Research Article
BibTex RIS Cite

Production and Characterization of UHMWPE - HAp Composites for HIP Prosthesis

Year 2021, , 1013 - 1024, 04.12.2021
https://doi.org/10.36306/konjes.927409

Abstract

Most of the wear problems occur in hip prostheses because of long-term use in the liner (socket) part. In this study, the aim was to develop the acetabular liner part of total hip replacement implants. For this purpose, UHMWPE-HAp (hydroxyapatite) composites have been developed by reinforcing UHMWPE, which is used as hip prosthesis acetabular liner, by biomimetic HAp powders at a ratio of 1, 2, and 3% by weight. The morphology of the samples was examined by SEM. SEM-EDS was used for elemental analysis. Phase analysis was carried out by XRD technique. According to the experimental results, HAp addition was detected when the reinforcement level was at least 2%. Hardness analyses were performed by Vickers indentation technique, and the highest hardness value of 5.28HV was obtained at 2% HAp reinforcement. All additive levels contributed positively to hardness values. The melting temperatures of both the UHMWPE and the UHMWPE-HAp composites were determined to be approximately 140 °C by DSC analysis.

References

  • Annas B., A.,et al.. 2018, “Tribological investigations of UHMWPE nanocomposites reinforced with three different organo-modified clays”. Polymer Composites, Vol. 39, No: 7, pp. 2224–31.
  • Antônio E., C., M., et al. 2016, “Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces”. Applied Surface Science, Vol. 370, pp. 459–68.
  • Balani, K., et al. 2014, “Biosurfaces: Amaterials Science and Engineering Perspective”, http://www.ncbi.nlm.nih.gov/pubmed/17343486.
  • Balasundaram, G., et al. 2006,“ Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD”. Biomaterials, Vol 27, No: 14, pp. 2798–805.
  • Çelebi Efe, G., et al. 2021, “Characterization of UHMWPE- HAp coating produced by dip coating method on Ti6Al4V alloy”. Surface and Coatings Technology, Vol. 418, pp. 127091.
  • Dastjerdi, R., ve Montazer, M., 2010, “Colloids and Surfaces B : Biointerfaces A review on the application of inorganic nano-structured materials in the modification of textiles : Focus on anti-microbial properties”. Colloids and Surfaces B: Biointerfaces, Vol. 79, No: 1, pp. 5–18.
  • Demirel, B., et al. 2011, “Crystallization Behavior of PET Materials”. BAÜ Fen Bil. Enst. Dergisi Cilt, Vol. 13, No:1, pp. 26–35.
  • Edward, B., et al. 2020, “Threshold for Computer- and Robot-Assisted Knee and Hip Replacements in the English National Health Service”. Value in Health, Vol. 23, No:6, pp. 719–26.
  • Gaot, P., Mackley M. R., 1992, Surface treatment of ultra high molecular weight polyethylene to enhance adhesion and conductivity properties*. Vol. 33, No: 19, pp. 4075–80.
  • Gong, S., et.al., 2008, “Zirconium complexes with versatile b -diketiminate ligands : Synthesis , structure , and ethylene polymerization”. Journal of Organometallic Chemistry, Vol. 693, No:23, pp. 3509–18.
  • Hussain, O., 2021, “Tribological performance of biomedical grade UHMWPE/nano-Al2O3/Vitamin-C hybrid composite for cartilage replacements”. Materials Letters, Vol. 291, Elsevier B.V., pp. 129515.
  • Kang, X.,, 2016, “Mechanical properties study of micro- and nano-hydroxyapatite reinforced ultrahigh molecular weight polyethylene composites”. Journal of Applied Polymer Science, Vol. 133, No:3,
  • Kilgour, Ã, A., Elfick, A., 2009, “Tribology International Influence of crosslinked polyethylene structure on wear of joint replacements”. Tribiology International, Vol. 42, No:11–12, Elsevier, pp. 1582–94.
  • Kong, Y., Hay, J. N., 2002, The measurement of the crystallinity of polymers by DSC. Vol. 43, pp. 3873–78.
  • Macuvele, D.L. P., et al. 2017, “Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review”. Materials Science and Engineering C, Vol. 76, pp. 1248–62.
  • Mirsalehi, S. A., et al. 2015 “Tensile and biocompatibility properties of synthesized nano-hydroxyapatite reinforced ultrahigh molecular weight polyethylene nanocomposite”. Journal of Composite Materials, Vol. 50, No:13, pp. 1725–37.
  • Nadzadi, M.E., et al. 2002, “Effects of acetabular component orientation on dislocation propensity for small-head-size total hip arthroplasty”. Clinical Biomechanics,Vol. 17, No:1, pp. 32–40.
  • Norton, K.A., et al. 2015, “Heterogeneity of chemokine cell-surface receptor expression in triple-negative breast cancer”. American Journal of Cancer Research, Vol. 5, No:4, pp. 1295–307.
  • Pang, W., et al. 2015, “Mechanical and thermal properties of graphene oxide/ultrahigh molecular weight polyethylene nanocomposites”. RSC Advances, Vol. 5, No:77, Royal Society of Chemistry, pp. 63063–72.
  • Peng C.B., et al. 2015, “Optimization on wear performance of UHMWPE composites using response surface methodology”. Tribology International, Vol. 88, pp. 252–62.
  • Pylypchuk, I. V., et al. 2016, “Formation of biomimetic hydroxyapatite coatings on the surface of titanium and Ti-containing alloys”. Surface Chemistry of Nanobiomaterials,pp. 193–229,
  • Ruggiero, A., et al. 2020, “In silico total hip replacement wear testing in the framework of ISO 14242-3 accounting for mixed elasto-hydrodynamic lubrication effects”. Wear,Vol. 460–461.
  • Sadat-Shojai, M., et al. 2013, “Synthesis methods for nanosized hydroxyapatite indiverse structures”. Acta Biom aterialia, Vol. 9, pp. 7591–621.
  • Salari, M., et al. 2019, “Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement”. Journal of Materials Science, Vol. 54, No:5, pp. 4259–76.
  • Shahemi, N., et al. 2018, “Long-term wear failure analysis of uhmwpe acetabular cup in total hip replacement”. Journal of the Mechanical Behavior of Biomedical Materials, Vol. 87, pp. 1–9.
  • Slouf M.,2012,Monitoring and minimization of UHMWPE wear in total joint replacements. Sui, G., et al., 2009, Structure , mechanical properties and friction behavior of UHMWPE / HDPE / carbon nanofibers. Vol. 115, pp. 404–12.
  • Toh, S. M. S., et al. 2021,“ Computational method for bearing surface wear prediction in total hip replacements”. Journal of the Mechanical Behavior of Biomedical Materials, Vol. 119, pp. 104507.
  • Turell, M. B, Anuj B., 2004, “A study of the nanostructure and tensile properties of ultra-high molecular weight polyethylene”. Biomaterials, Vol. 25, No:17, pp. 3389–98.
  • Ursavaş, F. ., Yaradılmış Y. U., 2020, “Relationship Between Pain Beliefs and Postoperative Pain Outcomes After Total Knee and Hip Replacement Surgery”. Journal of Perianesthesia Nursing, W.B. Saunders
  • Wang, H., et.al, 2016, “Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing”. Radiation Physics and Chemistry, Vol. 125, pp. 41–49,
  • Wei, He,. Benson, R., 2011, “10 Polymeric Biomaterials”. Applied Plastics Engineering Handbook,
  • Xie, X. L., et al. 2003, Wear performance of ultrahigh molecular weight polyethylene / quartz composites. Vol. 24, pp. 1889–96.
  • Yadav, A., et al., 2021, “YouTube – An unreliable source of information for Total hip replacement”. Journal of Clinical Orthopaedics and Trauma, Vol. 13, pp. 82–84.
  • Yuezhen, B., et al. 2001, "Ultra-drawing of low molecular weight polyethylene Ð ultra-high molecular weight polyethylene blend ® lms prepared by gelation / crystallization from semi-dilute solutions". Vol. 42, pp. 8125–35.

KALÇA PROTEZİ İÇİN UHMWPE – HAp KOMPOZİTLERİNİN ÜRETİMİ VE KARAKTERİZASYONU

Year 2021, , 1013 - 1024, 04.12.2021
https://doi.org/10.36306/konjes.927409

Abstract

Uzun süreli kullanım sonucunda kalça protezlerinde meydana gelen aşınma problemlerinin çoğu liner (yuva) kısmında gerçekleşmektedir. Bu çalışmada total kalça protez implantlarının asetabuler liner parçasının (kalça eklemi yuvası) geliştirilmesi hedeflenmiştir. Bu amaçla kalça protezi asetabuler liner olarak kullanılan Ultra Yüksek Molekül Ağırlıklı Polietilene (UHMWPE) ağırlıkça %1, 2 ve 3 oranında hidroksiapatit (HAp) tozları ilave edilerek UHMWPE-HAp toz karışımları hazırlanmıştır. Hazırlanan toz karışımları 200 °C’de 30 dakika boyunca 1 ton yük altında sıcak preslenerek UHMWPE-HAp kompozitleri üretilmiştir. Kompozit numunelerin morfolojisi SEM ile incelenmiş, elementel analiz için SEM-EDS kullanılmıştır. Faz analizi XRD ile gerçekleştirilmiştir. XRD analiz sonuçlarına göre takviye artışının %2’ye ulaşması ile HAp takviyesinin varlığı belirlenmiştir. Kompozitlerin kırık yüzey incelemelerinde HAp partiküllerinin matris içerisinde homojen olarak dağıldığı görülmüştür. Sertlik analizleri Vickers indentasyon tekniği ile gerçekleştirilmiş olup; en yüksek sertlik değeri %2 HAp takviyeli UHMWPE-HAp kompozitinde 5,28HV olarak elde edilmiştir. Tüm katkı oranları, kompozitin sertlik değerlerinde artışa neden olmuştur. DSC analizi ile hem UHMWPE numunesinin hem de UHMWPE kompozitlerinin ergime sıcaklıkları yaklaşık 140 C olarak belirlenmiştir.

References

  • Annas B., A.,et al.. 2018, “Tribological investigations of UHMWPE nanocomposites reinforced with three different organo-modified clays”. Polymer Composites, Vol. 39, No: 7, pp. 2224–31.
  • Antônio E., C., M., et al. 2016, “Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces”. Applied Surface Science, Vol. 370, pp. 459–68.
  • Balani, K., et al. 2014, “Biosurfaces: Amaterials Science and Engineering Perspective”, http://www.ncbi.nlm.nih.gov/pubmed/17343486.
  • Balasundaram, G., et al. 2006,“ Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD”. Biomaterials, Vol 27, No: 14, pp. 2798–805.
  • Çelebi Efe, G., et al. 2021, “Characterization of UHMWPE- HAp coating produced by dip coating method on Ti6Al4V alloy”. Surface and Coatings Technology, Vol. 418, pp. 127091.
  • Dastjerdi, R., ve Montazer, M., 2010, “Colloids and Surfaces B : Biointerfaces A review on the application of inorganic nano-structured materials in the modification of textiles : Focus on anti-microbial properties”. Colloids and Surfaces B: Biointerfaces, Vol. 79, No: 1, pp. 5–18.
  • Demirel, B., et al. 2011, “Crystallization Behavior of PET Materials”. BAÜ Fen Bil. Enst. Dergisi Cilt, Vol. 13, No:1, pp. 26–35.
  • Edward, B., et al. 2020, “Threshold for Computer- and Robot-Assisted Knee and Hip Replacements in the English National Health Service”. Value in Health, Vol. 23, No:6, pp. 719–26.
  • Gaot, P., Mackley M. R., 1992, Surface treatment of ultra high molecular weight polyethylene to enhance adhesion and conductivity properties*. Vol. 33, No: 19, pp. 4075–80.
  • Gong, S., et.al., 2008, “Zirconium complexes with versatile b -diketiminate ligands : Synthesis , structure , and ethylene polymerization”. Journal of Organometallic Chemistry, Vol. 693, No:23, pp. 3509–18.
  • Hussain, O., 2021, “Tribological performance of biomedical grade UHMWPE/nano-Al2O3/Vitamin-C hybrid composite for cartilage replacements”. Materials Letters, Vol. 291, Elsevier B.V., pp. 129515.
  • Kang, X.,, 2016, “Mechanical properties study of micro- and nano-hydroxyapatite reinforced ultrahigh molecular weight polyethylene composites”. Journal of Applied Polymer Science, Vol. 133, No:3,
  • Kilgour, Ã, A., Elfick, A., 2009, “Tribology International Influence of crosslinked polyethylene structure on wear of joint replacements”. Tribiology International, Vol. 42, No:11–12, Elsevier, pp. 1582–94.
  • Kong, Y., Hay, J. N., 2002, The measurement of the crystallinity of polymers by DSC. Vol. 43, pp. 3873–78.
  • Macuvele, D.L. P., et al. 2017, “Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review”. Materials Science and Engineering C, Vol. 76, pp. 1248–62.
  • Mirsalehi, S. A., et al. 2015 “Tensile and biocompatibility properties of synthesized nano-hydroxyapatite reinforced ultrahigh molecular weight polyethylene nanocomposite”. Journal of Composite Materials, Vol. 50, No:13, pp. 1725–37.
  • Nadzadi, M.E., et al. 2002, “Effects of acetabular component orientation on dislocation propensity for small-head-size total hip arthroplasty”. Clinical Biomechanics,Vol. 17, No:1, pp. 32–40.
  • Norton, K.A., et al. 2015, “Heterogeneity of chemokine cell-surface receptor expression in triple-negative breast cancer”. American Journal of Cancer Research, Vol. 5, No:4, pp. 1295–307.
  • Pang, W., et al. 2015, “Mechanical and thermal properties of graphene oxide/ultrahigh molecular weight polyethylene nanocomposites”. RSC Advances, Vol. 5, No:77, Royal Society of Chemistry, pp. 63063–72.
  • Peng C.B., et al. 2015, “Optimization on wear performance of UHMWPE composites using response surface methodology”. Tribology International, Vol. 88, pp. 252–62.
  • Pylypchuk, I. V., et al. 2016, “Formation of biomimetic hydroxyapatite coatings on the surface of titanium and Ti-containing alloys”. Surface Chemistry of Nanobiomaterials,pp. 193–229,
  • Ruggiero, A., et al. 2020, “In silico total hip replacement wear testing in the framework of ISO 14242-3 accounting for mixed elasto-hydrodynamic lubrication effects”. Wear,Vol. 460–461.
  • Sadat-Shojai, M., et al. 2013, “Synthesis methods for nanosized hydroxyapatite indiverse structures”. Acta Biom aterialia, Vol. 9, pp. 7591–621.
  • Salari, M., et al. 2019, “Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement”. Journal of Materials Science, Vol. 54, No:5, pp. 4259–76.
  • Shahemi, N., et al. 2018, “Long-term wear failure analysis of uhmwpe acetabular cup in total hip replacement”. Journal of the Mechanical Behavior of Biomedical Materials, Vol. 87, pp. 1–9.
  • Slouf M.,2012,Monitoring and minimization of UHMWPE wear in total joint replacements. Sui, G., et al., 2009, Structure , mechanical properties and friction behavior of UHMWPE / HDPE / carbon nanofibers. Vol. 115, pp. 404–12.
  • Toh, S. M. S., et al. 2021,“ Computational method for bearing surface wear prediction in total hip replacements”. Journal of the Mechanical Behavior of Biomedical Materials, Vol. 119, pp. 104507.
  • Turell, M. B, Anuj B., 2004, “A study of the nanostructure and tensile properties of ultra-high molecular weight polyethylene”. Biomaterials, Vol. 25, No:17, pp. 3389–98.
  • Ursavaş, F. ., Yaradılmış Y. U., 2020, “Relationship Between Pain Beliefs and Postoperative Pain Outcomes After Total Knee and Hip Replacement Surgery”. Journal of Perianesthesia Nursing, W.B. Saunders
  • Wang, H., et.al, 2016, “Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing”. Radiation Physics and Chemistry, Vol. 125, pp. 41–49,
  • Wei, He,. Benson, R., 2011, “10 Polymeric Biomaterials”. Applied Plastics Engineering Handbook,
  • Xie, X. L., et al. 2003, Wear performance of ultrahigh molecular weight polyethylene / quartz composites. Vol. 24, pp. 1889–96.
  • Yadav, A., et al., 2021, “YouTube – An unreliable source of information for Total hip replacement”. Journal of Clinical Orthopaedics and Trauma, Vol. 13, pp. 82–84.
  • Yuezhen, B., et al. 2001, "Ultra-drawing of low molecular weight polyethylene Ð ultra-high molecular weight polyethylene blend ® lms prepared by gelation / crystallization from semi-dilute solutions". Vol. 42, pp. 8125–35.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Gözde Efe 0000-0003-3912-6105

Tuba Yener 0000-0002-2908-8507

Publication Date December 4, 2021
Submission Date April 25, 2021
Acceptance Date October 13, 2021
Published in Issue Year 2021

Cite

IEEE G. Efe and T. Yener, “KALÇA PROTEZİ İÇİN UHMWPE – HAp KOMPOZİTLERİNİN ÜRETİMİ VE KARAKTERİZASYONU”, KONJES, vol. 9, no. 4, pp. 1013–1024, 2021, doi: 10.36306/konjes.927409.