as oxygen sensor“, Sensors and Actuators B: Chemical, 66(1-3): p. 28-30.
  • Wu, H., Fan, J., Liu, E., Hu, X., Ma, Y., Fan, X., Tang, C., 2015, “Facile hydrothermal synthesis of TiO2 nanospindles-reduced graphene oxide composite with a enhanced photocatalytic activity“ Journal of Alloys and Compounds, 623: p. 298-303.

EFFECTS OF CALCINATION TEMPERATURE ON HYDROTHERMALLY SYNTHESIZED TITANIUM DIOXIDE SUBMICRON POWDERS

Year 2021, , 676 - 685, 01.09.2021
https://doi.org/10.36306/konjes.915062

Abstract

This study examines the synthesis procedure of titanium dioxide (TiO2) submicron powders from titanium (IV) isopropoxide initial by combining the hydrothermal method and subsequent calcination. Various calcination temperatures changing from 200 °C to 800 °C were applied after hydrothermal synthesis to understand the effects on the crystalline phase, particle size, and morphology of the powders. Following the calcination procedure, the properties of synthesized powders were assessed by using different characterization techniques. According to the results of morphological analysis, the crystalline structure of submicron powders was affected by increasing calcination temperature. Anatase and rutile phases of TiO2 submicron powders displayed unimodal particle size distribution, respectively.
Furthermore, the particle sizes of synthesized TiO2 submicron powders decreased by the increasing calcination temperature, while the crystallite sizes increased. The results of phase analysis revealed that TiO2 submicron powders have tetragonal structure anatase and rutile phase. In particular, anatase to rutile phase transformation was carried out at low temperatures.

References

  • Andersson, M., Österlund, L., Ljungstroem, S., Palmqvist, A., 2002, “Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol“, The Journal of Physical Chemistry B, 106(41), p. 10674-10679.
  • Ayllon, J., Figueras, A., Garelik, S., Spirkova, L., Durand, J., Cot, L., 1999, “Preparation of TiO2 powder using titanium tetraisopropoxide decomposition in a plasma enhanced chemical vapor deposition (PECVD) reactor“, Journal of Materials Science Letters, 1999. 18(16): p. 1319-1321.
  • Benkstein, K.D., Semancik, S., 2006, “Mesoporous nanoparticle TiO2 thin films for conductometric gas sensing on microhotplate platforms“, Sensors and Actuators B: Chemical, 113(1): p. 445-453.
  • Chae, S. Y., Park, M. K., Lee, S. K., Kim, T. Y., Kim, S. K., Lee, W. I., 2003, “Preparation of size controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films“, Chemistry of Materials, 15(17), ): p. 445-453.
  • Chen, Y.-F., Lee, C. Y., Yeng, M. Y., & Chiu, H. T., 2003, “The effect of calcination temperature on the crystallinity of TiO2 nanopowders“, Journal of Crystal Growth, 247(3-4): p. 363-370.
  • Chen, X., Mao, S.S., 2007, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications“, Chemical reviews, 107(7): p. 2891-2959.
  • Cheong, Y.L., Yam, F.K., Chin, I.K., Hassan, Z., 2013, “X-ray analysis of nanoporous TiO2 synthesized by electrochemical anodization”, Superlattices Microstruct., 64: p. 34–43.
  • Corradi, A.B., Bondioli, F., Focher, B., Ferrari, A. M., Grippo, C., Mariani, E., & Villa, C., 2005, “Conventional and microwave‐hydrothermal synthesis of TiO2 nanopowders“, Journal of the American Ceramic Society, 88(9): p. 2639-2641.
  • Ding, K., Miao, Z., Hu, B., An, G., Sun, Z., Han, B., & Liu, Z., 2010, “Study on the Anatase to Rutile Phase Transformation and Controlled Synthesis of Rutile Nanocrystals with the Assistance of Ionic Liquid“, Langmuir, 2010. 26(12): p. 10294–10302.
  • Duman, Ş., Bulut, B., Ozkal, B., 2020, “Antibacterial and Optical Properties of Mn Doped ZnO Nanopowders Synthesized via Spray Drying and Subsequent Thermal Decomposition”, Çukurova University Journal of the Faculty of Engineering and Architecture, 35(4), p. 1073-1081.
  • Feng, P., Gao, C., Shuai, C., Peng, S., 2015, “Toughening and strengthening mechanisms of porous akermanite scaffolds reinforced with nano-titania“, RSC advances, 5(5), p. 3498-3507.
  • Hashimoto, K., Irie H., Fujishima, A., 2005, “TiO2 photocatalysis: a historical overview and future prospects“, Japanese Journal of Applied Physics, 44(12R): p. 8269.
  • Hird, M., 1976, “Transmission of ultraviolet light by films containing titanium pigments—applications in uv curing“, Pigment & Resin Technology.
  • Li, H., Duan, X., Liu, G., Jia, X., Liu, X., 2008, “Morphology controllable synthesis of TiO2 by facile hydrothermal process“, Materials Letters, 62(24): p. 4035-4037.
  • Manjunath, K., Yadav, L. S. R., Jayalakshmi, T., Reddy, V., Rajanaika, H., Nagaraju, G., 2018, Ionic liquid assisted hydrothermal synthesis of TiO2 nanoparticles: photocatalytic and antibacterial activity. Journal of Materials Research and Technology, 7(1): p. 7-13.
  • McCormick, J.R., J. R., Zhao, B., Rykov, S. A., Wang, H., & Chen, J. G., 2004. “Thermal stability of flame- synthesized anatase TiO2 nanoparticles“, The Journal of Physical Chemistry B, 108(45): p. 17398- 17402.
  • Mioduska, J., Zielińska-Jurek, A., Janczarek, M., & Hupka, J., 2016. “The Effect of Calcination Temperature on Structure and Photocatalytic Properties of WO3/TiO2 Nanocomposites” Journal of Nanomaterials, vol. 2016, Article ID 3145912, 8 pages. https://doi.org/10.1155/2016/3145912
  • Nalwa, H.S., 2000, Handbook of nanostructrured Materials and Nanotechnology ,Vol 2: Spectroscopy and Theory", Academic Press, p. 155-167.
  • Pelizzetti, E., C. Minero, 1993, “Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles“, Electrochimica acta, 38(1): p. 47-55.
  • Phromma, S., T. Wutikhun, P. Kasamechonchung, T. Eksangsri, C. Sapcharoenkun, 2020. “Effect of Calcination Temperature on Photocatalytic Activity of Synthesized TiO2 Nanoparticles via Wet Ball Milling Sol‐Gel Method “, Applied Science, 10(3): p. 993-1006.
  • Rao, N.N., S. Dube, 1996, “Photocatalytic degradation of mixed surfactants and some commercial soap/detergent products using suspended TiO2 catalysts“, Journal of Molecular Catalysis A: Chemical, 104(3): p. L197-L199.
  • Tan, Z., K. Sato, S. Ohara, 2015, “Synthesis of layered nanostructured TiO2 by hydrothermal method“, Advanced Powder Technology, 26(1): p. 296-302.
  • Tatar, C., Bagci, D., Kaygili, O., 2016, "The effects of high amounts of Al and Zn on the structural properties of hydroxyapatite prepared by sol-gel method", J. Ceram. Process. Res., 17: p. 426–429.
  • Tomić, N., Grujić-Brojčin, M., Finčur, N., Abramović, B., Simović, B., Krstić, J., Šćepanović, M., 2015, “Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route“, Materials Chemistry and Physics, 163, p. 518-528.
  • Venkateswarlu, K., Chandra Bose, A., Rameshbabu, N., 2010, "X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis", Phys. B, 405: p. 4256–4261.
  • Yang, J., Mei, S., Ferreira J., 2001, “Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols“, Materials Science and Engineering: C, 15(1-2): p. 183-185.
  • Zheng, L., Xu, M., Xu, T., 2000, “TiO2−x thin films as oxygen sensor“, Sensors and Actuators B: Chemical, 66(1-3): p. 28-30.
  • Wu, H., Fan, J., Liu, E., Hu, X., Ma, Y., Fan, X., Tang, C., 2015, “Facile hydrothermal synthesis of TiO2 nanospindles-reduced graphene oxide composite with a enhanced photocatalytic activity“ Journal of Alloys and Compounds, 623: p. 298-303.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Büşra Bulut 0000-0002-9946-6729

Şeyma Duman 0000-0002-6685-5656

Publication Date September 1, 2021
Submission Date April 13, 2021
Acceptance Date June 30, 2021
Published in Issue Year 2021

Cite

IEEE B. Bulut and Ş. Duman, “EFFECTS OF CALCINATION TEMPERATURE ON HYDROTHERMALLY SYNTHESIZED TITANIUM DIOXIDE SUBMICRON POWDERS”, KONJES, vol. 9, no. 3, pp. 676–685, 2021, doi: 10.36306/konjes.915062.