Research Article
BibTex RIS Cite

İKİLİ KÜP MODELLERİNİN AKIŞ ALANINA FARKLI AÇIKLIK ORANLARINDA YERLEŞTİRİLMESİNİN AKIŞ YAPISINA ETKİSİNİN DENEYSEL OLARAK İNCELENMESİ

Year 2022, , 200 - 214, 01.03.2022
https://doi.org/10.36306/konjes.933713

Abstract

Küp şeklindeki cisimlerin birbiri ile konumlandırılması cisimlerin etrafındaki akış yapısından kaynaklanan akış etkileri açısından önemlidir. Cisimlerin yerleşimi faydalı rüzgâr akımı yaratabileceği gibi istenmeyen rüzgâr akımı meydan getirerek cisimlerde yapısal titreşimler ve gürültü gibi istenmeyen durumları da meydana getirebilmektedir. Bu çalışmada akrilik malzemeden, 75x75mm boyutlarında imal edilen küp cisim modelleri, aralarında farklı açıklık oranlarında (D/h = 0.5, 1 ve 2) olacak şekilde konumlandırılmıştır. D küpler arasındaki mesafeyi, h küpün kenar uzunluğunu ifade etmektedir. Kullanılan modellerin karakteristik çapına (h) ve akış hızına (V) bağlı olarak deneyler Reynolds sayısı, Re=26000’de gerçekleştirilmiştir. Parçacık Görüntüleme Hız Ölçüm Tekniği (PIV) kullanılarak anlık olarak elde edilen hız vektörleri ile anlık girdap, akım çizgisi gibi bileşenler hesaplanmış ve hesaplanan anlık verilerle de zaman ortalama hız, girdap ve türbülans istatistikleri belirlenmiştir. Çalışma sonucunda, ayrılmış akış bölgesinin D/h oranının artması ile daha geniş bir alana yayıldığı görülmektedir. D/h oranının artması ile hız bileşeninin dalgalanmalarının azaldığı, modeller arasındaki D/h oranının azalması ile iki model arasında kalan bölgede akış hızının arttığı tespit edilmiştir.

Supporting Institution

Osmaniye Korkut Ata Üniversitesi Bilimsel Araştırma Projeleri Birimi (OKÜBAP)

Project Number

OKÜBAP-2019-PT3-009

Thanks

Bu çalışma Osmaniye Korkut Ata Üniversitesi Bilimsel Araştırma Projeleri Birimi (OKÜBAP) tarafından OKÜBAP-2019-PT3-009 projesi kapsamında desteklenmiştir. OKÜBAP'a desteklerinden dolayı teşekkür ederiz.

References

  • Alnak, D. E., Varol, Y., Firat, M., Oztop, H. F., & Ozalp, C., 2019, “Experimental and numerical investigation of impinged water jet effects on heated cylinders for convective heat transfer.”, International Journal of Thermal Science, Vol. 135, pp. 493-508.
  • Castro, I. P., Robins, A. G., 1977, “The flow around a surface-mounted cube in uniform and turbulent streams”, Journal of fluid Mechanics, Vol. 79 No. 2, pp. 307-335.
  • Çengel, Y. A., Cimbala, J. M., & Engin, T. (2008). Akışkanlar Mekaniği: Temelleri ve Uygulamaları. Güven Kitabevi.
  • Diaz-Daniel, C., Laizet, S., & Vassilicos, J. C., 2017, “Direct numerical simulations of a wall-attached cube immersed in laminar and turbulent boundary layers.”, International Journal of Heat and Fluid Flow, Vol 68, pp. 269-280.
  • Guichard, R., 2019, “Assessment of an improved Random Flow Generation method to predict unsteady wind pressures on an isolated building using Large-Eddy Simulation”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 189, pp. 304-313.
  • Joubert, E. C., Harms, T. M., Venter, G., 2015, “Computational simulation of the turbulent flow around a surface mounted rectangular prism”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 142, pp. 173-187.
  • Klotz, L., Goujon-Durand, S., Rokicki, J., & Wesfreid, J. E., 2004, “Experimental investigation of flow behind a cube for moderate Reynolds numbers”, Journal of Fluid Mechanics, Vol. 16, pp. 1630-1646
  • Kundu, P. K., Cohen, I. M., & Dowling, D. R., 2016, Fluid mechanics, 6th version, Academic, Berlin.
  • Lin, K. C., Violi, A., 2010, “Natural convection heat transfer of nanofluids in a vertical cavity: Effects of non-uniform particle diameter and temperature on thermal conductivity”, International Journal of Heat and Fluid Flow, Vol. 31, No. 2, pp. 236-245.
  • Liu, S., Pan, W., Zhao, X., Zhang, H., Cheng, X., Long, Z., Chen, Q., 2018, “Influence of surrounding buildings on wind flow around a building predicted by CFD simulations”, Building and Environment, Vol. 140, pp. 1-10.
  • Ozgoren, M., 2006, “Flow structure in the downstream of square and circular cylinders”, Flow Measurement and Instrumentation, Vol. 17 No. 4, pp. 225-235.
  • Özalp, C., Polat, C., Saydam, D. B., Söyler, M., 2020, “Dye Injection Flow Visualization Around a Rotating Circular Cylinder”, European Mechanical Science, Vol. 4, No. 4, pp. 185-189.
  • Park, J., Sun, X., Choi, J. I., Rhee, G. H., 2017, “Effect of wind and buoyancy interaction on single-sided ventilation in a building”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 171, pp. 380-389.
  • Polat, C., 2019, Farklı Dizilimlere Sahip Binalar Etrafındaki Akış Karakteristiklerinin PIV Yöntemi ile Deneysel Olarak İncelenmesi, Yüksek Lisans Tezi, Osmaniye Korkut Ata Üniversitesi, Fen Bilimleri Enstitüsü, Osmaniye.
  • Princevac, M., Baik, J. J., Li, X., Pan, H., Park, S. B., 2010, “Lateral channeling within rectangular arrays of cubical obstacles”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 98, No. 8-9, pp. 377-385.
  • Sari, D. P., Kusumaningrum, W. B., 2014, “A technical review of building integrated wind turbine system and a sample simulation model in central java, Indonesia”, Energy Procedia, Vol. 47, pp. 29-36.
  • Tominaga, Y., Akabayashi, S. I., Kitahara, T., Arinami, Y., 2015, “Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations”, Building and Environment, Vol. 84, pp. 204-213.
  • Thompson, D., 2019, “Effect of wall proximity on the flow over a cube and theimplications for the noise emmited.”, Physics of Fluids, Vol. 31 No.7, pp. 077101
  • Tutar, M., Oğuz, G., 2004, “Computational modeling of wind flow around a group of buildings”, International Journal of Computational Fluid Dynamics, Vol. 18, No. 8, pp. 651-670.
  • Wang, Y. Q., Jackson, P. L., & Sui, J., 2014, “Simulation of Turbulent Flow Around a Surface-Mounted Finite Square Cylinder.”, Journal of Thermophysics and Heat Transfer, Vol. 28 No.1, pp. 118-132.
  • Yakhot, A., Liu, H., Nikitin, N., 2006, “Turbulent flow around a wall-mounted cube: A direct numerical simulation”, International Journal of Heat and Fluid Flow, Vol. 27, No. 6, pp. 994-1009.

Experimental Investigation of The Effect of Placing Dual Cube Models in The Flow Field with Different Gap Ratios on Flow Structure

Year 2022, , 200 - 214, 01.03.2022
https://doi.org/10.36306/konjes.933713

Abstract

The positioning of cube-shaped objects with each other is important in terms of flow effects arising from the flow structure around the objects. The placement of the objects can create a beneficial flow regime, as well as creating undesirable wind flow and undesirable situations such as structural vibrations and noise in the objects. In this study, cube object models manufactured from acrylic material with dimensions of 75x75mm were positioned with different gap ratios (D/h = 0.5, 1 and 2) between them. D is the distance between cubes; H is the characteristic height of the cube. The experiments were carried out at Reynolds number of 26000, depending on the characteristic height (H) and flow velocity (V) of the models used. Using the Particle Imaging Velocity Measurement Technique (PIV), instantaneous velocity vectors and components such as instantaneous eddies and streamlines were calculated, and the average turbulence statistics values were determined with the instant data. As a result of the study, it is seen that the flow separation zone spreads over a wider area with the increase of the D/h ratio. It has been determined that the fluctuations of the velocity component decrease with the increase of the D/h ratio. The decrease in the D/h ratio between the models resulted increasing the velocity of the fluid.

Project Number

OKÜBAP-2019-PT3-009

References

  • Alnak, D. E., Varol, Y., Firat, M., Oztop, H. F., & Ozalp, C., 2019, “Experimental and numerical investigation of impinged water jet effects on heated cylinders for convective heat transfer.”, International Journal of Thermal Science, Vol. 135, pp. 493-508.
  • Castro, I. P., Robins, A. G., 1977, “The flow around a surface-mounted cube in uniform and turbulent streams”, Journal of fluid Mechanics, Vol. 79 No. 2, pp. 307-335.
  • Çengel, Y. A., Cimbala, J. M., & Engin, T. (2008). Akışkanlar Mekaniği: Temelleri ve Uygulamaları. Güven Kitabevi.
  • Diaz-Daniel, C., Laizet, S., & Vassilicos, J. C., 2017, “Direct numerical simulations of a wall-attached cube immersed in laminar and turbulent boundary layers.”, International Journal of Heat and Fluid Flow, Vol 68, pp. 269-280.
  • Guichard, R., 2019, “Assessment of an improved Random Flow Generation method to predict unsteady wind pressures on an isolated building using Large-Eddy Simulation”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 189, pp. 304-313.
  • Joubert, E. C., Harms, T. M., Venter, G., 2015, “Computational simulation of the turbulent flow around a surface mounted rectangular prism”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 142, pp. 173-187.
  • Klotz, L., Goujon-Durand, S., Rokicki, J., & Wesfreid, J. E., 2004, “Experimental investigation of flow behind a cube for moderate Reynolds numbers”, Journal of Fluid Mechanics, Vol. 16, pp. 1630-1646
  • Kundu, P. K., Cohen, I. M., & Dowling, D. R., 2016, Fluid mechanics, 6th version, Academic, Berlin.
  • Lin, K. C., Violi, A., 2010, “Natural convection heat transfer of nanofluids in a vertical cavity: Effects of non-uniform particle diameter and temperature on thermal conductivity”, International Journal of Heat and Fluid Flow, Vol. 31, No. 2, pp. 236-245.
  • Liu, S., Pan, W., Zhao, X., Zhang, H., Cheng, X., Long, Z., Chen, Q., 2018, “Influence of surrounding buildings on wind flow around a building predicted by CFD simulations”, Building and Environment, Vol. 140, pp. 1-10.
  • Ozgoren, M., 2006, “Flow structure in the downstream of square and circular cylinders”, Flow Measurement and Instrumentation, Vol. 17 No. 4, pp. 225-235.
  • Özalp, C., Polat, C., Saydam, D. B., Söyler, M., 2020, “Dye Injection Flow Visualization Around a Rotating Circular Cylinder”, European Mechanical Science, Vol. 4, No. 4, pp. 185-189.
  • Park, J., Sun, X., Choi, J. I., Rhee, G. H., 2017, “Effect of wind and buoyancy interaction on single-sided ventilation in a building”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 171, pp. 380-389.
  • Polat, C., 2019, Farklı Dizilimlere Sahip Binalar Etrafındaki Akış Karakteristiklerinin PIV Yöntemi ile Deneysel Olarak İncelenmesi, Yüksek Lisans Tezi, Osmaniye Korkut Ata Üniversitesi, Fen Bilimleri Enstitüsü, Osmaniye.
  • Princevac, M., Baik, J. J., Li, X., Pan, H., Park, S. B., 2010, “Lateral channeling within rectangular arrays of cubical obstacles”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 98, No. 8-9, pp. 377-385.
  • Sari, D. P., Kusumaningrum, W. B., 2014, “A technical review of building integrated wind turbine system and a sample simulation model in central java, Indonesia”, Energy Procedia, Vol. 47, pp. 29-36.
  • Tominaga, Y., Akabayashi, S. I., Kitahara, T., Arinami, Y., 2015, “Air flow around isolated gable-roof buildings with different roof pitches: Wind tunnel experiments and CFD simulations”, Building and Environment, Vol. 84, pp. 204-213.
  • Thompson, D., 2019, “Effect of wall proximity on the flow over a cube and theimplications for the noise emmited.”, Physics of Fluids, Vol. 31 No.7, pp. 077101
  • Tutar, M., Oğuz, G., 2004, “Computational modeling of wind flow around a group of buildings”, International Journal of Computational Fluid Dynamics, Vol. 18, No. 8, pp. 651-670.
  • Wang, Y. Q., Jackson, P. L., & Sui, J., 2014, “Simulation of Turbulent Flow Around a Surface-Mounted Finite Square Cylinder.”, Journal of Thermophysics and Heat Transfer, Vol. 28 No.1, pp. 118-132.
  • Yakhot, A., Liu, H., Nikitin, N., 2006, “Turbulent flow around a wall-mounted cube: A direct numerical simulation”, International Journal of Heat and Fluid Flow, Vol. 27, No. 6, pp. 994-1009.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Cemre Polat 0000-0002-7001-1042

Doğan Burak Saydam 0000-0001-8453-2917

Mustafa Söyler 0000-0003-4767-5825

Coskun Özalp 0000-0003-2249-7268

Project Number OKÜBAP-2019-PT3-009
Publication Date March 1, 2022
Submission Date May 6, 2021
Acceptance Date February 8, 2022
Published in Issue Year 2022

Cite

IEEE C. Polat, D. B. Saydam, M. Söyler, and C. Özalp, “İKİLİ KÜP MODELLERİNİN AKIŞ ALANINA FARKLI AÇIKLIK ORANLARINDA YERLEŞTİRİLMESİNİN AKIŞ YAPISINA ETKİSİNİN DENEYSEL OLARAK İNCELENMESİ”, KONJES, vol. 10, no. 1, pp. 200–214, 2022, doi: 10.36306/konjes.933713.